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Supervisors’ Foreword

The response of macroscopic systems to a slow but constant energy input can be
either linear, with instantaneous dissipation and elastic deformation, or non-linear
with stress accumulation followed by sudden and irreversible reorganisations that
release energy. The Barkhausen noise measured in ferromagnets, the seismic
activity generated by plate tectonics or the jerky flow of granular materials are
examples of dynamical systems governed by rapid and dramatic reorganisation,
named avalanches.

Although, in all these systems, rich and diverse dynamics are observed, with
avalanches displaying peculiar shapes and evolutions, some common and well
known features can be identified. One such property is the unpredictability: even
with the full track record of the past events it is impossible to predict when, where
and of which magnitude, the next avalanche will be. A second important property is
that many quantities associated to avalanches (such as the magnitude, the duration
or the size of the region involved in the perturbation…) display scale-free statistics.

It is then tempting to consider avalanches as the natural extension to
out-of-equilibrium of continuous phase transitions where scale-free behaviour and
universality are predicted to occur when approaching the critical point. However
avalanche physics is much richer than its equilibrium counterpart. In particular,
basic observations such as the presence of aftershocks in earthquakes or the strain
localization of granular matter under shear are related to novel non-stationary
effects, totally absent in equilibrium critical dynamics.

These effects are considered by François Landes in his thesis, where models for
the earthquake statistics are studied. There, the frictional dynamics of two tectonic
plates along a fault is modelled as an interface sliding in a heterogeneous medium.
Because of the asperities of the medium, the dynamics is jerky and proceeds via
sudden and large reorganisations of the interface shape. Such avalanches corre-
spond to earthquakes. In absence of the relaxational effects inherent to friction the
classical depinning transition of an elastic interface is recovered. In this limit the
avalanche statistics is essentially Poissonian, i.e. avalanches are uncorrelated in
time and space. However the relaxational effects allow for a realistic description of
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seismic activity. In particular, they are responsible for the presence of aftershocks,
for the quasi-periodic occurrence of major earthquakes (the so-called seismic cycle)
and accounts for a correct Gutenberg-Richter law.

The thesis is introduced with three very substantial chapters, that are actually
self-contained reviews of known subjects: the dry friction of sliding solids, the
phenomenological laws on the analysis of seismic activity and the model of the
depinning of an elastic interface. These reviews are crucial to the good under-
standing of the main result of the thesis, which, in our opinion, represents an
important attempt at bridging the gap between the complex scenario emerging from
earthquake data analysis and conventional avalanche models.

France Alberto Rosso
June 2015 Eduardo Jagla
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Abstract

Many complex systems respond to a continuous input of energy by an accumulation
of stress over time, interrupted by sudden energy releases called avalanches.
Recently, it has been pointed out that several basic features of avalanche dynamics
are induced at the microscopic level by relaxation processes, which are neglected by
most models. During my thesis, I studied two well-known models of avalanche
dynamics, modified minimally by the inclusion of some forms of relaxation.

The first system is that of a viscoelastic interface driven in a disordered medium.
In mean-field, we prove that the interface has a periodic behaviour (with a new,
emerging time scale), with avalanche events that span the whole system. We
compute semi-analytically the friction force acting on this surface, and find that it is
compatible with classical friction experiments. In finite dimensions (2D), the
mean-field system-sized events become local, and numerical simulations give
qualitative and quantitative results in good agreement with several important fea-
tures of real earthquakes.

The second system including a minimal form of relaxation consists in a toy
model of avalanches: the Directed Percolation process. In our study of a
non-Markovian variant of Directed Percolation, we observed that the universality
class was modified but not completely. In particular, in the non-Markov case an
exponent changes of value while several scaling relations still hold. This picture of
an extended universality class obtained by the addition of a non-Markovian per-
turbation to the dynamics provides promising prospects for our first system.
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Chapter 1
Introduction

There are many natural occurrences of systems that upon a continuous input of
energy, react by sudden releases of the accumulated energy in the form of discrete
events, that are generally called avalanches. Examples are the dynamics of sand
piles, magnetic domains inversions in ferromagnets, stress release on the earth crust
in the form of earthquakes, and many others. A remarkable characteristic of most of
these realizations is the fact that the size distribution of the avalanches may display
power-laws, which are a manifestation of the lack of intrinsic spatial scale in these
systems (similarly to what happens in continuous phase transitions at equilibrium
[LL80, Kar07], with the correlation length diverging at criticality). The theoretical
analysis is build on the features shared by these various processes, and aims at
isolating the minimal set of ingredients needed to explain the common elements of
phenomenology. There are numerous models which display critical behaviour and
thus power-law avalanche size distributions, however in most cases the exponents
characterizing the avalanches can only take a few possible values, corresponding to
the existence of a few different universality classes.

