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Rey Juan Carlos, Móstoles, Madrid, Spain

Gino Casassa

Centro de Estudios Cientı́ficos, Valdivia, Chile;
Fundación Huilo Huilo, Las Condes,

Santiago, Chile

Kimberly Casey

CMNS-Earth System Science Interdisciplinary
Center, University of Maryland, College Park,

Maryland, U.S.A.

Elena Castellanos
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Foreword

The origin and development of GLIMS (a personal perspective)

by Hugh H. Kieffer, Celestial Reasonings, Genoa, Nevada

I was a young glaciologist once, working for Bark-
ley Kamb and Ron Shreve on the Blue Glacier
(WA, USA) and for Mario Giovinetto in Antarctica
in the early 1960s. After a 25-year diversion toMars
and its polar caps, I returned to work with terres-
trial spacecraft, and again turned my attention to
glaciers. I was then at the Astrogeology Branch of
the U.S. Geological Survey in Flagstaff, AZ.

In 1988, a group of us led by Anne Kahle (who
eventually became the first U.S. ASTER Science
Team Leader) proposed to NASA a combined
infrared multi-band thermal mapper with an
embedded spot infrared spectrometer. This instru-
ment was not selected. However, our team was
chosen to join with a team from Japan that would
provide to NASA an instrument combining three
imaging subsystems: a 3-band visible and near-IR
(VNIR) 15 m resolution subsystem with 1-band
stereo, a 6-band short-wave IR (SWIR) subsystem
with 30 m resolution, and a 5-band thermal-IR
(TIR) subsystem with 90 m resolution. All of the
US team members had to write proposals for what
science they would do with this huge instrument;
two of my objectives were Monitoring polar out-
flow-glacier velocities, and Observations of glacier
advance or retreat. This instrument became
ASTER (Advanced Spaceborne Thermal Emission
and Reflection Radiometer) on the first EOS plat-
form, Terra, launched in December 1999. An
important capability was that the VNIR subsystem
could point 24� to either side, allowing imaging to
85� latitude, considerably increasing coverage of
the trans-Antarctic mountain range beyond that

accessible with the Landsat satellites. Although
the SWIR subsystem ceased operation in 2008,
the VNIR and TIR subsystems continue to function
in their old age.
The VNIR color could easily distinguish ice and

snow from rock and vegetation. The SWIR allowed
estimation of grain size and clear distinction of
snow from ice, and the TIR could measure surface
temperature. Not recognized at that time was the
ability to identify sediment load in glacier-surface
pools, the ability of stereoscopic imaging to pro-
duce DEMs that can help to discern changes in
glacier thickness in optimum circumstances, multi-
temporal imaging that can be used not just to map
glacier flow speeds but areas of accelerating and
decelerating ice, and VNIR data that can be used
to assess growth of vegetation on recently emplaced
glacial deposits.
The ASTER VNIR instrument was clearly cap-

able of supporting a 15 m resolution inventory of
the world’s glaciers; however, a few political and
technical steps were involved, each a challenge:
(1) getting acceptance of glacier monitoring as an
objective of the bi-national ASTER investigation;
(2) establishing a method of efficiently scheduling
ASTER observations of glaciers; (3) curating the
resulting imagery and extracting the glacier infor-
mation.
The first was accomplished by presentations at

the ASTER Science Team meetings, held twice
per year. However, the activity needed a name.
Having regretted for decades selection of an unpro-
nounceable acronym for an instrument, I insisted



that the initials for the name of our dream be a
pronounceable acronym, and eventually we settled
on GLIMS (Global Land Ice Measurements from
Space). Glim is an archaic Scottish term that means
‘‘a passing look; a glimpse; as much as is seen at a
glance,’’ and that seemed appropriate, given our
understanding of the effect of global warming.

