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Supervisor’s Foreword

It is with the greatest of pleasure that I write the foreword to George Constable’s
Ph.D. thesis. At one level the thesis is a very clear description of a method of
analysing models in population genetics, which I will outline in more detail below.
But on a more general level it should also be very useful as an introduction to those
wishing to understand the formalism of continuous-time stochastic processes. There
are not so many textbooks on this subject, and those which do exist can be tech-
nically quite forbidding. This need not be so—the essential ideas and techniques are
relatively straightforward to understand—and the opening chapters of this thesis
provide an accessible introduction to them.

The main subject of the thesis is the stochastic time-evolution of populations
when the individuals making up the population have a very simple genetic
make-up: they are haploid and the focus is on a single gene which has only two
alleles. The ideas can certainly be extended to more complex systems, but the aim
was to develop techniques to allow models to be analysed, and testing them on the
simplest situations to start with. Attention was also directed to aspects of the models
which have perhaps received less attention than they deserve.

The first of these aspects is the careful specification of the model and its sub-
sequent simplification through the use of a diffusion approximation. Theoretical
physicists tend to take great care in distinguishing between microscopic, meso-
scopic and macroscopic descriptions of the same system, and the specification
of the approximations that are made to go from one level of description to another.
There is less of a tradition of doing this in the context of biological systems. In this
thesis there is a careful separation of the modelling and approximation processes, so
that both the starting point and the nature of the approximations subsequently made
are absolutely clear.

The second, and more substantial, contribution described in the thesis is in the
development of an additional approximation which makes an intractable equation
amenable to analysis. The standard method of specifying a model after the diffusion
approximation has been made goes back to the work of Fisher, but was popularised
by Kimura in the 1950s. It takes the form of a partial differential equation known as
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a Fokker-Planck equation to physicists and as a Kolmogorov forward equation to
those in many other disciplines. In simple situations it can be analysed but if, for
instance, the population is subdivided into islands (or demes, as they are sometimes
called), then this is a partial differential equation in many variables, and as such any
in-depth analysis appears to be almost impossible.

As a consequence in some areas of population genetics, the general equations
governing the dynamics have not been addressed directly, because of their intrac-
tability, and the focus has moved to simpler systems or to those where progress
could be made. This is understandable, but what the work in this thesis shows is that
this is not necessary; a simple approximation is available which reduces a
many-island description to one which is effectively a one-island model, but with
effective parameters. The resulting Fokker-Planck equation can now be used to
calculate the probability that a particular allele becomes fixed, how long this will
take on average or what the nature of the stationary probability distribution of
alleles is. There had been a few previous attempts to do this, but the procedure
outlined here is both more general and easier to understand than previous studies.

The procedure is based on a fast-mode elimination technique. The idea is very
simple and long established in the theory of dynamical systems. Essentially, the
variables in the model are decomposed into a set which decay at different rates,
jλðiÞj�1, i ¼ 1; 2; . . .. It turns out that in many cases of interest there is a ‘gap’
between the smallest jλðiÞj (taken to be jλð1Þj) and all the others. This means that
after quite a short time, compared to the timescales of interest to us, only the mode
characterised by jλð1Þj is left in the model describing the system. This is the ‘slow’
mode—all the other ‘fast’ modes have decayed away and dropped out of the the-
oretical description. What is left is a model with just one degree of freedom, which
can then be analysed systematically.

Of course, although the idea just described seems simple enough, finding a
concrete procedure which works, and which can be turned into a calculational tool,
is not. However, remarkably, a method was found which is both rather straight-
forward to apply and which also gives results in excellent agreement with computer
simulations of the original individual-based (that is, microscopic) model. It results
in a ‘reduced’ model in which the parameters are given in terms of the island sizes,
the scale of migration between the islands, or whatever parameters were present in
the original (full) model. Although I have used the example of subdivided popu-
lations to illustrate the method, it should be more generally applicable to the
reduction of complex population genetics models down to much simpler ones with
just a few effective parameters which are explicitly given in terms of those of the
full model.

I have already mentioned that those looking for an easy-to-understand intro-
duction to the formalism of continuous-time stochastic processes would benefit
from reading this thesis. But I would also hope that it would appeal to theoretical
biologists seeking to extend the scope of problems it can be applied to, to math-
ematicians wanting to make the approach more rigorous, and to theoretical phys-
icists looking for an application of the ideas and techniques of non-equilibrium

viii Supervisor’s Foreword



statistical mechanics. So my hope is that the publication of this thesis will allow a
much wider range of people to appreciate the power of the methodology presented
here, and also enable them to contribute to extending its range of applicability.