For almost 20years, there has been an ongoing effort to understand earthquakes in
the framework of these critical and collective out-of-equilibrium phenomena. Several
theoreticalmodels are able to reproduce a scale-free statistics similar to that present in
seismic events, but miss basic observations such as the presence of aftershocks after a
main earthquake or the anomalous exponent of the Gutenberg-Richter law [Sch02].
At a smaller and simpler scale, a general theory for the friction of solids, taking
into account the heterogeneities of each surface and the collective displacements,
contacts and fractures of the asperities is not yet available [Per00, PT96]. Current
theories fail to reproduce some non-stationary effects such as the increase of static
friction over time or the possibility of the decrease of kinetic friction with increasing
velocity.

A first class of models displaying a single well-defined out-of-equilibrium phase
transition is that of the depinning of an extended elastic interface1 driven over a

1The interface can be any manifold, i.e. a line, a surface, a volume, etc.
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disordered (random) energetic landscape [Fis98, Kar98].While the interface is driven
across the disordered environment, it gets alternatively stuck (pinned) by the hetero-
geneities and freed (de-pinned) by the driving force. Despite its locally intermittent
character, the overall dynamics of the interface has a stationary regime, which makes
various analytical and numerical methods available. Remarkably, one can often dis-
regard the precise details of the microscopic dynamics when considering the large
scale behaviour. As a result, the depinning transition successfully represents various
phenomena, such as Barkhausen noise in ferromagnets [ABBM90, ZCDS98, DZ00,
DZ06], crack propagation in brittle materials [ANZ06, BSP08, BB11] or wetting
fronts moving on rough substrates [RK02, MRKR04, LWMR09] (see [Bar95] for
notions on fractals, growing surfaces and roughness). Although the framework is
also a priori well suited to describe friction and thus earthquakes, the stationary
behaviour itself is the ground where major discrepancies arise between theoretical
depinning results and real data: the aftershock phenomenon observed in earthquakes,
for instance, is clearly not stationary [Sch02].

A second class of such models is that of Directed Percolation (DP) [Ó08, Hin06,
Ó04, Hin00], which models the random growth, spatial spread and death of some
density of “activity” over time, in the manner of an avalanche. On a lattice, each
site can be either active or inactive, and at each time step, each active site tries
to activate each of its neighbours, with a probability of success p. When all sites
become inactive, the avalanche is over and the state no longer evolves. This inactive
state is an “absorbing phase” of the dynamics: the DP transition is an absorbing
phase transition [HHL08]. There is a critical value of the probability p at which
the system reaches criticality, with most stochastic observables distributed as power-
laws. Numerous birth-death-diffusion processes share the same critical exponents
and scaling functions: the DP class is a wide, robust class. We use the DP process as
a toy model of avalanches with Markovian dynamics [vK81].

In this thesis, starting from models of out-of-equilibrium phase transitions with
stationary dynamics, we build and study variants of these models which still display
criticality, but in the same time have non-stationary dynamics.

The physical process at the origin of most of our motivation and choices is that
of solid on solid, dry friction (i.e. in the absence of lubricants). Actually, during
this thesis our concern was initially the application of statistical physics methods to
seismic events, however towards the end of the thesis we focusedmore on laboratory-
scaled friction, as it is a much better controlled field. Since this subject is not a
common topic in the field of disordered systems, we introduce the problem of friction
in Chap.2. Reviewing the basic phenomenology and the well-established parts of
the theory of friction, we are able to identify the main features that any friction
model should include. Two points emerge clearly. A first is the need to account for
the disordered aspect of the surfaces at play: asperities form a random network of
contacts which constantly break and re-form, and the surfaces are heterogeneous so
that the contact strengths are randomly distributed. A second is the relevance of some
slowmechanisms (plastic creep, in particular) which allow for a strengthening of the

http://dx.doi.org/10.1007/978-3-319-20022-4_2
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contacts over time. The latter point becomes especially relevant at very slow driving
speeds, or when there is no motion. We will focus on the slow driving regime, where
the non-trivial frictional behaviours appear and which is crucial when considering
seismic faults.

