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Preface

This volume contains the proceedings of the 6th International Symposium on
Ambient Intelligence (ISAmI 2015). The symposium was held in Salamanca, Spain
during June 3–5 at the University of Salamanca.

ISAmI has been running annually and aiming to bring together researchers from
various disciplines that constitute the scientific field of Ambient Intelligence to
present and discuss the latest results, new ideas, projects and lessons learned,
namely in terms of software and applications, and aims to bring together researchers
from various disciplines that are interested in all aspects of this area.

Ambient Intelligence is a recent paradigm emerging from Artificial Intelligence,
where computers are used as proactive tools assisting people with their day-to-day
activities, making everyone’s life more comfortable.

After a careful review, 27 papers from 10 different countries were selected to be
presented in ISAmI 2015 at the conference and published in the proceedings. Each
paper has been reviewed by, at least, three different reviewers, from an international
committee composed of 74 members from 24 countries.
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Using Evolutionary Algorithms
to Personalize Controllers in Ambient
Intelligence

Shu Gao and Mark Hoogendoorn

Abstract As users can have greatly different preferences, the personalization of

ambient devices is of utmost importance. Several approaches have been proposed

to establish such a personalization in the form of machine learning or more ded-

icated knowledge-driven learning approaches. Despite its huge successes in opti-

mization, evolutionary algorithms (EAs) have not been studied a lot in this context,

mostly because it is known to be a slow learner. Currently however, quite fast EA

based optimizers exist. In this paper, we investigate the suitability of EAs for ambient

intelligence.

Keywords Ambient intelligence ⋅ Evolutionary algorithms ⋅ Personalization ⋅
CMA-ES

1 Introduction

The rise of ambient intelligence is becoming more and more apparent in our daily

lives: an increasing number of devices is surrounding us that perform all kinds of

measurements and try to utilize this information in an intelligent way, for instance by

controlling certain actuators or providing some form of feedback. In order for envi-

ronments or devices to act sufficiently intelligent they need to be able to learn from

the behavior of the user. Users can for instance have completely different preferences

from each other, and hence, if only a single strategy would be deployed the system

would never be effective and the user experience would be disappointing. In addi-

tion, devices need to learn how to cooperate with each other, and given the wealth of

different devices on the market you cannot predefine the way in which they should.
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2 S. Gao and M. Hoogendoorn

Learning of preferences and learning how to establish effective cooperation

between devices has been a subject of study in the field of ambient intelligence (or

under its closely related fields such as pervasive computing and ubiquitous com-

puting), see e.g. [1, 10, 15]. In [1] three stages of adaptation are identified: (1) the

initial phase during which data is collected; (2) learning of behavior based upon

the data collected, and (3) coping with dynamic environments. Mainly in the first

stage hardly any machine learning approaches are appropriate as they hardly have

any data/experiences to learn from, whereas this is a crucial phase. In that phase,

the learning algorithm should learn on-the-fly. One of the problem solvers known to

work well in nature, evolutionary algorithms (EAs), has not received a lot of atten-

tion in this domain, and in particular not for the subproblem which has just been

described. Although EAs are mostly seen as slow optimizers, they have been shown

to work very well for a range of optimization problems, see e.g. [6]. Furthermore,

approaches such as genetic programming (cf. [2]) are highly suitable to generate

sophisticated controllers.

In this paper, we explore the suitability of EAs for an ambient intelligence task

thereby assuming no data being available up front. More precisely, we study a sce-

nario where multiple (possibly heterogenous) devices need to be controlled in a sim-

ple way, thereby taking the preferences of multiple users into account. The rationale

for starting with a simple scenario is that we want to explore whether EAs are able

to solve a relatively simple problem in a suitable way before we move on to more

complex problems. We use the state-of-the-art evolutionary optimizer, namely the

CMA-ES [9]. Given the nature of devices in ambient intelligence, we use different

variants of the algorithm: a centralized versus representing a single central controller

and a number of distributed controllers repressing individual devices with their own

controller. As evaluation criteria we measure the quality of the solutions found in

terms of the percentage from the optimal solution as well as the time required to find

a reasonable solution. We compare the outcome with simple benchmark algorithms

such as hill climbing and simulated annealing.

This paper is organized as follows: first, we present related work in Sect. 2.

Thereafter, in Sect. 3 we present the learning approach and the experimental setup is

presented in Sect. 4. The results are presented and analyzed in Sect. 5. Finally, Sect. 6

concludes the paper.