Manchester Alan McKane
April 2015
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Abstract

In this thesis, I present two methods of fast variable elimination in stochastic
systems. Their application to models of population dynamics from ecology, epi-
demiology and population genetics, is explored. In each application, care is taken to
develop the models at the microscale, in terms of interactions between individuals.
Such an approach leads to well-defined stochastic systems for finite population
sizes. These systems are then approximated at the mesoscale, and expressed as
stochastic differential equations. It is in this setting that elimination techniques are
developed.

In each model a deterministically stable state is assumed to exist, about which
the system is linearised. The eigenvalues of the system’s Jacobian are used to
identify the existence of a separation of timescales. The fast and slow directions are
then given locally by the associated eigenvectors. These are used as approximations
for the fast and slow directions in the full nonlinear system. The general aim is then
to remove these fast degrees of freedom and thus arrive at an approximate,
reduced-variable description of the dynamics on a slow subspace of the full system.

In the first of the methods introduced, the conditioning method, the noise of the
system is constrained so that it cannot leave the slow subspace. The technique is
applied to an ecological model and a susceptible-exposed-infectious-recovered
epidemiological model, in both instances providing a reduced system which pre-
serves the behaviour of the full model to high precision.

The second method is referred to as the projection matrix method. It isolates the
components of the noise on the slow subspace to provide its reduced description.
The method is applied to a generalised Moran model of population genetics on
islands, between which there is migration. The model is successfully reduced from
a system in as many variables as there are islands, to an effective description in a
single variable. The same methodology is later applied to the Lotka-Volterra
competition model, which is found under certain conditions to behave as a Moran
model. In both cases the agreement between the reduced system and stochastic
simulations of the full model is excellent.
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It is emphasised that the ideas behind both the conditioning and projection
matrix methods are simple, their application systematic, and the results in very good
agreement with simulations for a range of parameter values. When the methods are
compared, however, the projection matrix method is found in general to provide
better results.

xii Abstract
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Chapter 1
Introduction

Essentially, all models are wrong, but some are useful.
George Box [3]

Inwhat follows I amgoing to explore how concepts andmathematical tools originally
developedwithin physics can be applied to a variety of other fields. These can include,
but are not limited to, population genetics, evolution, opinion dynamics, epidemiol-
ogy and ecology. This thesis will focus primarily on models with an interpretation in
population genetics, however models with an ecological and epidemiological flavour
will also be explored. With this in mind, let us begin by discussing the questions,
‘what do we mean by a model?’ and ‘what makes a good model?’. The answers to
these questions are by no means unarguable, but rather serve to give the reader an
impression of the philosophy to which I attempt to adhere.

Amodel, in its most general form, is a representation of the real world used to help
better comprehend or predict its behaviour. In order to gain any tractability, these
models feature some degree of abstraction from the real world; the most accurate
model would have a one-to-one correspondence with its real world counterpart, but a
replica is no more easy to understand than the original. The degree of abstraction is a
modelling choice which, to some degree, depends both on the aim of the model and
the degree of knowledge one has about the real system. A large degree of abstraction
is preferable if knowledge of the real system is limited, or if one wishes the model to
be very general. For these reasons, I will be concerned with the quantitative analysis
of abstract models which aim to give a qualitative understanding of the behaviour of
certain systems.

This thesis will deal exclusively with dynamic models which describe the evolu-
tion in time of a system which is characterised by a set of variables. If at some time
t0 the state of the system is described by a vector of variables x(t0), we ask at some
later time t0 + �t how the properties of x(t) have changed. The model is said to be
deterministic if the state of the system at t0 + �t can be determined precisely. If the
system is in state x(t0) at time t0, it will be in a calculable state x(t0 + �t) at time
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t0 +�t . Such systems are most frequently described by a set of ordinary differential
equations (ODEs) of the following form

d

dt
x = f (x), (1.1)

where the vector-valued function f (x), along with initial conditions x0 = x(t0),
defines the model.

