

SPRINGER BRIEFS IN MATERIALS

Giuseppe Chirico
Mykola Borzenkov
Piersandro Pallavicini

Gold Nanostars

Synthesis, Properties and Biomedical Application

Springer

SpringerBriefs in Materials

More information about this series at <http://www.springer.com/series/10111>

The SpringerBriefs Series in Materials presents highly relevant, concise monographs on a wide range of topics covering fundamental advances and new applications in the field. Areas of interest include topical information on innovative, structural and functional materials and composites as well as fundamental principles, physical properties, materials theory and design. SpringerBriefs present succinct summaries of cutting-edge research and practical applications across a wide spectrum of fields. Featuring compact volumes of 50 to 125 pages, the series covers a range of content from professional to academic. Typical topics might include • A timely report of state-of-the art analytical techniques • A bridge between new research results, as published in journal articles, and a contextual literature review • A snapshot of a hot or emerging topic • An in-depth case study or clinical example • A presentation of core concepts that students must understand in order to make independent contributions Briefs are characterized by fast, global electronic dissemination, standard publishing contracts, standardized manuscript preparation and formatting guidelines, and expedited production schedules.

Giuseppe Chirico • Mykola Borzenkov
Piersandro Pallavicini

Gold Nanostars

Synthesis, Properties
and Biomedical Application

Springer

Giuseppe Chirico
Department of Physics
University of Milano-Bicocca
Milano, Italy

Mykola Borzenkov
Department of Physics
University of Milano-Bicocca
Milan, Italy

Piersandro Pallavicini
Department of Chemistry
University of Pavia
Pavia, Italy

ISSN 2192-1091
SpringerBriefs in Materials
ISBN 978-3-319-20767-4
DOI 10.1007/978-3-319-20768-1

ISSN 2192-1105 (electronic)
ISBN 978-3-319-20768-1 (eBook)

Library of Congress Control Number: 2015944064

Springer Cham Heidelberg New York Dordrecht London
© Springer International Publishing Switzerland 2015

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed.

The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use.

The publisher, the authors and the editors are safe to assume that the advice and information in this book are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors give a warranty, express or implied, with respect to the material contained herein or for any errors or omissions that may have been made.

Printed on acid-free paper

Springer International Publishing AG Switzerland is part of Springer Science+Business Media
(www.springer.com)

Preface

Gold nanoparticles are nowadays used in high-technology applications such as organic photovoltaics, sensory probes, therapeutic agents, drug delivery in biological and medical applications, electronic conductors, and catalysis due to their unique properties. Among the various types of gold nanoparticles gold nanostars (GNS) feature two or more localized surface plasmon resonances (LSPR) that undergo thermal relaxation when irradiated. Moreover, at least one LSPR falls in the near-IR (NIR) range where tissues and blood are semitransparent making them attractive prospects for medicine and biology. The research groups at the Department of Chemistry (University of Pavia) and Department of Physics (University of Milano-Bicocca) have developed their own research field devoted to preparation, functionalization, and further application of these types of gold nanoparticles. In this brief we summarize the most essential information about GNS. Special emphasis has been given to the application of GNS and GNS-based systems to medicine and biology.

Milano, Italy
Milano, Italy
Pavia, Italy

Giuseppe Chirico
Mykola Borzenkov
Piersandro Pallavicini

Acknowledgments

The authors would like to express their gratitude to the all current and former members of corresponding research groups of the University of Milano-Bicocca and the University of Pavia for their strong support and cooperation.

Contents

1 Gold Nanostar Synthesis and Functionalization with Organic Molecules	1
Piersandro Pallavicini, Elisa Cabrini, and Mykola Borzenkov	
1.1 Gold Nanoparticle Synthesis: Brief Introduction	1
1.2 Synthesis of Gold Nanostars	3
1.2.1 General Characterization of Gold Nanostars	3
1.2.2 Synthesis of Gold Nanostars: An Overview of Synthetic Strategies.....	4
1.3 Functionalization and Coating Approaches of GNS	9
1.3.1 PEGylation of GNS.....	9
1.3.2 Functionalization of GNS with Dyes	10
1.3.3 Other Examples of Functionalization of GNS	14
References	18
2 Physical Properties of Gold Nanostars.....	25
Giuseppe Chirico, Piersandro Pallavicini, and Mykola Borzenkov	
2.1 Brief Theoretical Introduction.....	26
2.2 LSPR of Gold Nanostars.....	28
2.3 Surface-Enhanced Raman Scattering of GNS.....	34
References	39
3 Applications of Gold Nanostars: Nanosensing, Thermal Therapy, Delivery Systems	43
Piersandro Pallavicini, Elisa Cabrini, Mykola Borzenkov, Laura Sironi, and Giuseppe Chirico	
3.1 Application of GNS for Sensing Assays	44
3.2 Application of GNS for Thermal Therapy	49
3.3 GNS as Targeted Delivery Platforms	53
References	56