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Preface

This volume is a collection of presentations given at the 79th annual International
Meeting of the Psychometric Society (IMPS) held at the University of Wisconsin-
Madison, in Madison, Wisconsin during July 21–25, 2014. The meeting attracted
380 participants from 26 countries, with 242 papers being presented, along with 56
poster presentations, 5 pre-conference workshops, 5 keynote presentations, 4 invited
speaker presentations, 4 state-of-the-art lectures, and 8 invited symposia. We thank
the University of Wisconsin-Extension staff, as well as the faculty and students from
the Department of Educational Psychology at the University of Wisconsin, Madison
for hosting this very successful conference.

This volume continues a tradition started after the 77th meeting in Lincoln,
Nebraska, of publishing a proceedings volume from the conference so as to allow
presenters to quickly disseminate their ideas to the broader research community,
while still undergoing a thorough review process. The 78th meeting in Arnhem was
also followed by a proceedings. With the third proceedings, we now have a series
that is expected to be continued next year with submissions from the 80th IMPS
meeting in Beijing, China.

We asked the authors to use their presentations at the meeting as the basis of
their chapters, possibly extended with new ideas or additional information. The
result is a selection of 26 state-of-the-art chapters addressing a diverse set of topics,
including item response theory, factor analysis, structural equation modelling, time
series analysis, mediation analysis, propensity score methods, cognitive diagnostic
models, and multi-level models, among others.

The proceedings of the 77th and 78th meeting were initiated by Roger E. Millsap,
the editor of Psychometrika. Just before finalizing the proceedings of the 78th
meeting, on May 9, 2014, Roger suddenly passed away. This volume is the first
proceedings not initiated by Roger. We dedicate it to him.

Amsterdam, The Netherlands L. Andries van der Ark
Madison, WI, USA Daniel M. Bolt
Hong Kong, Hong Kong SAR Wen-Chung Wang
Urbana-Champaign, IL, USA Jeffrey A. Douglas
University Park, PA, USA Sy-Miin Chow
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Chapter 1
Extending the Use of Multidimensional IRT
Calibration as Projection: Many-to-One Linking
and Linear Computation of Projected Scores

David Thissen, Yang Liu, Brooke Magnus, and Hally Quinn

Abstract Two methods to make inferences about scores that would have been
obtained on one test using responses obtained with a different test are scale aligning
and projection. If both tests measure the same construct, scale aligning may be
accomplished using the results of simultaneous calibration of the items from both
tests with a unidimensional IRT model. If the tests measure distinct but related
constructs, an alternative is the use of regression to predict scores on one test from
scores on the other; when the score distribution is predicted, this is projection.
Calibrated projection combines those two methods, using a multidimensional IRT
(MIRT) model to simultaneously calibrate the items comprising two tests onto
scales representing distinct constructs, and estimating the parameters describing the
relation between the two scales. Then projection is done within the MIRT model.
This presentation describes two extensions of calibrated projection: (1) the use of
linear models to compute the projected scores and their error variances, and (2)
projection from more than one test to a single test. The procedures are illustrated
using data obtained with scales measuring closely related quality of life constructs.

Keywords linking • projection • calibration • scale aligning

1.1 Introduction

It is often desirable to obtain scores that are in some sense comparable from
disparate tests that measure the same or closely related constructs. For example,
the empirical examples in this presentation are motivated by the possibility that
PROMISr pediatric and adult scales may be used in the same cross-sectional or
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longitudinal research, with the (different) pediatric and adult scales each used within
their age-range. Test score linking facilitates data analysis in such situations.

Holland (2007) provided a modern framework for test score linking; he wrote
that “linking refers to the general class of transformations between the scores from
one test and those of another, . . . linking methods can be divided into three basic
categories called predicting, scale aligning, and equating.” For linking scores from
disparate scales, such as the PROMISr pediatric and adult scales, only predicting
scores from one with the other, or aligning the two scales, are viable candidates.

A commonly used method of scale aligning has been calibration, which uses
item response theory (IRT) models and methods to place the items from each of
two scales on the same metric. After that is done, standard computation of IRT scale
scores from any subset of the items (which could include all of the items on only one
scale) yields comparable scores. However, calibration has heretofore been limited to
situations in which a unidimensional IRT model is suitable for all items from both
scales jointly—that is, both scales measure the same construct.

For two scales that measure different constructs, even if the two constructs are
highly related, predicting scores on one scale from those on the other yields more
correct results. Such predictions are based on regression models, but often the
regression model is elaborated to produce a distribution across the score range as
a prediction; that is called projection.

Usually projection has been based on standard regression models, which consider
the values of the predictor variable(s) fixed. Calibrated projection (Thissen et al.
2011) is a relatively new statistical procedure that uses IRT to link two measures,
without considering the scores on the predictor scale to be fixed, and without the
demand of conventional calibration that the two are measures of the same construct.
In calibrated projection, a multidimensional IRT (MIRT) model is fitted to the item
responses from the two measures: �1 represents the underlying construct measured
by the first scale, with estimated slopes a1 for each of the first scale’s items and
fixed values of 0.0 for the items of the second scale. �2 represents the underlying
construct measured by the second scale, with estimated slopes a2 for each of the
second scale’s items and fixed values of 0.0 for the items of the first scale. The
correlation between �1 and �2 is estimated.