Within physics, the principle of Occam’s razor is ubiquitous in theoretical work.
This philosophy perhaps has its origins in the fact that the physical world has, histor-
ically, been found to obey laws which adhere so closely to their model counterparts
as to make the line between a model and reality appear blurred. However there is also
a more pragmatic factor in constructing simple models, that of gaining an intuitive
grasp on how a system behaves. As eluded to earlier, though a model with more
variables may provide a more accurate representation of its subject, it will also be
harder to understand intuitively. The apotheosis of the interpretability of a mathe-
matical problem comes in the form of an analytic solution. While a far greater range
of mathematical problems can be tackled numerically or through simulation than
analytically, such methods cannot rival the encompassing power of a single equation
that can describe some behaviour of a system.

While physicists in general still hold to an aesthetic desire for simplicity, the last
two hundred years has seen an undermining of the belief that simple models are
sufficient. Among the issues at the core of this subversion have been the practical
intractability and indeterminacy of many variable systems, chaos theory and the
realisation that emergent phenomena can defy naïve interpretation. Together, these
issues in some sense embody the class of problems at the centre of the discipline
known as complex systems.

The first of these problems is encountered while trying to describe the thermo-
dynamic behaviour of gas in terms of its constituent particles, and was tackled by
an approach which came to be known as statistical mechanics [10]. If one wishes to
understand the behaviour of a gas, one may consider the behaviour of each particle
in the gas independently. However, even if we know the exact form of the interac-
tion between the particles and identify the initial conditions of each particle in the
system, we are still left with a formidably complicated system of equations to solve.
The key to progress is in observing that we are not really interested in all the details
that solving the full system would give us; even if we could solve the full set of
equations, the velocity of the 13, 500, 303, 304th particle is superfluous information
that gives us no understanding as to how the collection of particles behaves. If instead
we assume each of the particles is indistinguishable from any other, we can begin to
make statistical inferences about the system. We are then interested in the statistics
of the mass of particles, about which we can make some analytic progress.

The second of the above problems is chaos. The central, powerful observation of
chaos theory is that there exists simple systems (possibly of the form of Eq. (1.1)
in three or more variables) whose behaviour is made essentially unpredictable by a
limited knowledge of the initial conditions [9]. In a chaotic system, two trajectories
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whose initial conditions lie very near one another will evolve in time in an entirely
different manner. In order to accurately predict the trajectory a system would follow,
one would need to know the initial conditions of the system to infinite precision.
Clearly this nullifies the predictive power of the model. In this thesis I will not deal
with this class of system.However, the indeterminacy that arises from this phenomena
is important in motivating the work that follows, in that it highlights the failing of
determinism and points instead towards models where predictability is inherently
limited.

A stochasticmodel is onewhich incorporates inherent unpredictability. In contrast
to a deterministic model, if the state of the system, x(t), is known at some time t0, we
do not know the state of the system at x(t0 + �t). The variable x(t) is a realisation
of a stochastic variable X whose evolution in time cannot be predicted precisely.
The exact way in which systems with stochastic components are modelled is once
again a matter of choice. In this thesis however, I will concentrate on models which
describe the time-evolution of the probability density function (PDF) of the stochastic
variable. The PDF gives the probability that a system is in a state x(t). If the system
is in state x(t0) at t0, rather than ask what state the system is in at time t + �t as
in the deterministic description, given by Eq. (1.1), we ask what the probability of
being in some state x is at time t + �t . However, before we proceed to discuss in
full the details of a dynamic-stochastic model, let us review some important results
and intuitions from probability theory.

Say a fair, six sided die is thrown in the air. In principle, given enough informa-
tion about the initial state of the die (its trajectory, weight, alignment etc.) one could
calculate on exactly what side the die would fall. However, rather than model all of
these parameters in a complicated model, it is common to embody all the dynam-
ical processes in one probabilistic process. With each throw of the die, rather than
determine a definite answer, we allow an equal probability of each of the six results
occurring. What do these probabilities indicate? If we were to take a frequentist
approach, they tells us that if we throw the die an infinite number of times, we would
get each side of the die exactly 1/6th of the time [4]. Letting nx denote the number
of times an event x occurs, and N the total number of trials, the probability p(x) of
x occurring is then

p(x) = lim
N→∞

nx

N
. (1.2)

Equivalently, we could say that if we threw an infinite number of dice, then 1/6th of
them would show each side.

What happens if, quite reasonably, we do not have an infinite collection of dice?
The expected probability of rolling a 3 is 1/6. However, given a finite number of
dice N , one may not (and possibly cannot) achieve this fraction of threes. Instead,
one obtains a sample probability,

p̄(x) = nx

N
, (1.3)