The second step required considerable iteration
with the ASTER group in Japan that was develop-
ing the command dictionary and the massive
ground data system; the huge scope derived from
the ASTER objective to cover all land area on
Earth with 15 m stereo with daytime coverage,
and much of it at night. GLIMS hoped for annual,
non-cloudy coverage in late summer for mountain
glaciers and well-lit margins of the polar ice sheets.
Anticipating significant cloud cover over glaciers,
successful acquisition would depend to some extent
on automated rescheduling if images were classified
as cloudy. However, we did not expect that the
automated cloud coverage algorithm would work
well over glaciers, and indeed clouds have remained
a challenge. GLIMS did not initially target the
interiors of ice sheets.

While the first two steps could be done by a few
people, the third could only be accomplished by a
large organization, preferably involving people
familiar with the glaciers and terrain. From this
came the concept of Regional Centers (RCs) and
Stewards. RCs were intended to have both data
analysis and organizational responsibilities. My
experience in large organizations led me to believe
that organizations with large ‘‘fan-out’’ factors
were difficult to manage; hence, we initially envi-
sioned about a dozen RCs covering geographically
contiguous regions. The number has since grown to
about 30. RCs could involve as many Stewards as
they wished, with a Steward having responsibility
for a sub-section of the region, down to an indi-
vidual glacier. The key concept was that the
GLIMS leadership did not have any direct interface
responsibility with Stewards; Stewards received
guidance from and delivered their products to the
RCs. The RCs were responsible for initial quality
checks on the derived glacier information for their
region, including material from their Stewards. A
list of the current RCs and Stewards is at http://
www.glims.org/glims/nsidc_rc_table_public.php

The new GLIMS group would complement two
major existing activities; the venerable World Gla-
cier Monitoring Service (WGMS) (1894þ) with
emphasis on precision field measurements of several
hundred glaciers, and the multi-volume USGS

Satellite Image Atlas of Glaciers of the World (Wil-
liams and Ferrigno, 1988) with comprehensive dis-
cussion but lacking a digital database.
In June 1994, while on a personal trip to Austria

and Switzerland, I visited Michael Kuhn at the
University of Innsbruck and Wilfried Haeberli at
ETH Zurich to present the concept of satellite-
based glacier monitoring. My reception was polite,
but it took many discussions and years of slowly
converging interests until GLIMS and WGMS
eventually became closely integrated. Today
GLIMS, WGMS, and the U.S. National Snow
and Ice Data Center constitute the Global Terres-
trial Network for Glaciers (GTN-G, http://
www.gtn-g.org). Although ground-based observa-
tions had been made for decades to centuries, the
total number of glaciers monitored was small.
When glacier terminus position change was consid-
ered in light of the local climate, as in the seminal
paper by J. Oerlemans (1994), a consistent warming
rate emerged. However, a globally comprehensive
approach could better define regional variations,
help assess the role of glacier response time on
measured variability, and separate short-term
effects from the secular influence of climate change,
On August 9, 1994, at the IGS International

Symposium on the Role of the Cryosphere in Glo-
bal Change held at Columbus, Ohio, U.S.A., Jeff
Kargel and I made the first open presentation of the
GLIMS concept. Fifteen years later, GLIMS had a
major role in the world’s integrated approach to
monitoring glaciers; see http://www.fao.org/gtos/
doc/ECVs/T06/T06.pdf (2009). GLIMS was started
on adrenaline at the USGS in Flagstaff; the only
funding was through my team membership on
ASTER. Over two years the effort grew to a max-
imum of about two funded positions. There was a
tiny fraction of myself; a fraction of Jeff Kargel,
who was a planetary geomorphologist and geo-
chemist, then working on Martian glacial geomor-
phology and Earth analogs; most of Bruce Raup
(see below), who had some other ASTER tasks; and
most of Rick Wessels, a remote-sensing volcanolo-
gist. All but me are still involved in GLIMS!
In the summer of 1995 I emailed to many col-

leagues an announcement of a position for someone
with an engineering background (so they would be
familiar with the construction and capabilities of
the ASTER instrument), who could work on devel-
opment of software for measurements of glacier
flow and would be skillful in interacting with the
Japanese ASTER Team. Astoundingly, I had an
applicant—Bruce Raup—with a B.S. degree in
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engineering physics who had worked for a Japanese
engineering firm, had just finished a M.S. thesis in
finite-element modeling of glacier flow, and was
fluent in several computer languages as well as writ-
ten and spoken Japanese (having studied in Japan
for two years). Bruce worked in my group for four
years and is still a prominent figure in GLIMS.