2 Related Work

As said in the introduction, a lot of authors acknowledge the importance of machine

learning techniques in ambient intelligence. An overview of useful techniques as

well as examples of machine learning applications are given in [1]. In quite some

approaches, a dataset for training is assumed. For example, Mozer et al. [12] use

artificial neural networks in an AmI environment. Classification is implemented in an

environment named ’SmartOffice’ by Gal et al. [7]. On the other hand, reinforcement

learning is another approach that does not need training data which is applied to

ambient intelligence environment by Mozer [11]. There are examples in which EAs
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are applied in Ambient Intelligence. Doctor, Hagras and Caalghan [5] for example

use Genetic Programming as a benchmark algorithm, stating that GPs are less suit-

able to use in an online fashion as they require many generations. A Genetic Algo-

rithm is applied in [3] but again not in an online fashion. In [4] EAs are used to

compose software around applications. Hence, one can see that there is some work

which combines EAs with Ambient Intelligence, but none have judged whether such

approach could be suitable to use in an online fashion where users provide feedback

and act as a fitness function.

3 Approach

In our approach, we assume an environment in which multiple ambient devices are

present that are equipped with sensors and actuators and have controllers that express

their behavior, i.e. map sensory values to actions. The mapping between devices and

controllers is left open: on the one extreme each device could have its own controller

whereas on the other side of the spectrum there could be a single controller for all

devices jointly. In the environment one or multiple users are present each having their

own preference in particular situations. Here, a situation is a unique combination of

sensory values or possibly a set of such combinations which all map to the same

situation. Learning such a mapping could be another learning endeavor but in this

initial exploration of EAs for ambient intelligence this is beyond our scope. The main

goal of our research is to create controllers for the ambient devices that satisfy the

user preferences best, a problem which we formulate as a maximization problem of

the following function:

F =
∑

∀S∶SIT

∑

∀U∶USER
user_satisfaction(U, S, actionscontrollers(S,U))

In other words, the controllers should, for all situations, find the set of actions that

satisfy the users most. Since the user satisfaction can only be provided by the user

itself, this entails that the user needs to be consulted every time a new controller is

generated. A secondary goal is therefore also to minimize the number of evaluations

required by the algorithm to find the solution to avoid bothering the user too much,

and the user having to bare a lot of non-satisfactory solutions.

We assume that the controller is optimized for each situation separately. For each

of such situations, a controller is represented by means of numerical values for each

action it can perform. For binary actions, the possible values are clearly limited to 0

and 1 whereas for continuous actions (e.g. light intensity, sound volume) the action

can take any value which is appropriate for the action. Table 1 shows an example of

such a representation.

Table 1 Example representation for one controller for a single situation

a1 a2 a3 a4

1 0.5 0 0.25
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In order to solve the problem we have now created, we use a variety of dif-

ferent approaches: state of the art EAs, including the CMA-ES and Cooperative

Co-Evolution as well as benchmark algorithms including hill climbing and simulated

annealing. An alternative would also be to use reinforcement learning, but given the

scope of the scenario explored in this paper (see Sect. 4), this is not a suitable option

and therefore not discussed in detail here. Each of these algorithms is explained in

more detail below.

3.1 CMA-ES

The CMA-ES [9] is an evolutionary strategy. In general, EAs work with a population

of individuals (in our case expressing the value for actions for a certain situation),

of which individuals are selected for mutation (on a single individual) and crossover

(combining two or more individuals), resulting in new individuals. Out of the total

pool of individuals a new population is selected again, and this process continues

until some termination criterion is reached. An evolutionary strategy is a variant in

which the individuals are composed of a series of real numbers and the individuals

also contain a dedicated field which determines the mutation probability, this field

is also subject to evolution, and hence, the mutation probability self-adapts. In the

CMA-ES a covariance matrix is used in order to improve the effectiveness of gen-

erating new individuals. Explaining all details of the algorithm is beyond the scope

of this paper, the reader is referred to [9] for more details. We use the CMA-ES

in two variants: (1) a single evolutionary loop in which a central controller simply

determines the action for the actuators of all devices for this particular situation, and

(2) a decentralized approach where each device has its own controller and CMA-ES

population to evolve the controller. For the latter case, we use the cooperative co-

evolutionary approach as proposed by Potter and De Jong [13]. Here, a single device

is selected while fixing the controllers of the other devices to the best one found until

then. Each of the individuals of the population of the selected device is then eval-

uation in conjunction with these best controllers, resulting in a fitness score. After

that, the next device is selected, etc. Devices are selected in a round robin fashion.

For non-continuous actions the real value is rounded to the nearest value (i.e. 0/1)

during the evaluation phase.