After calibration, the MIRT model may be used to provide IRT scale score
estimates on the scale of the second measure, using only the item responses from
the first measure. Figure 1.1 illustrates calibrated projection: The x-axis variable is
�1, the underlying construct measured by the first scale (for Fig. 1.1, that is the
PROMIS pediatric Anxiety scale), and the y-axis variable is �2, the underlying
construct measured by the second scale (in Fig. 1.1, PROMIS adult Anxiety). The
two latent variables are highly correlated, as indicated by the density ellipses around
the regression line. Given the item responses on the pediatric Anxiety scale, IRT
methods may be used to compute the implied distribution on �1; two of those are
shown along the x-axis in Fig. 1.1, for summed scores of 13 and 44. The estimated
relation between �1 and �2 is then used to project those distributions onto the y-axis,
to yield the implied distributions on �2, the adult construct.
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Fig. 1.1 The x-axis variable is �1, the underlying construct measured by the first scale, in this case
the PROMIS pediatric Anxiety scale; the y-axis variable is �2, the underlying construct measured
by the second scale, in this case the PROMIS adult Anxiety scale. Both scales report scores in
T-score units. The correlation between the two latent variables is indicated by the large density
ellipses. The implied distributions on �1 for summed scores of 13 (blue) and 44 (red) on the
pediatric Anxiety scale are shown along the x-axis, along with the corresponding implied bivariate
distributions, and those on �2, the adult Anxiety construct, along the y-axis

The means of the implied distributions on the � dimensions are the IRT-based
scale scores, and the standard deviations of those distributions are reported as the
standard errors of those scores. The projection links the scales in the sense that each
score on the pediatric scale yields a score on the adult metric.

In subsequent sections, we will illustrate calibrated projection from the PROMIS
pediatric Anxiety (Irwin et al. 2010) scale to the corresponding adult scale (Pilkonis
et al. 2011) and vice versa, using new data and pre-existing item parameters for
the two PROMIS scales as the mechanism to link the results back to the original
scales. Then we will describe a linear approximation to the IRT computations, and
illustrate the extension of calibrated projection to use more than one scale as the
basis for projection.

1.2 Calibrated Projection, Illustrated with PROMIS Anxiety

The original development of calibrated projection (Thissen et al. 2011) made use
of the same data that were used to set the scale for the PROMIS Asthma Impact
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Scale (PAIS), so there was no need to link a new set of data back to any existing
scale. In contrast, the illustrations here are drawn from the linkage of the PROMIS
pediatric and adult scales that measure similar constructs; both the pediatric and
adult scales are now based on published item banks with reference metrics derived
from their (separate) original calibrations. New data were collected for this project,
from a sample of 874 persons in the age range 14–20 who responded to short forms
of both the pediatric and adult PROMIS scales.

The item banks of all of the PROMIS scales comprise items with five response
alternatives. The items have been calibrated using the graded IRT model (Samejima
1969, 1997), which describes the probability of each item response as a function of
a set of item parameters (as and cs), and � , the latent variable(s) measured by the
scale, as follows: The conditional probability of response u D 0; 1; : : : ;m � 1 is

Tu.�/ D T�
u .�/ � T�

uC1.�/ (1.1)

in which T�
u .�/ is a curve tracing the probability of a response in category u or

higher: T�
0 .�/ D 1, T�

m.�/ D 0, and for u D 1; 2; : : : ;m � 1

T�
u .�/ D 1

1C exp.�.a0� C cu//
: (1.2)

The original unidimensional parameters for the short-form items for the PROMIS
pediatric and adult Anxiety scales are in Table 1.1, recast in a two-dimensional
format in which �1 is the underlying construct measured by the pediatric Anxiety
scale and �2 is the underlying construct measured by the adult Anxiety scale.

To begin the process of linking the two Anxiety scales with each other, and back
to their original (published) scales, the item parameters in Table 1.1 were used as
fixed values, and the population parameters (mean vector and covariance matrix) for
the latent variables �1 and �2 were estimated by maximum likelihood. Estimation of
the MIRT parameters and subsequent computation of the scale scores was done
using the IRTPRO software (Cai et al. 2011).

For the Anxiety scales, the estimated covariance matrix from the fixed (original
calibration) parameters and the current data C, with �1 � �ped and �2 � �ad, is

Ȯ C D
�
1:650.0:11/

1:174.0:07/ 1:047.0:06/

�
: (1.3)

The estimated correlation of the two latent variables is O�C D 1:174p
1:650�1:047 D

0:893. It is convenient to define the ratio of the variance of the adult latent variable
to that of the pediatric latent variable, Ok2ad D 1:047

1:650
D 0:635.

To compute projected scores on a scale set in a hypothetical calibration popu-
lation that is the same as the reference population for the pediatric scale, we need
an estimate of the covariance matrix of the two latent variables in that population.
That estimate has three components: The variance of the pediatric latent variable,
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O�ref.ped/;ped, is 1.0 (that set the original scale); the variance of the adult latent variable,
O�ref.ped/;ad, is Ok2ad, obtained from the ratio of the two variances in the current data;
and the covariance is O�C Okad, using the correlation from the current data. So the
covariance matrix used to project from the pediatric scale to the adult scale is:

Ȯ ref.ped/ D
�
1:0

O�C Okad Ok2ad

�
D
�
1:000

0:711 0:635

�
: (1.4)

We also need to compute the predicted value of the adult scale mean in that
population. We use linear regression to compute that estimate, based on Ȯ C and the
estimated mean vector for the current data, which in this example is

O�C D
�
0:631.0:05/

0:868.0:04/

�
: (1.5)

The regression estimate of the adult scale value for the pediatric scale mean of 0.0
uses an estimate of the slope

ˇ1 D O�C
O�C;ad

O�C;ped
D 0:893

p
1:047p
1:650

D 0:711 ; (1.6)

and the intercept

Table 1.1 Item parameters for the PROMIS pediatric and adult Anxiety scales,
based on their original calibrations

Item Label a1 a2 c1 c2 c3 c4
1 Pediatric-Anxiety1-8 1.51 0 1.29 �0.27 �2.80 �4.31