While Jeff and I worked on establishing the
GLIMS organization and defining measurement
approaches, Bruce and Rick developed the concepts
and software for scheduling ASTER coverage and
processing the images into a glacier outline data-
base.

The technical objective was to make full use of
modern satellite and computer capabilities. Because
of the initial funding source, the data-handling
activity concentrated on ASTER. However, our
plans had an eye toward later inclusion of data from
other instruments, both similar to ASTER (e.g., the
Landsat series) and other techniques such as inter-
ferometric radar and laser altimetry.

The data formats and data-flow process were
refined by extensive interaction with interested
glaciologists and database technicians. Once the
GLIMS organizational structure and initial Re-
gional Centers were established, development and
feedback on the technical aspects progressed
rapidly.

Key concepts related to data extraction and sto-
rage were: (1) All the products must be fully digital
and in a consistent format. (2) The format must
support automated comparisons over time to quan-
tify change. (3) The database should be available to
anyone.

A corollary was a requirement for uniform qual-
ity control on the material entering the GLIMS
database. With an objective of addressing the esti-
mated 170,000 glaciers, the accurate extraction of
margins, termini, divides, source areas, and other
attributes needed support of powerful and reliable
software. Bruce Raup has led the integration of
these requirements into the development of
GLIMSView, and most importantly, the digital
glacier database (initially developed at USGS, but
now hosted by the National Snow and Ice Data
Center).

In the 1990s, the environment for acceptance of
GLIMS was marginal. Global warming was not
widely accepted (at least in the U.S., and certainly
not in Washington, D.C.); the relation of glaciers to
climate was conjectural (doubters would cite the
opposing behavior of adjacent glaciers in Alaska,
for example); most glaciologists worked in the field,

but not with remote sensing; the emphasis was on
mass balance (very difficult then to measure remo-
tely), not terminus positions; the WGMS concen-
trated on a modest number of glaciers that were
intensely studied; regional inventory activity was
largely outlines on analog maps (e.g., Canada and
the eastern Himalaya). At that time, GLIMS was
conceived mainly around terminus and area fluc-
tuations, believing then that we could not remotely
sense changes in glacier thickness (not from
ASTER, at least).
It is challenging to obtain funding for an activity

that crosses agency lines, and at that time it seemed
that we needed several agencies to provide the
needed financial support. This was certainly the
case for GLIMS, with NASA responsible for
ASTER and other EOS instruments, NOAA
addressing climate monitoring, the USGS with a
small glacier-monitoring program and home of
the GLIMS principals, and the National Science
Foundation that supported much of the basic
climate research. Commonly in a discussion with
one of these, they would say, ‘‘but this is agency
X’s area’’. To address this ubiquitous redirection, I
arranged a joint meeting with representatives of
NASA, NOAA, USGS, and NSF. This meeting
raised awareness of the GLIMS objectives and
the inter-agency interests, but did not immediately
generate fiscal support. GLIMS toddled along on
ASTER team-member funding for nearly a decade.
There was, however, a general interest in the science
community and we began organization of the RCs,
with a mutual faith that our various governments
and institutions would ultimately recognize the
importance and efficacy of global coordination.
The early and continued involvement of Andy
Kääb, Michael Bishop, and others provided
inspiration, perspective, and technical prowess,
and some essential humor.
GLIMS international organization also faced

serious challenges due to political dividing lines.
The original concept was for a physical geographic
division of regional centers. However, the case of
the Alps proved an initial organizational challenge,
where each participating nation had its own fund-
ing agencies, and each nation had its own significant
history of interest in its glaciers dating decades (or
more than a century) before GLIMS. The Euro-
pean Union had just been formed (November 1,
1993) and this predated the Euro-zone (January
1, 1999). This ‘‘first among equals’’ situation was
resolved by the willingness of an Italian hydrologist
fluent in French and German who was working in
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Switzerland, Paolo Burlando. However, eventually
this arrangement dissolved, and separate regional
centers were defined for each Alpine nation. Simi-
larly, other challenges loomed for Scandinavia, the
Himalayan region, and others. Some were success-
fully integrated across national borders, but most
were not.

