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Preface

Numerical modeling and simulation is increasingly used as a complement to
experimental modeling and analysis and as a design tool in engineering applica-
tions. Each of these numerical solutions is intrinsically carrying an error associated
with the discretization (mesh) the modeler has decided to use. This decision is based
on finding a tradeoff between the computational cost and the numerical quality.
However, after almost forty years of worldwide and active research efforts, the
problem of properly assessing and controlling the quality of the numerical simu-
lations is still relevant and an issue of major interest. Currently, certain maturity has
been reached and calculations for industrial applications can be verified and error
bounds can be provided for many cases (even though they are rarely computed in
practice). However, the design of sophisticated engineering systems requires
increasingly complex and coupled modeling for which verification tools are
missing. Furthermore, new issues are appearing as industry needs faster calculations
for real-time decision making, design optimization, inverse analysis, or simulation-
based control purposes, which urgently requires new strategies for mastering and
certifying calculations, bounding errors, in particular in presence of uncertainties.

The present textbook is edited as a companion support of a pre-conference
course given on the occasion of the ADMOS 2015 conference, held in Nantes
(France) during June 7–10, 2015. It aims at providing the bases to error assess-
ment tools, including state-of-the-art achievements on a posteriori verification in
scientific computing. These topics pertain to the field of estimation of discreti-
zation errors associated with Finite Element simulations, with a focus on
Computational Mechanics applications. This research discipline effectively
enables to control the accuracy of numerical simulations and to drive adaptive
algorithms. The document also aims at presenting recent advances and forth-
coming research challenges on the subject. The content is made of four chapters
written by expert researchers on the field, which present fundamental principles on
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classical a posteriori verification methods: explicit residuals methods, implicit
residual methods, smoothing (recovery) methods, and duality-based methods.

We expect this book will help the reader to acquire an overview and insights into
classical and state-of-the art techniques and tools for numerical verification.

Ludovic Chamoin
Pedro Díez
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Explicit Residual Methods

Yvon Maday

Abstract Numerical methods are nowwell established for the approximation of the
solution to partial differential equations. These simulations allow to better under-
stand complex phenomenon and lead to their control and optimization. The accuracy
of the solution needs nevertheless be certified and in some case improved and the
measurement of the error between the exact solution to the problem and the approx-
imated one provided by the computer simulation must be estimated. A large amount
of research has been done in this direction. This paper summarizes some of the most
classical approaches that are available and allow, at very little extra computational
cost to certify the results. These are known as the explicit residual techniques.

Keywords A posteriori error estimation · Explicit residual techniques · Numerical
convergence · Finite element method · Reduced basis approximation

1 Introduction

The numerical simulation ofmathematical models, written under the form of a partial
differential equation, performed on computers is most of the time centered on matrix
inversion. Indeed, the numerical solution is sought in a finite dimensional space of
functions provided with an appropriate basis set; themodel is then transformed under
the form of a system of possibly nonlinear equations involving the components of
the numerical solution in the basis set. The choices of

• the finite dimensional space—denoted in what follows as X N and is assumed to
be of dimension d(N )

• the appropriate basis set of X N
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2 Y. Maday

• the solution algorithms adequate for solving the linear and nonlinear equations
associated with a suitable stopping criteria

determine at the endof the computationof a givenproblem the accuracyof the approx-
imation. In addition, (i) on one hand, the mathematical analysis of the nature of the
various models proposed in different fields has led to a classification of problems and
a know how on the best way to approximate the solutions (elliptic, mixed, parabolic,
hyperbolic problems, reaction, advection, diffusion dominant behavior, conserva-
tions laws…), (ii) on the other hand various discretization spaces, discretization
approaches and algorithms have been proposed and the numerical analysis that has
been performed on these various approximation methods has identified their prop-
erties and the requirements on the solution and the model that allow to get the full
benefit from the discretization approaches. This allows, when one faces a new prob-
lem, to guide the construction of the numerical approximation and the understanding
of what can be expected.