2 Pediatric-Anxiety2-2 1.89 0 0.48 �1.12 �3.24 �4.76

3 Pediatric-Anxiety2-9 1.81 0 1.42 �0.45 �2.87 �4.79

4 Pediatric-Anxiety2-1 1.71 0 0.74 �0.88 �3.00 �4.54

5 Pediatric-Anxiety2-6 1.50 0 0.60 �0.76 �2.78 �3.97

6 Pediatric-Anxiety1-7 1.48 0 1.01 �0.43 �2.84 �4.25

7 Pediatric-Anxiety1-3 1.84 0 0.44 �0.89 �2.83 �4.08

8 Pediatric-Anxiety2-4 1.83 0 �0.46 �1.67 �3.34 �4.69

9 Adult-EDANX01 0 3.60 �1.23 �3.92 �7.06 �9.72

10 Adult-EDANX40 0 3.88 �1.89 �4.91 �8.20 �11.26

11 Adult-EDANX41 0 3.66 �1.33 �3.78 �6.52 �9.59

12 Adult-EDANX53 0 3.66 0.85 �2.18 �5.72 �9.14

13 Adult-EDANX46 0 3.40 0.74 �2.15 �5.59 �9.28

14 Adult-EDANX07 0 3.55 �1.92 �3.71 �6.62 �8.47

15 Adult-EDANX05 0 3.36 0.64 �2.01 �5.28 �8.21

16 Adult-EDANX54 0 3.35 1.71 �1.04 �4.19 �7.69
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ˇ0 D O�C;ad � ˇ1 � O�C;ped D 0:868� 0:711 � 0:631 D 0:419: (1.7)

Assuming the same relationships between the pediatric and adult scales observed in
the current data C would have held if the calibration sample for the pediatric scale
had also been the reference sample for the adult scale, the mean for the adult scale
would have been

O�ad D 0:419C 0:711 � 0:0 D 0:419 : (1.8)

Assembling all this, calibrated projection of pediatric item responses onto the
adult scale uses the item parameters for the pediatric items in Table 1.1, the
population mean vector

O�ref.ped/ D
�
0:0

O�ad

�
D
�
0:0

0:419

�
; (1.9)

and covariance matrix Ȯ ref.ped/ from Eq. (1.4).
To project item responses onto the pediatric scale, the computations in this

section are reflected appropriately, reversing the roles of the pediatric and adult
latent variables.

1.3 A Linear Approximation to Calibrated Projection

In calibrated projection, the projected score on the �2 dimension, given the score on
the �1 dimension, is computed using two-dimensional numerical integration of the
conditional posterior distribution, two of which are illustrated in Fig. 1.1. However,
it is numerically the case that the predictions so-computed are, within rounding
error, a linear function of the predictor scores, specifically

bEAPŒ�2� D ˇ0 C ˇ1EAPŒ�1� : (1.10)

in which the values of ˇ0 and ˇ1 are computed as described in the previous section.
So for the Anxiety examples, we can compute

bEAPŒ�2� D ˇ0 C ˇ1EAPŒ�1� (1.11)

D 0:419C 0:711EAPŒ�1�:

This linear relationship is exact, due to the linearity of conditional expectations.
However, no exact relationship has thus far been found for the values of SD[�2]. An
approximation that appears empirically useful combines two sources of variance:
the error variance of the predicting value, SD2[�1], and the residual variance around
the regression line, VRes;2. The residual variance is
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VRes;2 D .1 � O�2C/ O�2C;2 (1.12)

so for the projection from the pediatric scale to the adult scale it is

VRes;2 D .1 � 0:8932/1:047 D 0:212 : (1.13)

Using these values, approximate conditional standard errors of the projected values
can be computed for the projection from the pediatric scale to the adult scale as

cSDŒ�2� D
q
ˇ21SD2Œ�1�C VRes;2 D

q
0:7112SD2Œ�1�C 0:212 : (1.14)

1.3.1 Comparing the Results from the Linear Approximation
with Calibrated Projection for PROMIS Anxiety

It is not convenient to show the results of projection for scores based on response
patterns, because there are so many. However, tabulation of the responses for
summed scores covers the entire range and can be useful to provide illustration
and checks on the results. The first five columns of Table 1.2 illustrate calibrated
projection for the summed scores for the pediatric Anxiety scale, with projection to
the adult Anxiety scale. All results are shown using the T-score scale common to all
PROMIS measures.

The pediatric EAP[�1] and SD[�1] values in Table 1.2 are those published as the
scoring table for the Anxiety measure. The adult EAP[�2] and SD[�2] are those
computed using two-dimensional quadrature, the item parameters in Table 1.1,
and the population mean vector and covariance matrix from Eqs. (1.4) and (1.9).
The rightmost four columns of Table 1.2 show the results obtained with the linear
approximation described in the preceding section. Columns 6 and 7 show the values
of adult bEAPŒ�2� computed using equation 1.11, and the difference between the
calibrated projection EAPs and the linear approximation. Columns 8 and 9 show
the values of adult cSDŒ�2�, and the ratio of the approximation to the calibrated
projection values. In this case the values from the linear approximation are about
1.2 times larger than those from calibrated projection; but most would still round to
the same integral values on the T-score scale.

1.3.2 Summary of Comparisons for Seven PROMIS Scales

In the course of a project to link some of the pediatric PROMIS scales to their adult
counterparts, we have computed the results for calibrated projection and the linear
approximation described in the preceding section for seven scales. Because all were
done twice, once from the pediatric items to the adult scales and a second time from
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Table 1.2 The first five columns show the calibrated projection IRT scores (EAPs) and
standard errors (SDs) for summed scores on the pediatric measure (only even summed scores
are shown to save space)

Calibrated projection Linear approximation
Pediatric Adult EAPŒ�2�� cSDŒ�2�/

Pediatric
summed
score EAP[�1] SD[�1] EAP[�2] SD[�2] bEAPŒ�2� bEAPŒ�2� cSDŒ�2� SD[�2]