GLIMS workshops began in 1999 and were held
about once per year, commonly in conjunction with
IGS or other scientific society meetings, and inten-
tionally geographically diverse (a list is at http://
www.glims.org/Workshops/).

Since my retirement in 2003, GLIMS activity has
flourished. Database, quality control, and technical
interaction with the RCs has been driven mainly by
NSIDC (University of Colorado), with NASA
funding to Richard Armstrong. Some algorithm
development and applications, and RC and work-
shop organization has taken place at the University
of Arizona, where Kargel has operated with NASA
ASTER Science Team support since 2005. Other
NASA funding has supported several other U.S.
GLIMS investigators; foreign regional centers are

supported by their own, mainly national, funding
sources. The Regional Centers (together with their
Stewards) remain the main source of glacier anal-
ysis, as well as a prodigious family of innovators for
GLIMS.
The scientific value of GLIMS has become widely

recognized. I am pleased to have been part of the
origin of GLIMS and gratified by its growth, which
is due to the efforts of many dedicated people
around the world. If only the glaciers could do so
well. . . .
Thus endeth my story; all the rest is in the pages

that follow.

REFERENCES

Oerlemans, J. (1994) Quantifying global warming from

the retreat of glaciers. Science, 264, 243–245.

Williams, R.S., Jr., and Ferrigno, J.G. (Eds.) (1988þ),
Satellite Images Atlas of Glaciers of the Work (USGS

Prof. Paper 1386, 11 volumes, A–K). Available at

http://pubs.usgs.gov/pp/p1386/

xxviii Foreword



Acknowledgments

First, the authors are grateful to the global glaciol-
ogy research community for their cooperative spirit
that has made GLIMS a successful project. We also
thank many people who have been important in
supporting GLIMS including those at ASTERMis-
sion Operations, those helping to bring this book
project through to completion, or in otherwise lend-
ing support to GLIMS through the years. At Praxis
and Springer we are grateful to Philippe Blondel,
Clive Horwood, Janet Sterritt, and Neil Shuttle-
wood for their guidance and dedication to this book
project. Thanks also to Jim Wilkie for producing a
spectacular cover design. We greatly appreciate the
work of Kate Taralova for creating a wiki site that
was crucial early in the book project. We wish to
acknowledge Tom Wagner, Jared Entin, Waleed
Abdalati, Seelye Martin, Cerese Albers, Dan Irwin,
Ashutosh Limaye, Nancy Searby, and Woody
Turner at NASA for having provided a support
base and ASTER data access; andMichael Abrams,
Leon Maldonado, Anne Kahle at NASA/JPL on
ASTER Mission Operations; and Yasushi Yama-
guchi, Hiroyuki Fujisada, Kohei Arai, Isao Sato on
the Japan side of the U.S.–Japan Terra/ASTER
program. We are grateful as well to ESA for having
supported GLIMS through the GlobGlacier,
SPOT-IPY, and other programs; and to NASA,
ESA, ISRO, and other space agencies for a long
succession of capable, productive, and essential
Earth-observing satellites; and to USGS for having
made possible the inception of GLIMS 20 years
ago.

Jeff Kargel thanks NASA, USAID, and the peer
community and taxpayers for having sustained
Jeff’s work in GLIMS through a succession of
grants through the NASA IPY, Science of Terra
and Aqua, SERVIR Applied Sciences Team, and
Climbers’ Science programs. Specifically, Jeff
thanks Lana Lightle, Michael Cote, and Alton
Byers with the USAID Climbers’ Science Program
for their enthusiastic support of field-based
research. He also extends gratitude to RickWessels,
who was important in the early operational phase of
GLIMS, and particularly Greg Leonard who has
served the GLIMS project so well for the past five
years. Jeff also thanks his family, including now-
grown children, and his wife Huong (‘‘Bé’’), for her
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