The physics of earthquakes is vast and quite complex [Sch02], but presents sev-
eral points of interest for us. A first is that the sliding of tectonic plates, at first
approximation, may be considered as a large-scale manifestation of solid on solid,
dry friction. This “application” has been studied quite extensively on its own, and a
large amount of data is available, so that seismic faults can be used to test the pre-
dictions of friction models. A second point is that due to its importance, the field of
geophysics has generated numerous interesting models, which may serve as starting
points to understand friction as a collective phenomenon, rather than a simple con-
tinuum mechanics problem. This motivates our quick review of seismic phenomena
and the related historical models, presented in Chap. 3.

The mapping of an earthquake model onto the problem of elastic depinning nat-
urally introduces our review of the depinning transition in Chap. 4. There, we intro-
duce all the concepts necessary to understand our own modified depinning model,
and appreciate its originality. We explain the critical properties of this dynamical
phase transition (or depinning transition [ZCDS98, RK02, LWMR09, ANZ06]),
review the scaling relations and an original approach to the mean field. Even though
we notice that the depinning universality class is a robust one, we are forced to
acknowledge its inability to account for frictional phenomena.

With the notions presented in the previous chapters, our choice of modification of
the depinning problem is quite natural. The starting point of our analysis is to remark
that conventional depinning does not allow any internal dynamical effects to take
place during the inter-avalanche periods. To address this issue, in Chap. 5 we intro-
duce the model of a viscoelastic interface driven in a disordered environment, which
allows for a slow relaxation of the interface in between avalanches. The viscoelastic
interactions can be interpreted as a simpleway to account for the plastic creep,mainly
responsible for the peculiarities of friction at low driving velocity. After a qualitative
discussion of the novelties of the viscoelastic interface behaviour,we present a deriva-
tion of its mean field dynamics. Extending the mean field approach that we presented
for the elastic depinning to this new model, we are able to compute the behaviour
of the entire system, which is found to be non-stationary, with system-size events
occurring periodically. There, we also notice that the addition of the “visco-” part into
the elastic interactions is relevant in the macroscopic limit. We compare the mean
field dynamics at various driving velocities and find good agreement with experi-
mental results found in fundamental friction experiments (Chap.2) and observations
on earthquakes statistics (Chap. 3). In two dimensions, we are limited to numerical
simulations, but we are able to perform them on systems of tremendous sizes (up to
15000 × 15000 sites on a single CPU), which allows us to unveil some features
reminiscent of the mean field behaviour. The various outputs of our simulations
(critical exponents, aftershocks patterns, etc.) compare well with the observational
results from Chap.3 (see Sect. 5.6 for a more detailed summary of results). In the
comparison with models from various other contexts (amorphous plasticity, granular

http://dx.doi.org/10.1007/978-3-319-20022-4_3
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materials, etc.) we notice similarities in the variousmodels construction, and a shared
tendency for global, system-size events.

During this thesis, most of the work was performed on non-stationary variations
on the depinning model, with a focus on the applications to seismic events. On
the way, we studied a variation of the Directed Percolation, which has to do with
non-stationarity, despite being a model completely different from those presented in
Chap.5. The last chapter (Chap.6) offers the opportunity to consider the bigger pic-
ture of avalanchemodels. In that chapter, we consider the celullar automaton [Wol83]
of Directed Percolation (DP). We provide an intuitive link with the problem of inter-
face depinning by showing how much one would need to modify the DP process to
let it represent the avalanches of the elastic interface. We introduce a non-Markovian
variant of the DP process, in which the probability to activate a site at the first try and
the second one are different from those in the ulterior attempts. This provides the
system with an implicit memory, making the microscopic dynamics non-stationary.
This modified DP displays criticality with some exponents changing continuously
with the first and second activation probabilities, while others do not: in particular,
only one scaling relation is violated by the new dynamics, so that the new class pre-
servesmost of its parent’s structure. A long-standing challenge is to find experimental
systems belonging to the DP universality class: up to now, there are no such direct
examples [Ó04]. Our new model, which includes DP as a particular case, opens the
way for possible future experimental work, as we may consider universality classes
larger than DP.

As a conclusion, we explain the general path that structures this thesis and draw
some directions for future work (Chap. 7).

In each chapter of this thesis, we provide a very quick introduction, which sim-
ply details the aim of the chapter and the organization of contents. In the chapters’
conclusions, we always carefully summarize the main results, and provide the moti-
vation for the next chapter or some directions for future work. We sometimes refer
to the Appendices for technical details or results that are not crucial to our pre-
sentation. Although each chapter is a self-contained entity, reading the earlier ones
allows to fully understand and appreciate the scope of the latter ones. The articles
published during this thesis are [JLR14] and [LRJ12], they essentially correspond to
the Chaps. 5 and 6, respectively.

