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Supervisor’s Foreword

Phospholipid molecules, the building blocks of cell membranes, consist of a
hydrophilic headgroup and hydrophobic fatty acid chains of hydrocarbons. The
ionic headgroup contains a phosphate unit and interacts strongly with water mol-
ecules, in particular through phosphate–water hydrogen bonds. The ionic groups
generate strong electric fields in the plane of the membrane, leading to a spatial
orientation of water molecules. While the structure and basic physical properties of
phospholipids in thermal equilibrium are well understood, their dynamics in the
time domain of molecular motions and related structural fluctuations represent
topics of current research. Key issues are the fluctuating structure of the interfacial
water layer, the influence of fluctuating electric fields on molecular dynamics and
hydrogen bonding, and processes of energy exchange and dissipation in the
hydrated system. The relevant timescales are in the femto- to picosecond range and,
thus, methods of ultrafast spectroscopy hold a strong potential for unraveling the
basic processes.

In his thesis, Rene Costard studied structural and vibrational dynamics of phos-
pholipids with some of the most advanced methods of femtosecond infrared spec-
troscopy. His work extended the spectral range of two-dimensional infrared infrared
spectroscopy towards fingerprint vibrations of low frequency. As a model system, he
investigated reverse micelles of 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC)
which were filled with a water nanopool of variable size and embedded in a nonpolar
liquid. Interactions between phospholipids and water were mapped via the ultrafast
dynamics of vibrational excitations of either the phosphate groups or water mole-
cules. Vibrational dynamics of the phosphate groups which are addressed here for the
first time, are particularly sensitive to interfacial dynamics and, thus, spatially
selective. In contrast, water vibrations provide information that is spatially averaged
over the water pool.

Rene’s work has given detailed new insight at the molecular level. Two-
dimensional spectra of phosphate vibrations give evidence of structural disorder
of the phospholipid surface, manifested in a distribution of vibrational frequencies.
This disorder remains essentially unchanged on a timescale of the order of 10 ps,
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both at a very low water level and under conditions of full hydration with up to six
water molecules interacting with the phosphate groups. The phosphate–water
hydrogen bonds remain intact during this time interval. The hydrated phospholipid
structure undergoes limited fluctuations on a 300 fs timescale which originate from
statistical motions of both the phospholipid and the interfacial water molecules.

Phospholipid–water interactions play a central role for energy dissipation in the
system. The water pool can accommodate large amounts of excess energy stem-
ming from the decay of vibrational and/or electronic excitations of the phospho-
lipid. Redistribution and delocalization of excess energy over water molecules
occur on a characteristic timescale of a few picoseconds and establish a heated
ground state of the liquid. Rene has shown that a small shell of only three water
molecules around a phosphate group is sufficient for implementing this basic and
highly efficient mechanism of energy management.

Other key results show that the lifetime of both OH stretching and bending
vibrations of water molecules depend on the size of the water pool. The OH
stretching vibrations decays via the anharmonically coupled OH bending mode,
whereas the OH bending mode relaxes directly into librational water motions.
The OH bending lifetime depends sensitively on the energy mismatch with libra-
tional overtones.

In conclusion, Rene’s thesis combines novel experimental techniques with a
sophisticated research strategy to generate new insight into the dynamic properties
of phospholipids. The conclusions drawn from the experimental results are sup-
ported by detailed theoretical calculations and simulations. This work paves the
way for future studies of more complex biomolecular systems in an aqueous
environment, the medium of life.

Berlin Prof. Thomas Elsässer
February 2015
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Abstract

Charged phosphate groups are the major hydration sites of biomolecules such as
phospholipids and DNA. Hydration shells play a key role in the formation and
stabilization of cell membranes and the DNA double helix structure. Here, we
introduce phospholipid reverse micelles with variable water content (between one
and sixteen water molecules per phospholipid) as a model system to study ele-
mentary phosphate–water interactions. The fastest processes at phosphate–water
interfaces, e.g. hydrogen-bond dynamics and vibrational energy transfer occur on a
femto- to picosecond timescale. Since molecular vibrations are sensitive local
probes of the structure and dynamics, the use of femtosecond vibrational spec-
troscopy, in particular two-dimensional infrared spectroscopy (2D IR) and
pump-probe spectroscopy in a broad spectral range, allow for the observation of
microscopic phosphate–water interactions in real time. We present the first
two-dimensional infrared spectra of phosphate stretching vibrations that represent
true interfacial probes independent of the hydration level. Such spectra reveal that
the fastest structural fluctuations of phospholipid headgroups occur on a 300-fs
timescale, whereas phosphate–water hydrogen bonds are preserved for >10 ps.
Vibrational dynamics of intramolecular water vibrations, i.e., the OH stretching and
bending modes show that small water pools around the phosphate groups form
when three or more water molecules per phospholipid are present. Such water pools
act as efficient heat sinks of excess energy deposited in intramolecular vibrations of
water or the phosphate groups.
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Chapter 1
Introduction