0 32:3 5:8 41:7 5:5 41:6 0.0 6:2 1:1

2 39:2 4:7 46:5 4:9 46:5 0.0 5:7 1:2

4 43:3 4:2 49:5 4:7 49:5 0.0 5:5 1:2

6 46:7 3:9 51:8 4:6 51:8 0.0 5:4 1:2

8 49:6 3:8 53:9 4:5 53:9 0.0 5:3 1:2

10 52:3 3:7 55:8 4:5 55:8 0.0 5:3 1:2

12 54:8 3:7 57:6 4:5 57:6 0.0 5:3 1:2

14 57:3 3:7 59:3 4:5 59:4 0.0 5:3 1:2

16 59:7 3:7 61:1 4:5 61:1 0.0 5:3 1:2

18 62:1 3:7 62:8 4:5 62:8 0.0 5:3 1:2

20 64:5 3:7 64:5 4:5 64:5 0.0 5:3 1:2

22 67:0 3:7 66:3 4:5 66:3 0.0 5:3 1:2

24 69:6 3:7 68:1 4:5 68:1 0.0 5:3 1:2

26 72:3 3:7 70:0 4:5 70:0 0.0 5:3 1:2

28 75:2 3:8 72:0 4:5 72:1 �0.1 5:3 1:2

30 78:6 4:1 74:5 4:6 74:5 �0.1 5:4 1:2

32 83:5 4:7 78:0 4:9 78:0 �0.1 5:7 1:2

The last four columns show the results obtained with the linear approximation

the adult item responses to the pediatric scales, there are a total of 14 examples.
The latent variables measured by all of the pairs of scales are highly correlated;
correlations ranged from 0.86 to 0.95. For all 14 linkings, the linearly approximated
EAPs for each summed score were essentially identical to those obtained with
numerical integration in calibrated projection, as was illustrated for the Anxiety
pediatric to adult projection in Table 1.2.

The degree to which cSDŒ�2� approximates SD[�2] as computed by numerical
integration in calibrated projection remains an empirical question. While it is not
feasible to check that for all response pattern scores, it is easy to evaluate the
approximation for the posterior standard deviations associated with each summed
score on the scale that is used for projection. An example is shown in Table 1.2,
in which the ratio of cSDŒ�2� to SD[�2] varies only between 1.1 and 1.2. Table 1.3
shows the minimum and maximum values of that ratio for all 14 of the PROMIS
pediatric–adult projections. Across 13 of the 14 cases, the ratio is between 1.0 and
1.3. For many applications, reported standard errors that are zero to 30 % larger
than the “exact” values would probably present no problems. The exception is the
projection of the Upper Extremity scale from the pediatric to the adult measure, for
which cSDŒ�2� is 1.3–1.6 times larger than SD[�2].
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Table 1.3 The minimum and maximum values of the ratio cSDŒ�2�=SDŒ�2� for all 14 of
the PROMIS pediatric-adult projections

Pediatric to adult Adult to pediatric

Pediatric domain Minimum Maximum Minimum Maximum

Anxiety 1:1 1:2 1:0 1:0

Depressive symptoms 1:1 1:2 1:1 1:1

Anger 1:2 1:3 1:1 1:2

Fatigue 1:3 1:4 1:1 1:1

Pain interference 1:2 1:3 1:0 1:0

Physical functioning—mobility 1:1 1:2 1:0 1:1

Physical functioning—upper extremity 1:3 1:6 1:0 1:3

Table 1.4 Proportions of values of EAP[�2] for each scale combination that are
within ˙1 SD and ˙2 SD of the values obtained using the linear approximation
to calibrated projection

Pediatric to adult Adult to pediatric

Pediatric domain ˙1 SD ˙2 SD ˙1 SD ˙2 SD

Anxiety 0:69 0:93 0:72 0:92

Depressive symptoms 0:70 0:93 0:71 0:93

Anger 0:72 0:95 0:74 0:94

Fatigue 0:71 0:94 0:75 0:94

Pain interference 0:75 0:92 0:77 0:95

Physical functioning—mobility 0:71 0:93 0:69 0:91

Physical functioning—upper extremity 0:54 0:95 0:53 0:95

The point of reporting values of cSDŒ�2� (or SD[�2]) as standard errors for the IRT
scale scores is to provide a confidence interval the covers the true value 100.1�˛/%
of the time. With the data collected for linking the pediatric and adult scales, we have
the values of EAP[�2] for each projection, so we can compute the proportion of those
values that are included in any specified confidence range. Table 1.4 shows those
proportions for confidence intervals computed as bEAPŒ�2�˙ cSDŒ�2� and bEAPŒ�2�˙
2cSDŒ�2�, which should be about 0.68 and 0.95, respectively, if the standard errors are
nearly correct and the errors are approximately normal. Across 13 of the 14 cases,
the ˙1 SD proportions are between 0.69 and 0.77, while the ˙2 SD proportions are
between 0.91 and 0.95. While the ˙1 SD proportions tend to be a little too large,
the ˙2 SD proportions are slightly too small. So no improvement could be made on
one (e.g., making the SD smaller to reduce the ˙1 SD proportions) without making
the other worse (the example would make the ˙2 SD proportions too small).

The exceptional values in Table 1.4 are the ˙1 SD proportions for the Upper
Extremity scales, which are 0.53–0.54 instead of 0.68. This anomaly is due to a
distributional peculiarity for those scales: In these data, 21 % of the respondents
have a perfect (maximum) score on both scales. That produces a single point mass in
the distributions with 21 % of the data. The fact that these large blocks of 21 % have



10 D. Thissen et al.

residuals between 1 and 2 SDs from zero reduces the observed proportion within
˙1 SD from the nominal 0.68 to 0.53–54. Setting that anomaly aside, the coverage
proportions suggest that the approximation works well across the linkings that have
used it thus far. For future use, it is easy to check its accuracy, by constructing a table
like Table 1.2, and comparing the calibrated projection computations for summed
scores with the approximation.

1.4 Projection from Two Scales to One, Illustrated
with PROMIS Physical Functioning

1.4.1 Calibrated Projection from Two Scales

In this section we extend calibrated projection to use a MIRT model for item
responses to three scales. Two measures form the basis of the projection, with �1
representing the underlying construct measured by the first scale, with estimated
slopes a1 for each of the first scale’s items and fixed values of 0.0 for the other
items, and �2 representing the underlying construct measured by the second scale,
with estimated slopes a2 for each of the second scale’s items and fixed values of
0.0 for the other items. �3 represents the underlying construct measured by the third
scale, the target scale of the projection, with estimated slopes a3 for each of the third
scale’s items and fixed values of 0.0 for the other items. The correlations among all
three �s are estimated.