3.2 Standard GA

Next to the CMA-ES we also try a simpler variant of an EA, namely the so-called

“standard GA”, which, contrary to the sophisticated CMA-ES, consists of individuals

that are composed of bits and uses less sophisticated operators. Combinations of bits

can represent continuous actions for our case. Mutation takes place via simple bit-

flips whereas crossover is done via selecting a crossover point and selecting the first

part of one parent and the second part of the other. Selection is done by means of

probabilities proportional to the fitness of the individual.
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3.3 Hill Climbing and Simulated Annealing

For hill climbing we simply try a random step in either direction of the value for an

action and perform an evaluation, the best solution (current, with the random step

added, or deducted) is selected as the next controller. The process ends once the

stopping condition has been met.

In the simulated annealing approach (see [14]), which works with the notion of the

temperature of the process, a step is performed in the search space (i.e. for the action)

which is equal to the temperature. The temperature function used is temperature

function: T =
T0

log(k) where T0 is the initial temperature and k is number of steps. New

solutions are accepted when they are an improvement, or, if not, they are selected

with a probability e
𝛥C
T which is dependent on the temperature of the process and the

improvement made, 𝛥C. This scheme enables more exploration in the initial phase

and more exploitation in the end of the process.

4 Experimental Setup

In this section, we describe the setup we have used to evaluate the algorithms that

have been specified in Sect. 3. First, the case study is explained, followed by the

precise setup of the experiments.

4.1 Case Study

As our case study, we focus on an office setting with lights that need to be controlled.

As said, the focus is not so much on a complex scenario, but to study the potential

of EAs for a relatively simple scenario. Figure 1 shows the scenario is more detail.

Fig. 1 Specific scenario
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Essentially, there are more lights than users, and each user has a specific preference

for a light intensity. The parameter n determines the complexity of the situation.

Here, n defines the number of users (n2) and the number of lights ((n−1)2). We

define such a complexity parameter as we want to study how the various approaches

scale up with increasing complexity. We have chosen to have a number of lights

which is smaller than the number of users to make the scenario more interesting. The

intensity experienced by a user U is determined by all lights jointly, whereby the con-

tribution of each individual light is determined by means of the following equation:

I(U) =
∑

∀L∶LIGHTS

P(L)
4𝜋D(U,L)2

Here, P(L) is the power of the light L and D(U, L) is the distance of the light L

to the user U. For now, we assume a single situation in which all users are present

in the office. Each user has a preferred light intensity, thereby defining the function

user_satisfaction(U, S, actionscontrollers(S,U)) as specified in Sect. 3:

user_satisfaction(U, S, actionscontrollers(S,U)) = |I(U) − pref_int(U)|

4.2 Setup

We have implemented the entire system in Matlab, except of the CMA-ES which

is available in C.
1

In our experiments, we run a number of different setups of

the algorithm, in line with the approach outlined before, and which are shown in

Table 2. CMA-ES is run with both a centralized and distributed controller setting,

the standard GA only with a distributed setting, and the other benchmarks are only

run in a centralized way. Note that the scenario does not contain any input states at

the moment, making approaches such as reinforcement learning inappropriate. The

precise algorithm parameters are expressed in the table as well.

We tried different levels of complexity ranging, namely n = 3,4,5,....,12, totaling

to 10 scenarios. For each scenario we generate 10 instances with different prefer-

ences of users, and for each instance we perform 30 runs of the algorithms, given

their probabilistic nature. In addition to the benchmarks indicated before, we also run

an LP solver
2

to find the optimal solution to the problem. We assume that solutions

within the range of 20 % from the optimal solution are satisfactory. As stopping crite-

rion, the CMA-ES uses the fitness improvement as a metric, for the other algorithms

the algorithm is stopped if it is within 20 % from the optimal solution or exceeds

100,000 fitness evaluations.

1
https://www.lri.fr/~hansen/cmaesintro.html.

2
http://lpsolve.sourceforge.net/5.5/.

https://www.lri.fr/~hansen/cmaesintro.html
http://lpsolve.sourceforge.net/5.5/
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Table 2 Experimental setup and settings

Abbreviation Algorithm Controller type Specific settings

C-ES CMA-ES Centralized Off-the-shelf toolkit,

with population size

set to

4 + (3 ∗ log((n − 1)2))
D-ES CMA-ES Distributed See above, population

size is set to 4 for each

controller

D-GA Standard GA Distributed Number of bits: 16

Population size: 100

Crossover rate: 0.6

Mutation rate:
1
16

C-SA Simulated annealing Centralized T0 = 100
C-HC Hill climbing Centralized Random number is

selected from the

range [0, 10]

5 Experimental Results

The experimental results are described in this section. First, we look at the number of

evaluations needed to come to a reasonable solution (i.e. within 20 % from the opti-

mal value). Figure 2 shows the results for the various algorithms. From the graph,

it can be seen that a centralized controller generated by the CMA-ES algorithm by

far outperforms the alternative algorithms, although the performance of the decen-

tralized CMA-ES variant is still relatively close. The scaling of the algorithm seems

good, given the exponential nature of the number of lights that needs to be controlled

as a function of n on the x-axis. To be more precise, for the simple scenario, includ-

ing 9 users and 4 lights, the system could find good solution within 200 evaluations.