Cells are the machines of life for all living organisms from the smallest bacteria to
large animals or plants [1]. Semipermeable cell membranes separate the cytoplasm
from the extracellular space. Their basic structure consists of a bilayer of lipids (cf.
Fig. 1.1) complemented by membrane proteins that account for selective transport of
ions and molecules in and out of the cell as well as for cell signaling.

The most abundant types of lipids in cell membranes are phospholipids, in par-
ticular phosphoglycerides that consist of a glycerol backbone linked to two fatty
acids and a phosphate group by ester bonds (Fig. 1.2). The phosphate group is ester-
ified with an alcohol that determines the nature of the head groups, the main types
in mammalian membranes being phosphatidylcholines, phosphatidylethanolamines
and phosphatidylserines (cf. Fig. 1.2c–e). All types of head groups are zwitterionic
making them polar so that they can form hydrogen bonds with water [3, 4]. In
contrast, the hydrocarbon chains of fatty acids are nonpolar. Thus, their composition
defines the structure of a phospholipid’s hydrophobic tails. Often, one of the chains is
saturated and the other one has an unsaturated C-C bond causing a kink in that chain.
One example is the mixed-chain phospholipid 1-palmitoyl-2-oleoyl-sn-glycero-3-
phosphocholine (POPC) in Fig. 1.2c.

The amphiphilic character of phospholipids is of major importance for the spon-
taneous self-assembly into lipid bilayers in aqueous solutions. Hydrophobic effects
cause the lipids to align in a way that the hydrocarbon chains form the interior of
the bilayer that exposes the hydrophilic head groups to the aqueous environment.
Water in the vicinity of such interfaces experiences an environment significantly dif-
ferent from the tetrahedral configuration in the bulk phase [5, 6]. Water molecules
are aligned in the electrostatic potential of the lipid head groups and form hydro-
gen bonds with the phosphate and carbonyl groups. Due to this confinement, the
motional freedom of water at lipid interfaces is reduced (the hydration structure of
phospholipids is briefly reviewed in Sect. 1.1).

Water is not only essential for the formation of cell membranes but also deter-
mines the structure and function of other biomolecules such as proteins and DNA
and is therefore a crucial component in cell biology [7, 8]. For example, it has
been suggested that the interaction of water and proteins plays an important role in

© Springer International Publishing Switzerland 2015
R. Costard, Ultrafast Dynamics of Phospholipid-Water Interfaces,
Springer Theses, DOI 10.1007/978-3-319-22066-6_1
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2 1 Introduction

Fig. 1.1 Schematic of a lipid bilayer cell membrane. Modified from [2]
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Fig. 1.2 Structure of a phosphoglyceride molecule. a Cartoon representing the hydrophilic head
and hydrophobic tails as in Fig. 1.1. b Schematic of phosphoglyceride indicating its constituents.
c–e Molecular structure of three phospholipids with different head groups as representatives for
phosphatidylcholines, phosphatidylethanolamines and phosphatidylserines

protein folding and binding [9, 10]. X-ray diffraction studies have shown that the
DNA double-helix conformation changes from the biologically important B-form
to the A-form upon dehydration [11]. As for phospholipids, phosphate groups are
major hydration sites of DNA [12, 13]. The characteristics of phosphate-water inter-
actions therefore determine the properties of the hydration shells of a diverse class
of biomolecules.

In this context it is of great relevance to obtain information about the distance
from the interface up to which water properties differ from the bulk phase, i.e., to
define a thickness of the hydration shell. In an extreme case, water is confined in
small spherical phospholipid self-assemblies called vesicles. Organized molecular