The context for this extension of calibrated projection, and the linear approxi-
mation, involves the linking between the PROMIS pediatric Physical Function (PF)
scales (Mobility and Upper Extremity/Dexterity; DeWitt et al. 2011) and the adult
PF scale (Fries et al. 2014). The results for the Physical Function scales in Tables 1.3
and 1.4 were produced by linking the two pediatric scales separately to the omnibus
adult scale; in this section, we will link the two pediatric scales jointly with the adult
scale. To do so, we will use the published calibration item parameters for the three
unidimensional scales in Table 1.5, where they are expressed as components of a
three-dimensional MIRT model, in which �1 is pediatric PF-Mobility, �2 is pediatric
PF-Upper Extremity/Dexterity, and �3 is adult PF.

For the PF scales, the estimated covariance matrix from fixed parameters and the
current data C, with �1 � �ped�Mobility, �2 � �ped�UpperExtremity, and �3 � �ad�PF, is

Ȯ C D
" Ȯ

�1;�2
Ȯ
�1�2;�3

Ȯ 0
�1�2;�3

O�2�3

#
D
2
4 1:548.0:02/2:189.0:03/ 3:393.0:08/

1:286.0:07/ 1:841.0:09/ 1:200.0:10/

3
5 :

(1.15)
The estimated correlation matrix among the three latent variables is
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Table 1.5 Item parameters for the PROMIS pediatric and adult Physical Function (PF)
scales, based on their original calibrations

Item Label a1 a2 a3 c1 c2 c3 c4
1 Pediatric-PF-Mobility1-3 3:11 0:00 0:00 5:95 5:42 3.55 1.40

2 Pediatric-PF-Mobility3-9 2:62 0:00 0:00 8:32 6:72 5.29 2.65

3 Pediatric-PF-Mobility4-4 1:96 0:00 0:00 5:69 4:72 3.20 0.97

4 Pediatric-PF-Mobility4-8 3:27 0:00 0:00 10:18 8:67 6.36 4.31

5 Pediatric-PF-Mobility4-3 3:00 0:00 0:00 8:28 7:65 5.78 4.29

6 Pediatric-PF-Mobility2-7 1:82 0:00 0:00 5:78 4:53 3.46 1.73

7 Pediatric-PF-Mobility2-4 1:97 0:00 0:00 5:51 4:73 3.87 2.53

8 Pediatric-PF-Mobility1-1 2:36 0:00 0:00 5:55 4:66 3.15 1.17

9 Pediatric-PF-UpperExtremity2-3 0:00 2:33 0:00 7:63 5:85 3.78 �
10 Pediatric-PF-UpperExtremity4-1 0:00 1:67 0:00 6:45 4:97 3.79 1.26

11 Pediatric-PF-UpperExtremity3-11 0:00 2:53 0:00 7:32 6:97 6.02 3.82

12 Pediatric-PF-UpperExtremity4-10 0:00 1:89 0:00 6:90 5:58 4.54 2.31

13 Pediatric-PF-UpperExtremity3-4 0:00 2:67 0:00 8:99 6:60 4.74 �
14 Pediatric-PF-UpperExtremity3-9 0:00 2:25 0:00 6:59 5:62 4.30 1.56

15 Pediatric-PF-UpperExtremity2-2 0:00 2:54 0:00 10:00 8:20 7.36 4.68

16 Pediatric-PF-UpperExtremity3-7 0:00 2:46 0:00 7:11 6:77 5.37 3.67

17 Adult-PFA1 0:00 0:00 3:31 3:71 1:66 �0.43 �1.99

18 Adult-PFC36 0:00 0:00 4:46 6:38 4:50 2.63 1.03

19 Adult-PFC37 0:00 0:00 4:46 10:30 7:27 4.68 2.54

20 Adult-PFA5 0:00 0:00 4:14 9:81 6:71 4.31 2.19

21 Adult-PFA3 0:00 0:00 2:95 6:64 3:72 1.65 �0.09

22 Adult-PFA11 0:00 0:00 4:83 9:56 7:39 5.36 2.17

23 Adult-PFA16 0:00 0:00 3:37 10:58 8:63 6.44 4.18

24 Adult-PFB26 0:00 0:00 3:32 10:52 9:56 7.77 5.84

25 Adult-PFA55 0:00 0:00 3:58 11:99 9:49 7.41 5.30

26 Adult-PFC45 0:00 0:00 3:11 9:67 8:65 6.87 4.54

Note: For two of the Pediatric Upper Extremity items, two response categories were
collapsed in calibration so there are only three intercepts for those items

ORC D
2
4 1:0000:955 1:000

0:944 0:912 1:000

3
5 ; (1.16)

and the estimated mean vector for the current data is

O�C D
� O��1;�2

O��3

�
D
2
4�0:634.0:06/

�0:269.0:10/
�0:332.0:05/

3
5 : (1.17)

To compute estimates of the mean and covariance matrix among the latent
variables for a hypothetical joint reference distribution for the pediatric and adult
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scales, and for use in the linear approximation to calibrated projection, we need the
regression coefficients for �3 on �1 and �2, which are

Ǒ D
" b̌

1b̌
2

#
D Ȯ �1

�1;�2
Ȯ
�1�2;�3 D

�
0:724

0:076

�
I (1.18)

the intercept is

Ǒ
0 D O��3 � Ǒ 0 O��1;�2

D 0:147 : (1.19)

To obtain the mean vector for the hypothetical joint reference distribution for
the pediatric and adult scales, we proceed as we did in Sect. 1.2, and compute the
predicted value of the adult mean from the regression equation,

O�ad D ˇ0Cˇ1�0:0Cˇ2�0:0 D 0:147C0:724�0:0C0:076�0:0D 0:147 ; (1.20)

so the mean vector used to project from the pediatric scale to the adult scale is:

O�ref.ped/ D
2
4 0:0000:000

0:147

3
5 : (1.21)

Assembly of an estimate of the covariance matrix for the hypothetical pediatric-
adult reference population is more challenging than it was in the two-dimensional
case described in Sect. 1.2. However, we proceed with a similar series of steps: (a)
We set the variances of the two pediatric measures, �1 and �2, to the reference value
of 1.0. (b) We use the estimate of the correlation between �1 and �2 obtained from
the current data. (c) We compute a proportionally adjusted estimate of the variance
for the adult �3. (d) Finally, we combine the estimates of the correlations of �1 and
�2 with �3 from the current data with the estimate of the variance of �3 to obtain the
covariances.