But it needs over 1500 evaluations in a complex scenario which involves 121 lights

and 144 users. So, although from a scientific perspective the speedup is good, from

a user perspective it is quite cumbersome. The variation of performance between the

different runs is low for the CMA-ES. When we look at hill climbing and simulated

annealing, we see that hill climbing performs a lot worse, with a huge variation. Sim-

ulated annealing does better, but does not come close to the speed of the CMA-ES

variants. The Standard GA in the distributed setting is worst, most likely due to the

distributed setting in combination with the simplicity of the EA. Table 3 shows the

complete overview of the average times to find a solution with 20 % from optimal.
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Furthermore, Fig. 3 shows the learning curve of the centralized CMA-ES for n = 3,

it can be seen that the algorithm learns quite fast in the beginning, so the users are

not exposed to very low quality solutions for a long period of time.
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6 Discussion

In this paper, we have explored the usability of EAs for personalization in ambient

intelligence. Hereto, we have tried to formalize a fitness function, required for EAs,

and have selected a first set of appropriate EA variants. In an experimental setting

we have seen that EAs are able to find decent quality solutions, but as the problem

becomes more complex the performance becomes a lot worse. Until now, the user

feedback has just been the general level of satisfaction. Of course, more detailed

feedback, or an initial phase of exploration could help to improve the speed to come

to a solution and the quality of the solution. Ample approaches have utilized initial

observations of users to derive a first set of reasonable controllers (see e.g. [8]).

This was however not the purpose of this paper, we simply wanted to see whether

an EA learning approach with one single piece of feedback could do the job, and

the answer is that for simple environments this is possible, but as things get more

complex this would become too much of a burden for users, let alone if multiple

situations would need to be taken into account. Of course, the approach can still be

applied, but our intuition is that one would need to resolve to alternative algorithms

such as reinforcement learning.

For now an explicit fitness function in the form of user feedback has been

obtained. We could also replace this with an alternative fitness function which is less

direct (e.g. measure the work productivity), this would not change the setup of the

learning system which shows how generic the approach is. How well the approach

would learn the optimal lighting however would need to be studied, this would be

an interesting aspect for future work. In addition, we want to explore more complex

scenarios where sensors play a more prominent role and compare faster learning

algorithms such as reinforcement learning to more knowledge driven approaches.
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Automatic Early Risk Detection of Possible
Medical Conditions for Usage Within
an AMI-System

H. Joe Steinhauer and Jonas Mellin

Abstract Using hyperglycemia as an example, we present how Bayesian networks
can be utilized for automatic early detection of a person’s possible medical risks
based on information provided by unobtrusive sensors in their living environments.
The network’s outcome can be used as a basis on which an automated AMI-system
decides whether to interact with the person, their caregiver, or any other appropriate
party. The networks’ design is established through expert elicitation and validated
using a half-automated validation process that allows the medical expert to specify
validation rules. To interpret the networks’ results we use an output dictionary
which is automatically generated for each individual network and translates the
output probability into the different risk classes (e.g., no risk, risk).

Keywords Ambient assisted living ⋅ Bayesian networks ⋅ Automated diagnosis

1 Introduction

A major part of the HELICOPTER (Healthy Life support through Comprehensive
Tracking of individual and Environmental Behaviors, http://www.helicopter-aal.eu)
is to develop information and communication technology (ICT) - based solutions
that assist self-sufficient elderly people in early detection of the possible develop-
ment of medical conditions, such as hyperglycemia or heart failure. The reason for
this is to prevent complications arising from the medical conditions if they are not
detected early enough. The main contribution of the HELICOPTER project is
therefore the part of the system that can detect the risk of certain medical conditions
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based on sensor readings and that we call the automatic triage. Its system archi-
tecture is closer described in [1]. The automatic triage should be as unobtrusive as
possible and should not bother the patient with unnecessary interventions. Health
surveillance for the automatic triage is achieved by deploying unobtrusive sensors
(e.g., infrared sensors, pressure sensors, power meters, body weight scales, and
food-inventory tools) and wearable sensors (e.g., fall detectors, individual identi-
fication tags). All data collected from these heterogeneous sensors are then inter-
preted within a data analysis engine in order to deduce the patient’s current risk of
developing an acute medical condition (e.g., hyperglycemia or hypotension).