References

[ABBM90] Alessandro, Bruno, Cinzia Beatrice, Giorgio Bertotti, and Arianna Montorsi. 1990.
Domain-wall dynamics and Barkhausen effect in metallic ferromagnetic materials. I.
Theory Journal of Applied Physics 68(6): 2901–2907.

[ANZ06] Alava, Mikko, J., Phani K.V.V. Nukala, and Stefano Zapperi. 2006. Statistical models
of fracture. Advances in Physics 55(3–4): 349–476.

[Bar95] Baràbasi, A.L., and H.E. Stanley. 1995. Fractal concepts in surface growth. Cam-
bridge: Cambridge University Press.

http://dx.doi.org/10.1007/978-3-319-20022-4_5
http://dx.doi.org/10.1007/978-3-319-20022-4_6
http://dx.doi.org/10.1007/978-3-319-20022-4_7
http://dx.doi.org/10.1007/978-3-319-20022-4_5
http://dx.doi.org/10.1007/978-3-319-20022-4_6


References 5

[BB11] Bonamy, Daniel, and Elisabeth Bouchaud. 2011. Failure of heterogeneous materials:
A dynamic phase transition? Physics Reports 498(1): 1–44.

[BSP08] Bonamy, D., S. Santucci, and L. Ponson. 2008. Crackling dynamics in material failure
as the signature of a self-organized dynamic phase transition. Physical Review Letters
101(4): 45501.

[DZ00] Durin, Gianfranco, and Stefano Zapperi. 2000. Scaling exponents for Barkhausen
avalanches in polycrystalline and amorphous ferromagnets. Physical Review Letters
84(20): 4705–4708.

[DZ06] Durin, Gianfranco, and Stefano Zapperi. 2006. The role of stationarity in magnetic
crackling noise. Journal of Statistical Mechanics: Theory and Experiment 2006(01):
P01002–P01002.

[Fis98] Fisher, Daniel S. 1998. Collective transport in random media: From superconductors
to earthquakes. Physics Reports 301(1–3): 113–150.

[HHL08] Henkel, M., H. Hinrichsen and S. Lübeck. 2008. Non equilibrium phase transitions—
volume 1—absorbing phase transitions. Dordrecht: Springer.

[Hin00] Hinrichsen, Haye. 2000. Nonequilibrium critical phenomena and phase transitions
into absorbing states. Advances in Physics P. 153.

[Hin06] Hinrichsen, Haye. 2006. Non-equilibrium phase transitions. Physica A: Statistical
Mechanics and its Applications 369(1): 1–28.

[JLR14] Jagla, E.A., François P. Landes, and Alberto Rosso. 2014. Viscoelastic effects in
avalanche dynamics: A key to earthquake statistics. Physical Review Letters 112(17):
174301.

[Kar98] Kardar, Mehran. 1998. Nonequilibrium dynamics of interfaces and lines. Physics
Reports 301(1–3): 85–112.

[Kar07] Kardar, Mehran. 2007. Statistical physics of fields. Cambridge: Cambridge University
Press.

[LL80] Landau, L.D., and E.M. Lifshitz. 1980. Statistical physics, 3rd ed. Oxford:
Butterworth-Heinemann.

[LRJ12] Landes, François, E. Alberto Rosso, and Jagla, 2012. Tuning spreading and avalanche-
size exponents in directed percolation with modified activation probabilities. Physical
Review E 86(4): 1–8.

[LWMR09] Le Doussal, P., K.J. Wiese, S. Moulinet, and E. Rolley. 2009. Height fluctuations of
a contact line: A direct measurement of the renormalized disorder correlator. EPL
(Europhysics Letters) 87(5): 56001.

[MRKR04] Moulinet, Sébastien, Alberto Rosso, Werner Krauth, and Etienne Rolley. 2004. Width
distribution of contact lines on a disordered substrate.Physical Review E 69(3): 35103.

[Ó04] Ódor, Géza. 2004. Universality classes in nonequilibrium lattice systems. Reviews of
Modern Physics 76(3): 663–724.

[Ó08] Ódor, G. 2008. Universality in nonequilibrium lattice systems. Singapore: World Sci-
entific.

[Per00] Persson, Bo N.J. 2000. Sliding friction: Physical principles and applications,
NanoScience and technology, 2nd ed. Berlin: Springer.