The new challenge appears in step (c): In Sect. 1.2 we used the ratio of the adult
variance to the pediatric variance as the adjustment factor Ok2; however, here there are
two pediatric variances. In principle, it might be possible to use a ratio constructed
from any combination of the two pediatric variances. In this illustration we use the
weighted combination that is the regression prediction of adult �3 from pediatric �1
and �2. We compute the variance of the predictions of adult �3 in the current data as

Ov2C D ˇ21 O�2CI�1 C ˇ22 O�2CI�2 C 2ˇ1ˇ2 O�CI�1;�2 D 1:070 ; (1.22)

in which the variances and covariance are obtained from the upper left-hand block
of the matrix in Eq. (1.15). We compute the (hypothetical) variance of predictions
in the reference pediatric sample as

Ov2Z D ˇ21 C ˇ22 C 2ˇ1ˇ2 O�CI�1;�2 D 0:634 : (1.23)
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Then the predicted variance of adult �3 is computed as

Ok22 O�2�3 D Ov2Z
Ov2C

O�2�3 D 0:634

1:070
1:200 D 0:711 : (1.24)

Combining that estimate of the adult variance with the correlations in Eq. (1.16)
completes the covariance matrix used to project from the pediatric scale to the adult
scale:

Ȯ ref.ped/ D
2
4 1

O��1;�2 1

O��1;�3 Ok2; O��3 O��2;�3 Ok2 O��3 Ok22 O�2�3

3
5 D

2
4 1:0000:955 1:000

0:796 0:769 0:711

3
5 : (1.25)

Calibrated projection, using the item parameters in Table 1.5 and the population
mean vector and covariance matrix in Eqs. (1.21) and (1.25) yields the results in the
first seven columns of Table 1.6 for the summed scores of pediatric PF Mobility and
Upper Extremity/Dexterity combined.

1.4.2 Linear Approximation, from Two Scales to One

To compute the linear prediction of the �3 score, we use the regression equation with
coefficients from Eqs. (1.18) and (1.19),

bEAPŒ�3� D ˇ0 C ˇ1EAPŒ�1�C ˇ2EAPŒ�2� (1.26)

D 0:147C 0:724EAPŒ�1�C 0:076EAPŒ�2�

and the EAP estimates for �1 and �2 as the predictor values.
Using reasoning analogous to that expressed in Eqs. (1.12)–(1.14), we compute

the residual variance from the regression equation as

VRes D O�2�3 � Ov2C D 1:200� 1:070 D 0:130 ; (1.27)

and the estimated posterior standard deviations as

cSDŒ�3� D
q
ˇ21SD2Œ�1�Cˇ22SD2Œ�2�C2.ˇ1ˇ2CovŒ�1; �2�/CVRes

D
q
0:7242SD2Œ�1�C0:0762SD2Œ�2�C2.0:724� 0:076CovŒ�1; �2�/C0:130

(1.28)

in which CovŒ�1; �2� is the error covariance associated with EAPŒ�1� and EAPŒ�2�,
with the results shown in the rightmost four columns of Table 1.6.
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Table 1.6 The first seven columns show the calibrated projection IRT scores (EAPs) and
standard errors (SDs) for summed scores on the pediatric measures combined (only even
summed scores are shown to save space)