In addition to these a priori statements, when the approximated solution to a given
model is computed, it is important to be able to measure the quality of what has been
performed and also give indications on what should be done in order to improve the
precision of the approximation. This is the aim of the a posteriori analysis. It allows
to quantify, in some cases very accurately, the error between the exact solution to
the given model and the approximated one, we refer to [1–3, 23] for more advanced
monographs on the subject.

In opposition to what happens for approximation through interpolation for
instance where at least some values of the exact solution are accessible explicitly,
the definition of the solution through a model is only implicit, e.g. given under the
abstract form: find u in a normed functional space—denoted in what follows as
X—such that the functional equation F(u) = 0. In such a frame, the evaluation of
the error between the (unknown) exact solution u and its approximation uN in X N ,
expressed like u −uN , measured in some norm, is itself a problem. In the case where
the problem is linear, the functional equation is written as F(u) = Au − f where
f is a given functional data and A is a linear operator. In order to be slightly more
precise, we can assume that A is a continuous operator from X into a functional
space Y , and f is assumed to be given in Y . In such a case, formerly at least, the
solution u is given by u = A−1 f hence

u − uN = A−1 f − uN = A−1[ f − AuN ] = −A−1F(uN ) (1)

hence a way to measure u − uN is to consider the expression F(uN ) = AuN − f
that is defined to be the residual of the equation evaluated on the approximated
solution uN .

In what follows, we shall present some variations upon this subject dealing with
the proper link between the error between u and uN measured in some norm and
the computation of the residual and its evaluation in some other norm. We refer to
the chapter Residual type error estimators of A. Huerta and P. Diez where Implicit
residual techniques are presented.
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2 Fourier Approximation

Let us start with the simple setting of a problem provided with periodic boundary
conditions, i.e. problems set over Rd , d = 1, 2, or 3 where the functions we are
considering are assumed to be 2π periodic in each direction. The problem can thus
be restricted to a unit cell Ω = (0, 2π)d of a periodic latticeR of Rd .

The natural functional spaces in this frame are the periodic Lebesgue spaces
L p

� (Ω) (resp. periodic Sobolev spaces W m,p
� (Ω), m ∈ N), with p ∈ R, 1 ≤ p ≤ ∞,

defined as being the restriction to Ω of 2π -periodic functions in L p
loc(R

d) (resp. of
functions in W m,p

loc (Rd)) and we note Hm
� (Ω) the spaces W m,p

� (Ω) when p = 2.
The natural discretization in this periodic settings consists in using a Fourier basis.

We denote by (X N )N>0 the family of finite-dimensional subspaces of X defined by

X N = Span
{

ek : x �→ eik.x, |kp| ≤ N , p = 1, . . . , d, k = (k1, . . . , kd) ∈ Z
d
}

.

Remind now that, for any v ∈ L2
�(Ω),

v(x) =
∑
k∈Z

v̂kek(x),

where v̂k is the kth Fourier coefficient of v:

v̂k :=
∫

Ω

v(x) ek(x) dx =
∫

Ω

v(x) e−ik.x dx.

For any integer m, we now endow the Sobolev space Hm
# (Ω) with the equivalent

norm expressed in Fourier modes as follows

‖v‖Hm =
⎛
⎝ ∑

k∈Zd

(
1 + |k|2

)m |̂vk|2
⎞
⎠

1/2

, (2)

and we note that the definition of this scale of spaces can be actually extended over
real indices s (the spaces Hs

# (Ω) associated with negative values of s correspond
to the dual spaces of H−s

# (Ω)). In what follows we shall use only this definition
of the Hs–norm (2). We obtain that for any r ∈ R, and all v ∈ Hr

# (Ω), the best
approximation of v in Hs

# (Ω) for any s ≤ r is

ΠN v =
∑

k∈Z,|k|≤N

v̂kek. (3)

The more regular v (the regularity being measured in terms of the Sobolev norms
Hr ), the faster the convergence of this truncated series to v: for any real numbers r
and s with s ≤ r , we have, see e.g. [8]