[PT96] Persson, B.N.J., and E. Tosatti (eds.). 1996. Physics of sliding friction. Netherlands,
Dordrecht: Springer.

[RK02] Rosso, Alberto, and Werner Krauth. 2002. Roughness at the depinning threshold for
a long-range elastic string. Physical Review E 65(2): 25101.

[Sch02] Scholz, C.H. 2002. The mechanics of earthquakes and faulting, 2nd ed. Cambridge:
Cambridge University Press.

[vK81] van Kampen, N.G. 1981. Stochastic processes in physics and chemistry. Amsterdam:
North-Holland.

[Wol83] Wolfram, Stephen. 1983. Statistical mechanics of cellular automata. Reviews of Mod-
ern Physics 55(3): 601.

[ZCDS98] Zapperi, Stefano, Pierre Cizeau, Gianfranco Durin, and H.E. Stanley. 1998. Dynamics
of a ferromagnetic domain wall: Avalanches, depinning transition, and the Barkhausen
effect. Physical Review B 58(10): 6353–6366.



Chapter 2
Introduction to Friction

In this chapter we aim at giving a short overview of dry friction, i.e. frictional phe-
nomena where the lubricants effect is negligible. We first present the phenomeno-
logical laws derived by experimental observations, then present the rudiments of the
(incomplete) theory of friction.Excellent references on these topics are [Per00, PT96,
Kri02]. In the process, we comment on the existing literature and draw some conclu-
sions about possible directions for future work, especially for the statistical physics
community.

2.1 The Phenomenological Laws of Friction

Consider a solid parallelepiped—as depicted in Fig. 2.1—in contact with a large
solid substrate over a surface S (supposed to be flat at the macroscopic scale), with
a normal load L (for instance due to gravity), being pulled along the surface via a
spring k0, itself pulled at a fixed velocity V0. The block’s velocity is denoted v. The
force Fk of frictional effects was1 claimed to follow these three laws:

• First law: Fk is independent from the surface area S.
• Second law: Fk is proportional to the normal load: Fk ∝ L .
• Third law: Fk is independent of the sliding velocity v.

This allows to write a phenomenological equation for the friction force:

Fk = μk L (2.1)

1These laws were stated in the 17th century by Amontons for the first two of them, and in the 18th
century by Coulomb for the third one.
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8 2 Introduction to Friction

Fig. 2.1 Solid block sliding on a solid substrate. Solid parallelepiped sliding on an inclined plane
(angle α) at velocity v = ẋ . The weight can be decomposed in two components, one orthogonal to
the surface (the load L), and one parallel to it (which contributes to the pulling). Additional pulling
can be provided via a spring k0, of which the “free” end may be moved at a fixed velocity V0. The
kinetic friction force is denoted Fk

where μk is the kinetic (or dynamic) friction coefficient, which depends on the nature
of the surfaces in contact along with many other things, but which is here assumed
to be independent from S, L and v.

There is one “exception” to the third law which is commonly observed: for the
static case (v = 0, i.e. when there may be pulling, but without motion) the friction
coefficient takes a different value μs , larger than the dynamical one: μs(v = 0) >

μk(v > 0).

2.1.1 Stick-Slip Motion

Due to the fact that the static (v = 0) friction force is higher than the dynamic (v > 0)
one, a mechanical instability known as “stick and slip motion” can occur, especially
when the pulling is provided mainly in a sufficiently flexible way (small k0) or at
sufficiently low driving velocity V0. As we are going to see, this is something that
we experience on a daily basis.

Consider the system pictured in Fig. 2.1, with an angle α = 0, for simplicity. The
free end of the spring k0 is denoted w0 and is driven steadily at a velocity V0. The
spring k0 can be thought of either as an actual spring through which the driving is
performed, or as an effective representation for the bulk rigidity of the solid. As we
pull the block from the side, we transmit some shear stress through its bulk. If the
solid is driven at constant velocity V0 directly from a point on its side, the effective
stiffness k0 is proportional to the Young’s modulus E and inversely proportional to
the height d of the driving point (neglecting torque effects). See Fig. 2.2 for a visual
explanation.In the context of a simple table-top experiment as presented here, the
solid’s stiffness is generally too large for stick-slip to occur, so that the use of an
actual spring k0 to perform driving is useful.
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Fig. 2.2 Effective stiffness of the driving spring. Left a solid block with Young’s modulus E is
pulled rigidly from some point at a height d, i.e. this point is forced to have the velocity V0. Middle
the solid block can be pictured as a dense network of springs, related to E . Springs in the horizontal
directions are not pictured for clarity. Right effective modelling by a block with infinitely rigid bulk,
pulled by an effective spring k0 ∼ E/d

Newton’s equations for the center of mass of the block at position x can be written
in the dynamic and static cases:

mẍ = k0(V0t − x) − μk L (dynamic) (2.2)

0 = k0(V0t − x) − Fs (static) (2.3)

where the static friction force Fs adapts according to Newton’s second law (Law
of action and reaction) in order to balance the pulling force, as long as it does not
exceed its threshold: |Fs | < μs L = (Fs)max.