Calibrated projection Linear approximation

Pediatric Adult

SS EAP[�1] SD[�1] EAP[�2] SD[�2] EAP[�3] SD[�3] bEAPŒ�3� d cSDŒ�3� r

0 8:7 3:8 7:9 3:5 18:3 4:0 18:4 �0.1 4:7 1:2

2 12:1 3:4 11:6 3:1 21:1 3:8 21:1 �0.1 4:5 1:2

4 14:2 3:2 13:8 2:9 22:7 3:7 22:8 �0.1 4:4 1:2

6 15:8 3:0 15:6 2:8 24:1 3:6 24:1 0.0 4:3 1:2

8 17:3 2:9 17:1 2:7 25:2 3:5 25:3 0.0 4:2 1:2

10 18:5 2:8 18:4 2:6 26:3 3:5 26:3 0.0 4:2 1:2

12 19:7 2:7 19:6 2:5 27:2 3:4 27:2 0.0 4:2 1:2

14 20:7 2:7 20:7 2:5 28:0 3:4 28:1 0.0 4:1 1:2

16 21:8 2:6 21:7 2:5 28:9 3:4 28:9 0.0 4:1 1:2

18 22:7 2:6 22:7 2:5 29:6 3:4 29:7 0.0 4:1 1:2

20 23:7 2:6 23:7 2:5 30:4 3:4 30:4 0.0 4:1 1:2

22 24:6 2:5 24:6 2:5 31:1 3:3 31:1 0.0 4:1 1:2

24 25:5 2:5 25:6 2:5 31:8 3:3 31:9 0.0 4:1 1:2

26 26:4 2:5 26:5 2:5 32:6 3:3 32:6 0.0 4:1 1:2

28 27:3 2:5 27:4 2:5 33:3 3:3 33:3 0.0 4:1 1:2

30 28:2 2:4 28:3 2:6 34:0 3:3 34:0 0.0 4:0 1:2

32 29:1 2:4 29:2 2:6 34:7 3:3 34:7 0.0 4:0 1:2

34 30:0 2:4 30:2 2:6 35:5 3:3 35:5 0.0 4:0 1:2

36 30:9 2:4 31:1 2:6 36:2 3:3 36:2 0.0 4:0 1:2

38 31:9 2:4 32:1 2:7 37:0 3:3 37:0 0.0 4:0 1:2

40 32:9 2:4 33:1 2:7 37:8 3:3 37:8 0.0 4:0 1:2

42 33:9 2:4 34:1 2:8 38:6 3:3 38:6 0.0 4:1 1:2

44 35:0 2:5 35:2 2:8 39:5 3:3 39:5 0.0 4:1 1:2

46 36:1 2:5 36:3 2:9 40:4 3:4 40:4 0.0 4:1 1:2

48 37:4 2:6 37:6 3:0 41:4 3:4 41:4 0.0 4:1 1:2

50 38:7 2:6 38:9 3:1 42:5 3:4 42:5 0.0 4:1 1:2

52 40:2 2:8 40:4 3:2 43:7 3:5 43:7 0.0 4:2 1:2

54 42:0 2:9 42:1 3:3 45:1 3:6 45:1 0.0 4:3 1:2

56 44:1 3:2 44:2 3:6 46:8 3:7 46:8 0.0 4:4 1:2

58 46:8 3:7 46:9 4:1 49:0 4:0 49:0 0.0 4:6 1:2

60 50:6 4:2 50:5 4:5 51:9 4:3 51:9 0.0 4:9 1:1

62 59:8 6:5 59:7 6:6 59:3 5:9 59:3 0.0 6:3 1:1

The final four columns show the results obtained with the linear approximation. SS is the
summed score on the pediatric scales, d D EAPŒ�3��bEAPŒ�3�, and r D cSDŒ�3�=SDŒ�3�
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As was the case with the one-to-one calibrated projections and their approxima-
tions, the values of the linear approximation bEAPŒ�3� in Table 1.6 are essentially
within rounding error of the numerically integrated values EAP[�3]. The ratios of
the approximate standard errors cSDŒ�3� to SD[�3] are between 1.1 and 1.2, as they
were in the one-to-one projections. When the linear approximation values bEAPŒ�3�
and cSDŒ�3� are combined to produce confidence-interval estimates for the values of
response-pattern EAP[�3] for each respondent in the current data, the proportions
covered by the ˙1 SD and ˙2 SD intervals are 0.70 and 0.92, respectively, the
former slightly exceeding the target value of 0.68 while the latter is slightly less
than the target 0.95, exactly as observed in the one-to-one projections.

In the case of two-to-one projection, the linear approximation does not yield the
level of computational simplicity that it did for one-to-one projection, because two-
dimensional MIRT scoring is required for �1 and �2, to obtain the error covariance
term in equation 1.28. Given that one is required to compute two-dimensional MIRT
scores for the predictor scores, it is probably more straightforward to simply use
calibrated projection to compute the three-dimensional MIRT scores that include the
estimate for �3 as well. Nevertheless, the linear approximation remains a potentially
useful pedagogical tool.

1.5 Conclusion

While calibrated projection serves effectively to remove the restriction that IRT
calibration could hitherto be used only to link scales that measure the same
construct, it is also admittedly mysterious to compute scores on one scale using
only item responses from another. The linear approximation presented here is easier
to implement, because the projected scores are computed as linear combinations
of scores on the basis scales. This also makes apparent the use of regression or
prediction in the procedure. The standard errors are computed as the square root
of a weighted combination of the error variances of the predicting scores, plus a
component due to the imprecision of the regression, all of which is very easy to
understand.

While the accuracy of the approximation of the standard error estimates
described here remains an empirical question, it is easy to check for summed scores
for any particular projection by comparing them to values obtained by numerical
integration in calibrated projection. Taken as a whole, the combination of calibrated
projection and the linear approximation proposed here extends the scope of linking
procedures based on IRT.
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Chapter 2
The Reliability of Diagnosing Broad and Narrow
Skills in Middle School Mathematics
with the Multicomponent Latent Trait Model

Susan Embretson, Kristin Morrison, and Hea Won Jun

Abstract The multicomponent latent trait model for diagnosis (MLTM-D;
Embretson and Yang, Psychometrika 78:14–36, 2013) is a conjunctive item
response model that is hierarchically organized to include broad and narrow skills.
A two-stage adaptive testing procedure was applied to diagnose skill mastery in
middle school mathematics and then analyzed with MLTM-D. Strong support for
the reliability of diagnosing both broad and narrow skills was obtained from both
stages of testing using decision confidence indices.

Keywords Diagnostic models • Item response theory • Multidimensional
models • Decision confidence reliability

Diagnostic assessment has become increasingly prominent in the last few years
(Leighton and Gierl 2007; Rupp et al. 2010). Several explanatory item response
theory (IRT) models (i.e., Hensen et al. 2009; von Davier 2008) have been developed
using latent classes to assess patterns of skill or attribute possession by examinees.
Since the number of classes increases exponentially with the number of skills that
are assessed, the models are typically applied to tests with less than ten skills.

However, using high-stakes broad achievement or proficiency tests that may
include 20 or 30 skills, to diagnose more specific skills or skill clusters has several
potential advantages. First, the content aspect of validity, as explicated in the
Standards for Educational and Psychological Testing (2014), is supported, since
the tests typically represent skills deemed important by expert panels. Second,
proficiencies in the skills represented on the tests have practical importance.
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Decisions about examinees, as well as their instructional support systems, are
based on the overall test scores. Third, remedial instructional materials may be
coordinated with these tests for examinees who are not deemed to achieve mastery.
For example, the Blending Assessment with Instruction Project (BAIP; 2010)
provides online tutorials that are coordinated with achievement tests administered
for Grade 3 to Grade 8. Fourth, the diagnostic assessment would be efficient if the
broad tests have sufficiently reliable information about skills. However, this last
advantage is questionable because commonly used subscale scores often do not
have sufficient reliability (Sinharay 2010) particularly when the subscales are highly
intercorrelated.