In this project it is our objective to utilize well established existing methods, in
this case Bayesian networks, deploy them within a case study in order to develop
the specific network designs necessary for each medical condition, and validate the
resulting networks. The remainder of this paper is organized as follows: In Sect. 2
we explain how a Bayesian network for the use in the automatic triage can be
developed in cooperation with a medical expert. After that, in Sect. 3, we describe
how the results of Bayesian networks are validated. Last, but not least, we discuss
our work and give some suggestions for future work in Sect. 4.

2 Bayesian Networks for Automatic Triage Diagnosis

Generally, a diagnosis will be determined on available evidence E and is defined as
in e.g. [2]:

d* = argmaxd∈D Pr djEð Þ ð1Þ

where D is the set of possible diagnoses, and d* stands for the subset of diag-
noses that have been chosen. Bayesian networks [3] have been used in the area of
medical diagnostic reasoning, prognostic reasoning, treatment selection, and for the
discovery of functional interactions, since the beginning of 1990 [2, 4, 5]. Some
early examples can be found in [4, 6–8]. More recently, Bayesian networks are also
applied in home care applications e.g. [9].

A Bayesian network [3] or causal probability network [6] is a graphical repre-
sentation of a probability distribution over the set of random variables. Probabilistic
inference can be done with Bayes rule (see e.g. [10]), which in our domain, where
we want to infer the probability of a disease given that we observe one or several
symptoms that are often caused by the disease, can be defined as:

P diseasejsymptomð Þ= P symptomjdiseaseð ÞPðdiseaseÞ
PðsymptomÞ ð2Þ

Due to their graphical representation, Bayesian networks are relatively easy to
understand and to create and can therefore be used, developed, and interpreted by
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domain experts [9]. They can often be seen as a model of cause-effect relationships
[4] whereby their structure and the underlying probability distribution can be learnt
from data or be created by hand. Thus qualitative and quantitative knowledge can
be mixed [6]. Furthermore, uncertain knowledge can be modeled within a Bayesian
network and missing data can be handled during the diagnosis process, which can
successively be updated when more evidence becomes available [7].

Before we started to develop the automatic triage system, we also considered
alternative evidential frameworks, such as evidence theory [11] and subjective logic
[12], but decided together with the medical expert to use Bayesian networks based
on four criteria: (1) the framework chosen needs to be able to express everything
that is relevant for the task, (2) the design and inner workings of the framework
should be easy to understand for the medical expert, (3) the framework should be
considerably mature and (4) tools for developing the networks should be available.

In our project, as there is no data set available from that the Bayesian network
could be automatically constructed and tested, it needs to be built by hand, whereby
knowledge about the domain of diagnosing medical conditions is provided by a
medical expert. [2] describes that the construction of a Bayesian network by hand
usually involves five stages, which can be iterated during the construction process:
(1) relevant variables need to be chosen; (2) relationships among the variables need
to be identified; (3) logical and probabilistic constraints need to be identified and
incorporated; (4) probability distributions need to be assessed; and (5) sensitivity
analysis and evaluation of the network have to be performed.

Expert elicitation is an essential task in order to build the network and goes
therefore hand in hand with the network construction. Following [13], expert
elicitation is a five step process consisting of: (1) a decision has to be made how
information will be used; (2) it has to be determined what information will be
elicited from the expert; (3) the elicitation process needs to be designed; (4) the
elicitation itself has to be performed; and (5) the elicited information needs to be
translated (encoded) into quantities.

A specific problem when working with Bayesian networks is to elicit the prior
and conditional probability values. [14] argue that even though probability theory is
optimal for the task of decision making, it is often found to be impractical for
people to use. On the other hand, qualitative approaches to deal with uncertainty,
which appear to be more naturally usable by people, often lack in precision.

In order to elicit the prior and conditional probabilities for our project we
developed a dictionary, which, as for example described in [14], can be specified to
allow the expert to express his or her belief for or against a statement or claim in a
so called argument. The argument is expressed in qualitative terms using qualifiers
[14] that then are translated into probabilities. Several dictionaries have been
described in the literature (e.g., [15]). However, for our task we needed to develop a
suitable dictionary together with the expert, since it was important to the expert to
know how the qualitative terms would translate into probabilities in order to fully
understand what the qualitative terms stand for. It was also important that the
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