We start with x(t = 0) = 0, w0(0) = 0, and for t > 0 we perform the drive,
w0 = V0t . As long as |Fs | < μs L , the block does not move: we are in the “stick”
phase.

At time t1 = μs L
k0V0

, the static friction force Fs reaches its maximal value μs L and
the block starts to slide. This is the “slip” phase. Thus we have the initial condition
x(t1) = 0, ẋ(t1) = 0 for the kinetic equation. The solution reads:

x(t) = V0(t − t1) −
√

m

k0
V0 sin

(√
k0
m

(t − t1)

)
+ (μs − μk)L

k0

(
1 − cos

(√
k0
m

(t − t1)

))
.

(2.4)

It is natural to take a look at the short-time limit of the solid’s position:

x(t) ∼
t∼0

(μs − μk)L

2m
t2 + k0V0

6m
t3 − (μs − μk)Lk0

24m2 t4 + o(t4), (2.5)

which is increasing at short time, as expected, since μs > μk .
As x initially increases faster than V0t , the driving force from the spring,

(k0(V0t − x)), decreases over time, so that ẋ may reach zero again. If at some point
ẋ = 0, the kinetic friction coefficient is replaced by the static one, and oscillations
(and any form of further sliding) are prevented. We can compute the times t2 such
that formally, ẋ(t2) = 0:

t2 = t1 + 2

√
m

k0

(
pπ − arctan

(
(μs − μk)L√

mk0V0

))
(2.6)
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Fig. 2.3 Stick-slip evolution of the block over time. Left variations of the center of mass x over
time t (solid blue) computed from (Eq.2.4). Right saw-tooth evolution of the stress during stick-slip
motion. Variations of the stress σ = k0(V0t − x) (solid grey line) computed from (Eq.2.4). The
function V0t (dashed purple) is given for reference. At time t1, the threshold for the static force is
reached and the block starts to move, with a decreased friction force Fk (kinetic). At time t2, as
velocity cancels, one needs to consider the static friction force. Loading then increases until the
time t3 where the threshold of static friction is once again reached. Parameters used for the two
figures are: m = 1, V0 = 1, k0 = 0.1,μS L = 0.52, (μS − μK )L = 0.2. Note that the slip phase
seems long, but this is due to the parameters used: in particular, with a larger (μS − μK ) we get
longer stick phases (and—relatively—shorter, sharper slip phases) Here we have a detailed view of
the slip phase

where p ∈ N. The physical solution corresponds to the first positive time that can
be obtained, i.e. p = 1. At this time, the friction force (that always opposes motion,
whichever direction it goes) increases from μk L to μs L and motion stops. The evo-
lution of the block is once again controlled by the static equation of motion (Eq. 2.3),
and we are in the “stick” phase.

The system will remain in the stick state until the time t3 such that V0t3 − x(t3) =
μs L/k0. Since the system has no memory (beyond ẋ), the dynamics at ulterior times
is exactly periodic, as shown in Fig. 2.3.

In friction experiments, one usuallymeasures the total shear stress or total friction
force, which is given by σ = k0(V0t −x). We present the evolution of σ(t) in Fig. 2.3
(right), to be compared with experimental results, e.g. for a mica surface pulled at
constant velocity (Fig. 2.4).

The difference between μs and μk generates a mechanical instability, in which the
elastic energy provided by the driving is at times stored (static case, or “stick” phase)
and at times released over a short2 period (kinetic case, or “slip” phase). This is the
exact opposite of the more common situation of dissipative forces monotonously
increasing with velocity so that a balance between drive and drag naturally yields
stable solutions.

2Note that in Fig. 2.3, the parameters chosen are such that the stick phase is rather short. For larger
(μS − μK ) we get longer stick phases, and—relatively—shorter slip phases, since the duration of
the slip phase is independent of μS , but the loading time grows essentially linearly with it.