The purpose of this study is to examine the reliability of diagnosis from heteroge-
neous tests for mastery of skill clusters and specific skills (Fig. 2.1). An example of a
two-stage adaptive diagnostic system is presented that was applied to mathematics
achievement in middle school. The methods employed differ from using subscale
scores in several important ways. First, the study employs a diagnostic IRT model. In
the current study, a diagnostic model that is appropriate for a heterogeneous test, the
multicomponent latent trait model for diagnosis (MLTM-D; Embretson and Yang
2013), is applied. Second, the broad achievement test is not necessarily viewed as
sufficient for diagnosis. Instead, the broad test is Stage 1 in a multistage adaptive
testing (MST) design for diagnosis. Stage 2 testing can be adapted to those skill
clusters that are not sufficiently reliable in Stage 1. An interesting issue is the extent
to which diagnosis may be sufficiently reliable from the Stage 1 heterogeneous
test. Third, since the goal is to provide diagnosis, not accurate score locations on
a continuum, different indices for reliability may be appropriate. Since diagnosis
depends on cutlines, decision accuracy and consistency indices may be applied
(Lewis and Sheehan 1990).

Skill
Cluster 1

Skill1

Item1 Item2 Item3 Item4 Item5 Item6

Skill2 Skill3 Skill4

Skill
Cluster 2

Fig. 2.1 Hierarchical blueprint structure
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Prior to presenting results from the two-stage diagnostic testing of mastery of
skills in middle school mathematics, an overview of the diagnostic model and
procedures, as well as a consideration of appropriate reliability indices, is presented.

2.1 Background

2.1.1 Diagnostic Modeling of Heterogeneous Tests

The diagnostic model. The MLTM-D is a confirmatory model that is appropriate
for hierarchically organized test domains with complex items. That is, separately
defined areas of competency are represented on the test and more narrowly defined
skills are clustered into these broader areas (see Fig. 2.1). Some items may involve
skills from only one cluster while other items may involve skills from two or
more clusters. To implement MLTM-D, two sets of scores are required: Cixk is the
involvement of component k in item i (i.e., the skill cluster), and Qixm(k) is the score
for item i on skill/attribute m with component k. The probability that the response
of person j to the total item iT, XijT, is correct depends on the probability of solving
the relevant skill clusters, as follows:

P
�
XijT D 1

� D
Y

k
P
�
Xijk D 1

�cik
(2.1)

and

P.Xijk D 1/ D 1=.1C exp.�1:7.�jk �
X

m

�kmqikm C �0///; (2.2)

where Xijk is the response of examinee j to component k on item i, � jk is the trait
level of examinee j on component k, qikm is the score for stimulus feature m in
component k for item i, �km is the weight of feature m on component k, and cik is the
involvement of component k in item i. The within component model for MLTM-D is
similar to a linear logistic test model (LLTM; Fischer 1973). It should be noted that
Xijk is not directly observable, but that the associated parameters can be estimated
from response patterns in the data.

Setting mastery boundaries in MLTM-D. For skill clusters, mastery levels can be set
by locating skills on the components of MLTM-D. These probabilities are often set
for the test as a whole by expert panels, but they also may be applied to skills and
skill clusters in MLTM-D. Define Pm as the mean predicted probability of solving
items on component k for � k. Then the cutline � k for component k may be found so
that Pm � y, where y is a specified probability for mastery.

For specific skills, as for component mastery, a probability for mastery, y, also
must be specified. Specific attributes or skills are located on the common scales for
component traits and items by their parameter estimates. Assuming that skill m is
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specified by a binary variable qkm for each relevant component, the estimated �km

indicates skill position on the theta scale where Pkm equals .50. However, mastery of
skill m must be located at a specified probability, y, within each relevant component.
That is, the location of skill m in component k, 	mk, is determined by the probability
of solving skill m, Pkm, such that Pkm D y if �k D 	k. Skill mastery for examinee
j on skill m in component k is scored as 1 if �jk � 	m.k/, otherwise skill mastery is
scored as 0. Number of skills mastered for component k is the sum of the mastered
skills. It should be noted that interpretability of skill mastery depends on the strength
of prediction of item difficulty by the skills involved.

2.1.2 Assessing Reliability and Decision Accuracy

Empirical reliability. Reliability of component estimates in MLTM-D may be
obtained by traditional methods, which depend on the how the traits are estimated
(see du Toit 2003). For expected a posteriori estimates (EAP), assuming the
Rasch model specified within components in MLTM-D, empirical reliability for
component k is given as:

�t D �2�k=
�
�2�k C �2"k

�
; (2.3)

where �2
�k and �2"k are the variance of � k and the mean error variance, respectively,

for component k.

Decision accuracy. If MLTM-D component estimates are used for mastery deci-
sions, cutlines are applied as described above, decision accuracy estimates may be
more appropriate for describing score properties. Decision accuracy has often been
defined in terms of IRT estimates (Lewis and Sheehan 1990; Rudner 2005; Wainer
et al. 2005). While these researchers were primarily interested in providing indices
for decision accuracy for the test as a whole (not components or skill clusters),
the underlying basis of the indices is interesting to consider. Rudner (2005), for
example, placed the mastery cutline for the test, �w, on the estimated plausible
distribution of theta, �*

j , for each person, assuming ��
j � N

�
�j; �

2
"

�
. For �j � �w,

the proportion of ��
j � �w would indicate accuracy. Conversely, for �j < �w, the

proportion of ��
j < �w would indicate accuracy. Thus, decision accuracy depends

on both distance from the cutline and the standard error of measurement.
Given this formulation of procedures, decision confidence, 
 j, also can be

expressed for each person as follows:


j D max
�
PM

j ; PNM
j

�
; (2.4)

where PM
j is probability of mastery (theta equal to or above cutline) and PNM

j is the
probability of non-mastery or 1 � PM

j . In turn, PM
j is obtained as follows:


