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Preface

In many modern tracking applications, target detection and placement are performed
to support some specific decision or action. Estimates of target position and motion
will be used for some command purpose, perhaps beginning with determining
target intent and then selecting an appropriate course of action like intercepting
or otherwise countering the target. The challenge is to construct an architecture
that uses noisy data sequences of indicated location not only to derive estimated
position, velocity, and attitude of the target but also to provide the information
required to support effective command functions. This book focuses on command
architectures—estimation and information structures that can effectively inform
useful command decisions. The target engagements we have in view almost always
demand that a command architecture function in real time. Frequently, there are
strict limits on the interrogation and countermeasure resources expended. Command
architectures considerably expand the character and complexity of target trackers,
whether relatively simple, like alpha-beta algorithms, or more sophisticated, like
extended Kalman filter and multiple-model estimators.

We contrast the performance of command architectures based upon a single-
model representation of motion with those based on multiple-model approaches
to the same problem. The latter start with the same raw measurement data sets
as the former but use more sophisticated situation assessment tools to facilitate
the simultaneous tasks of locating, classifying, and countering. Our purpose is to
highlight the advantages a hybrid problem formulation provides for the decision-
making command algorithms.

We explore several prototypical engagements. In each, we determine the quality
of a single-model algorithm and explore its sensitivities when the target is uncoop-
erative and given to abrupt changes in kinematic state. We contrast the estimator’s
actual performance with that predicted on the basis of the model. We then turn
to a hybrid algorithm that integrates an element of situation awareness with the
same kinematic data set found deficient in the single-model algorithm. Again the
sensitivities are presented. The comparison is done with a view to the requirements
of a command architecture and the effectiveness of indicated decisions.
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vi Preface

The book is intended for engineers who are tasked with developing command
algorithms for applications that must operate in highly variable and ambiguous
environments. The cases presented and the architectures considered will also serve
to illustrate the crucial dependence of effective command on model complexity,
model realism, and estimation quality for real-world plants and systems.

We have included, for the interested reader, detailed analytical developments
in an appendix. The appendix also provides an example of a step-by-step imple-
mentation of the hybrid estimation algorithm. To function in a wildly changing
environment, the hybrid algorithm is necessarily quite intricate. For the architectures
in this book, we have chosen to work in 2D (motion in the plane) and, to make
the engagements concrete, have referred to the target as a ground object. These
constraints can be easily relaxed.

The authors’ earlier book, Estimation Problems in Hybrid Systems (Cambridge,
1999), explored the mathematical structure of one form of hybrid estimation. This
book utilizes that approach in an assortment of different engagement applications.
The strict mathematical basis of tracking algorithms is often violated in applications.
This book explains and illustrates the engineering judgments that must be employed
when the developmental hypotheses are violated.

This work contrasts the performance of command architectures in several par-
ticular engagements. In each case, the algorithms are presented the same kinematic
data stream. The idiosyncratic engagements are chosen to illustrate the distinctive
sensitivities of alternative modeling approaches rather than to provide a detailed
performance comparison for a specific application.

The authors wish to thank Cubic Defense Applications for their support in
publishing this book and, in particular, for the graphics and editing support of their
technical publications department.

La Jolla, CA, USA David D. Sworder
San Diego, CA, USA John E. Boyd
February 2015
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Symbols and Notational Conventions

Precise description, the defining and comparison of models, estimators, and com-
mand architectures requires rather complex notation. The authors have attempted to
enhance accessibility of this book by following particular notational conventions.
This section briefly discusses these principles and spells out the usage or meaning
of many of the symbols used in the text. Some pronunciation hints are provided.

The work, and the definitions given here, assume familiarity with mathematical
analysis of probability and stochastic processes and with estimation of dynamical
systems. A search of the Internet may yield useful reviews and quick definitions
where the authors’ assumptions are optimistic.

Notational Conventions

• Font styles are used to distinguish related concepts. For example, x is used for
the kinematic state 4-vector of a target moving in the plane. The Greek letter chi,
�, is used to denote the location coordinate 2-vector of such a target.

• Math calligraphic style is used for collections, especially evolving time series
collections, of information such as filtrations.

• Diacritical and accent marks name a quantity derived from and related to a
variable. For example, “hat” of x, Ox, indicates the estimated value (mean value)
of the variable x.

xi
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Symbology

Operators

Ox A carat set above the symbol for a variable, e.g., Ox, is used to denote the estimated
or mean value of the variable, in this case x. [“x hat”]

Qx A tilde set above the symbol for a variable, e.g., Qx, is used to denote the error in
an estimate of the variable. In this case Qx D x � Ox. [“x tilde”]

_ The filtration generated by the union of two filtrations, e.g., Y Œk�_Z Œk�. [“vee”]

E Mathematical expectation.

j In an expression for a random variable, the vertical bar,j, denotes a conditional. For
example, P.x jy/ is the probability of x given the condition y. [read as “given”]

diag The main diagonal of a square matrix or, if D is an n-vector, diag.D/ is the n
by n diagonal matrix of D.

cov Covariance.
�D Defined. For example, cov.x/

�D EŒQxQx0� means cov.x/ is defined as the covariance
of the error in x.

HC The mapping by which the tracker’s kinematic state estimate is adjusted to
accommodate the regime for the next time step.

CM The mapping by which a kinematic state estimate is returned to the closest
point on the map. Putting the target position onto the nearest road.

Estimators

KF Kalman filter

EKF Extended Kalman filter. Any version of the Kalman optimal linear estimator
that is applied to a problem that does not meet the linearity, independence, and
Gaussian assumptions required by the Kalman filter. A common example in this
work arises from the conversion of range-bearing measurements of target position
to cartesian coordinates using as the conversion reference point the estimated target
position, violating the independence assumptions required by the KF.

GWE Gaussian Wavelet Estimator.
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Filtrations and Information Sets

F A filtration, an increasing sequence of � -algebras. [“F”]

Y The filtration generated by a time sequence of kinematic measurements, i.e.,
position and velocity. [“Y”]

Z The filtration generated by a time sequence of modal, or regime, observations.
[“Z”]

G The composite filtration of Y and Z : G
�D Y _ Z . [“G”]

OŒk� Filtration generated by the exogenous process of system modes or regimes.
[“O”]

M The set of all information contained in a map: road locations, nominal
local speeds, sensor obstructions, intersections, and the like. M contains all the
information known to the estimator but is not a filtration. [“M”]

Symbols

1 Vector of 1s.

I The identity matrix.

˛, ˛t Often used in a Gaussian sum as the normalized or unnormalized modal
distribution.

D Discernibility matrix: the inverse of a covariance matrix.

ei The ith unit vector.

Ei The ith unit matrix. If i � n, Ei D diag.ei/.

� A regime sequence of length L.

�C A regime sequence of length L C 1.

� The modal set. The set of possible regime sequences of length L.

�, �t, �Œk� Our convention is to use � to represent the mode or regime of a hybrid
process.

P Probability. Used for the probability distribution function of a random variable.

P
� The projected distribution. A Gaussian approximation to P matching P’s first

two moments. [“P tilde”]

Pxx Covariance of the kinematic state, x.

Rx Covariance of the sensor noise process.
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% The distance between two points. For example, the distance between an expected
position measurement and its actual value. Also used for Mahalanobis distance,
the distance of a point from a distribution, typically measured in units of standard
deviation. [“rho”]

S The regime index. The total number of regimes is S.

� The velocity components of a kinematic state.

xt The value at time t of the continuous-time kinematic state process x.

xŒk� The value at time kT of the discrete time kinematic state process x at t D kT.

� The location coordinates of a target in a 2D plane. Thus the target kinematic state

x is the “stack” of � and �: xt D
�
�t

�t

�
:



Chapter 1
A Model for Tracking and Classification

Abstract In modern system architectures, the command algorithm must do more
than merely locate a point equivalent of an agile target. The algorithm must place
the target, classify it, and, if need be, counter any threat. The command algorithm
designer must produce a causal transformation that not only tracks the motion but
also places an assurance window about the target for interrogation and perhaps
neutralization. When the target is uncooperative, this requires a sophisticated multi-
model approach. This chapter frames the problem and introduces the notation used
in what follows.

1.1 Introduction to the Problem

System integration requires an understanding of the system’s basic capabilities
along with a sense of the interrelationships of the system states and the influences
of the operational environment. The system architect begins with an analytical
representation of the internal and external excitations and infers the system response
based upon these processes. In a practical problem, the system is required to
accomplish some specific task with limits on available resources. For example, the
system must direct countermeasures from a limited inventory toward an unwelcome
object passing toward a secured location. In another example, the system must
locate and visually classify an object of indeterminate intent. In both examples, the
command system must locate a dynamic object and then make a decision based
on the quality of its location estimate. This book presents a study of command
architectures for estimation and resource allocation. In the context of several rather
unadorned engagements, we will discuss the sensitivities of command algorithms to
simplified environmental models.

Over at least the past century, model-based approaches have proven useful in
system integration. Such approaches broadly require:

• An analytical model of the system that includes all interfaces with the outside
world. This system model relates objective inputs and outputs to an internal group
of dynamic states that produce the distinctive system behaviors. In the target
tracking problems we consider in this book, these behaviors are primarily the
target kinematics. In this context, state has a specific meaning: a set of internal

© Springer International Publishing Switzerland 2016
D.D. Sworder, J.E. Boyd, Locating, Classifying and Countering Agile
Land Vehicles, DOI 10.1007/978-3-319-19431-8_1

1



2 1 A Model for Tracking and Classification

variables that allow the external valuables to be extrapolated forward in time. For
simplicity in architectural design, however, the model is a reductionist abstraction
that creates a notional future that may differ significantly from the actualized
future.

• An observational model that delineates the situational measurements available to
the command system. This model not only lists the elements of this data stream,
but it also provides the timing and the quality of the individual components. Some
architectures are able to avail themselves of more information than others. We
want to quantify the utility of auxiliary measurements to insure the cost of
acquiring them is reflected in their utility.

• A causal algorithm selected to map the observations into an estimate of the
relevant states of the system. This, along with a high quality measure of the
reliability of the estimate, permits rational command decisions to be made. Based
upon the algorithm, countermeasures can be deployed autonomously, action
agents can be enabled.

Command architectures require that we must first locate the object of inquiry
(the target). This part of the problem is frequently referred to as target tracking.
A vehicle is moving within some fixed motion space and we must find it. The
commander may want to classify the target as friendly or hostile, predict the future
position of the target, counter the target at an opportune time, etc. For example,
the target vehicle may be a car following a road path toward a designated area,
and the engineer seeks an algorithm that provides current position and classifies the
vehicle as friend or foe. In another example, the vehicle is an airplane moving toward
a protected area, and the engineer seeks an algorithm that classifies the airplane’s
intent and selects appropriate countermeasures. In both cases, we wish to determine
where the vehicle is, and where it is likely to go. In the target tracking problem,
the system is the moving vehicle, its model is a mathematical representation of how
its observable outputs (position, velocity, perhaps orientation or current maneuver
mode) derive from its inputs like operator control (if known), random influences,
and constraints (e.g., roads). We assume the system outputs are measured with
quantifiable accuracy and frequency. We require an implementable algorithm (the
estimator or tracker) that maps a measurement sequence into an estimate of the
current (or future) state of the vehicle.

For the tracking sub-architecture (the system estimator), recognition that not all
target classes move and maneuver in the same way can greatly improve tracker
accuracy and command effectiveness. There may be different kinds of targets
in view, and any one target might have multiple maneuver modes. Trucks and
motorcycles turn and accelerate differently. An aircraft may spend much of its time
in constant velocity flight, but in turns its motion is better modeled as constant
lateral acceleration. A tracker that can account for these differences is greatly
aided by a system model that acknowledges the different classes and modes. In
a comprehensive model of the engagement, the kinematic states of the system
are augmented by regime states that correspond to target type and motion mode.
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Fig. 1.1 A tank is moving on an irregular terrain

A carefully constructed tracker will take the regime process into account, and a
classifier, if available, can greatly aid estimation in this hybrid environment.

Tracking is enhanced by the fact that target motion occurs within a context. For
example, consider a tank moving in the open area as shown in Fig. 1.1. The basic
information set available to the tracker is a sequence of such images. From the
camera gimbal angle, the bearing to a point object is measured. But there is far more
information implicit in the image process. For example, we might classify the target
by comparing the measured image with a list of stored images of like type; e.g.,
Fig. 1.2. A fit metric quantifies a class distribution. Further processing could then
yield the longitudinal orientation of the vehicle. Range could be inferred from the
size of the image. All of these target properties flow from careful image processing.
From these rather ambiguous image interpretations, the command algorithm must
generate a region within which the target will be found and an action appropriate
to the encounter. Commonly, we split this problem into sub-problems: identify the
target type and intent, neutralize the target if appropriate.

Figure 1.1 is an optimistic case in which the target is contrasted with an
undifferentiated backdrop. The target bearing can be measured. Its range can be
estimated from its size. Direction can be estimated from its aspect angle. Of course,
all of these attributes are subject to uncertainty.

Even the existence of a target in the field of view may not be a sure thing.
Figure 1.3 shows a situational image in which there are no targets of interest.
But simple edge or contrast detection algorithms might well identify many targets.
Hence, in a complex engagement, the classifier must be aware of the possibility of
false detections.
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Fig. 1.2 A single template in an archive of possible targets

Fig. 1.3 An image in which there are no targets of interest

Figure 1.1 provides a clear visual image of the target. But other sensors are not
nearly as sharp. Figure 1.4 is a FLIR-image of a tank. The engine is the differentiated
sub-region of the figure A sequence of FLIR images is more difficult to interpret
because of the low contrast.

The kinds of measurements used in tracking and prediction are of various
sorts: range-only (GPS), range-bearing (radar), optical target image (TV), infrared
target image (FLIR), etc. The measurements may yield information on a spatially
distributed object (an optical silhouette), or they may be reduced to information
about a point-equivalent target (range to the center-of-reflection).
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Fig. 1.4 A FLIR image of a
tank. The engine in the main
region of contrast. At some
aspect angles, the engine is
obscured

Other relevant tracking information is not explicitly temporal: a topographic
map may display regions of possible motion along with prohibited regions. Or
a road profile could be accessible by the tracker with the intent of correlating
the measured motion with the profile [11]. Broadly, we will refer to such non-
temporal resources as an inventory of para-measurements. Para-measurements will
be integrated with the conventional kinematic measurements to produce the final
actions in an engagement.

To illustrate some of the algorithm development issues, consider ballistic missile
defense. A tracker/classifier identifies an approaching ballistic target (BT) within
a specified category list. Impact point prediction (IPP) is accomplished by extrap-
olating the estimated kinematic state of the BT forward to impact. Accurate IPP
requires rapid target classification, a high quality motion model, and good missile
state estimates during flight.

A sophisticated tracker will do more than simply provide IPP. It will compute
complementary performance metrics including bias (in this example, the mean
deviation of impact point from a missile aim-point), and the circular error probable
(CEP). The CEP is a circle of such radius that it captures 50 % of the impacts. The
use of CEP assumes that the actual impact points are distributed over a roughly
circular area. Thus, a comprehensive figure of merit for a BT tracker would involve
both the magnitude of the point-placement bias and the size of the dispersal region
(the CEP).

In the applications we will investigate, the uncertainty regions in tracking and
prediction are not well modeled as circular. The target may have preferred directions
as it is constrained by internal and external factors. For this reason, we will
generalize CEP, and talk about elliptical error probable (EEP). The EEP ellipse
is such that it captures the target with probability 50 %.
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In a command architecture, the estimator’s inferred accuracy influences the
actions that follow. We may deploy countermeasures to intercept the target with
a probability of, say, 90 %. A flawed calculation of EEP may lead either to a too
little cover area and a failed intercept or to a too big cover area with a waste of
limited resources.

For reasons developed above, the self-reported estimate of tracker accuracy,
whether CEP, EEP, error-covariance matrix, or other metric, assumes considerable
importance in the command architectures. Even in Kalman filters and their kin,
the update of target location estimate uses a filter gain (a multiplier of the difference
between the extrapolated observation and that measured) to adjust target placement.
The gain depends upon the measurement noise statistics and the uncertainty in the
filter’s extrapolated state. If the latter is overly large, the filter gain is large and the
location estimate volatile. If the latter is overly small, the filter gain is small and
the location estimate has not the power to follow rapid changes in direction.

In the engagements we will explore in the sequel, the system uncertainties cannot
be expressed in terms of the second order statistics of the tracking error. We will
encounter multi-mode location densities that will test our engineering judgements.
We will use the EEP as a broad confidence measure. But precise asset allocation
will require a more nuanced view of situational awareness.

Model-based trackers integrate the measurement aggregate (including para-
measurements) into an estimate of the state of a target using an engagement model
as an intermediary. The first part of the model, the motion model, describes the
temporal evolution of the target’s kinematic state.

Within the motion model, the engineer distinguishes the idiosyncrasies of
various target types: nominal speed and turn rate, location constraints, number
and coordination of vehicles, etc. For example, the target shown in Fig. 1.5 is
distinguishable from the tank in Fig. 1.1 both in its maneuverability and terrain
capability. A kinematic model for the former would not be appropriate for the latter,
and if used, estimator accuracy is likely to be degraded.

The second part of the model—the measurement model—describes the type
and quality of the measurements. In addition to the temporal measurements; e.g.,
GPS pseudo-range, this sub-model contains a description of the para-measurement
aggregate.

The tracker architecture depends on the cooperation, or lack thereof, of the target
itself. A cooperative vehicle will declare its type and intent to the tracker; e.g., an
aircraft in an air-traffic-control application is cooperative insofar as it gives the
tracker its identification number and flight plan. Type and intent information is
useful for reducing the uncertainties in the kinematic state estimate. For example,
the tracker is cued to look for particular flight patterns when intent is signaled.
The cooperative target is the most commonly studied because classificational
ambiguities are avoided in the engagement model.

Alternatively, tracking an uncooperative target is more difficult because impor-
tant global identifiers of the engagement are missing. If such qualities are required,
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Fig. 1.5 Shape analysis allows the tracker to identify the specific target type and match the
kinematic model with the mobility of the target

they must be inferred concurrently with state estimation. Indeed, some uncoopera-
tive targets make location prediction difficult by deliberately masking relevant iden-
tifiers; e.g., the hostile target masks intent. In this circumstance, the tracker/classifier
must predict position by inferring intent from the motion patterns of the target.

In this book, we will look at the problem of tracking and classifying an
agile ground target. We will see that the cooperative–uncooperative dichotomy
oversimplifies many engagements; e.g., a cooperative target may wish to signal
intent to the tracker but the data link is not adequate for the task. We will, therefore,
consider tracking algorithms in a mixed environment in which the classificational
attributes of the target may be only partially known. The objective is to present high
quality, implementable (recursive) estimators of both the kinematic state and also
such category variables as are relevant. The form that the estimator takes depends
upon the sensor architecture used and the para-measurements available.

The performance of the proposed algorithms will usually be illustrated with an
example of planar motion. A 2D motion space is rich enough to display important
issues in tracker synthesis without becoming so complex as to become tedious.
A space of higher dimension has the same broad character as 2D motion, but
the trackers become more complex in appearance. Unfortunately, even in 2D, the
notation required to describe the tracking environment is more convoluted than is
typical in estimation theory. The next sections introduce some conventions used in
the sequel and explain their need.



8 1 A Model for Tracking and Classification

1.2 A Hybrid State Model of a Maneuvering Target

The concept of the target state conveys the notion of predictability. For example, the
target state at time t0 is the information required to uniquely determine the output
at t > t0 given the forward excitation [2]. The extrapolation requires an analytical
model that relates the relevant processes. We will call this the kinematic model.

In this book we will consider vehicles that move in an n-dimensional Euclidean
state space with kinematic state vector xt. The state has position components, �t, and
velocity components, �t along with such other dynamic variables as are appropriate.
If the target is moving in 2D, �t is two-dimensional as is the velocity. Necessarily,
n is at least 4. But n will be larger than 4 when the target model moves in a higher
dimensional space or when the target has other relevant states like acceleration,
actuator dynamics, and so on. The totality of these vector components is called the
global kinematic state of the target. For convenience, we will stack position over
velocity at the top of xt.

Extrapolation is based upon a model of the dynamic properties of the target. But
such properties depend upon the type of target we are following. A large truck has
not the agility of a motorcycle even though both may traverse the same road course.
Either could be described by a simple Newtonian state model, but the coefficients in
the equations would be different. So when we develop a command architecture,
we must first settle on the class of targets we can expect to see in a particular
engagement.

To impose a structure on the exercises that follow, we will need a notational
convention flexible enough to delineate uncertainty in both situational and kinematic
conditions. The former we call the regime state; the latter, the kinematic state.

1.2.1 The Modal State

1.2.1.1 The Operating Regime

We will have more to say about xt in the next section. But for now we observe that
sophisticated engagement models acknowledge that the target vehicle (or vehicles)
will confront different macro-conditions as the engagement evolves. We use a
discrete variable, the regime state, �t, to point to the current situational status of
the engagement [19].

For example, suppose the engagement involves tracking a moving vehicle. The
target could be an M1 Abrams tank or it could be a motorcycle. The tracker must
distinguish between two macro-conditions: regime #1 (�t D 1) if the target is an M1
Abrams tank; regime #2 (�t D 2) if the target is a motorcycle. (We will frequently
use a right arrow to indicate such mappings, and later, transitions and implications.
Here, �t D 1 7! the target is a tank.) The agility and directional restrictions on
these two vehicle classes are very different, and they must be distinguished in the
kinematic model.
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In contrast to the kinematic state vector, the regime index �t is a pointer. We call
�t the regime state (though it may not have the predictive properties we want from
a state variable), and assume it has a finite range. As an example, there might be
a list of possible targets, each distinguished by its own kinematic model. �t points
to the particular kind of target in view. More generally, for any kind of regime, we
can list the S alternatives. Let S denote the sequence of the first S natural numbers:
S D f1; 2; : : : ; Sg. Then the ith regime is identified by �t D i 2 S. The regime state
is identified with a number in a counting system with radix S. In this framework, S
is called the regime alphabet, and it represents an ordered list of possible regimes. In
the (tank, motorcycle) scenario, we make the identification: �t D 1 means the target
is a tank; �t D 2 means the target is a motorcycle. The kinematic extrapolation
equation utilizes �t D i where i is chosen appropriately.

The regime structure can be described in another way. Let ei be the ith canonical
unit vector in R

S; e.g., e1 D .1; 0; : : : ; 0/0. We can associate the ith unit vector
with the regime, the target is of type i: ei 7! target is type i. The regime being e1

means the target is a tank. For expositional simplicity, we will use the vector and
numerical designations interchangeably and without comment: �t D e1 and �t D 1

are alternative labels for the statement that the target is a tank. The modal primitive
is classificational and has none of the common analog properties of the conventional
kinematic state; e.g., e1 C e2 is not a regime because it is not a unit vector. So the
regime space is not a vector space in the usual mathematical sense.

When the regime variable is target type, the interpretation of �t is unambiguous;
the target is a tank or it isn’t. In many applications, however, the separation of
local- and macro-conditions is not so clear cut. Suppose the target is a motorcycle
constrained to follow a rectangular road grid aligned to the four cardinal directions.
With the target type known, the regime space covers travel north (N or �tD1), travel
south (S or �tD2), travel east (E or �tD3), travel west (W or �tD4) with perhaps
stop appended. So if �t D e1, the north-specific motion model should be used with
strong longitudinal accelerations and weak lateral accelerations. In this example,
�t is a pointer to a velocity within four directional bins. But north is an analog
variable in that north motion includes a range of velocities that are only close to true
north. The ambiguity concerning direction of motion within the �t D e1 bin must
be transferred to the kinematic state which contains velocity as a component. In this
case, we see that the vagary of direction is masked in our simplified definition of the
regime.

The regime can point to composite events. For example, fe1; : : : ; e4g may
correspond to the tank moving on the (north, south, east, west) grid; e.g., e1 implies
a tank is headed north. Suppose fe5; : : : ; e8g corresponds to a motorcycle moving
on the same motion space. In this case, the regime space with two target types and
four directions is partitioned into eight bins.

If the regime is target type, �t is unchanging. In other applications the macro-
conditions change during the engagement; e.g., the northbound motorcycle may
come to a road junction and turn east. The range of the regime state is still S, but �t

may vary in time: �t D e5 transitions to �t D e7 at the turn. We will suppose that the
regime process, f�tg, is constant with isolated discontinuities. When f�tg changes
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from the jth regime state to the ith state, ��t D �t � �t� D ei � ej. We will say that
�t experienced a transition event at time t. The regime process is a right-continuous
temporal process with range space S.

The global state of the target evolves on some time interval Œ0; T�. But in the work
that follows, the tracker/classifier will be designed on the basis of a time-discrete
approximation to the state process. Let T be a sample interval. The time-continuous
regime process is reduced to a sequence, f�Œk� D �kT I k 2 f0; 1; 2; : : :gg. If the time
interval of the engagement is not specified, the complete regime process becomes a
string of arbitrary length—or a radix S number with an arbitrary number of digits.

We will call f�Œk�g the regime event process. If �Œk C 1� ¤ �Œk�, there has been
a regime transition in the interval .kT; .k C 1/T�; if �Œk C 1� D �Œk�, the regime
continues unchanged—at least at the sample times.

There are some important modeling ambiguities that arise when we approximate
a time-continuous process with a time-discrete representation. The discontinuities
in the regime process can occur at any time in Œ0; T�. When we place these
discontinuities at the sample times, we ignore the influence on system of the precise
time of a change in regime. We also ignore multiple transition events within an
interval; e.g., �Œk� D �Œk C 1� does not imply �t � �Œk� 2 .kT; .k C 1/T�. In what
follows, the consequences of these temporal uncertainties is implicit, but T will be
assumed to be small enough that we can aggregate all of these effects within the
basket of exogenous uncertainties.

An issue of more subtlety is the choice of the principal modal condition over a
sample interval. If there is a regime transition in the interval, when did it occur?
Using our discrete time process model and notation, the time-continuous process
f.xt; �t/g is mapped to f.xŒk�; �Œk�/g. The vector .xŒk�; �Œk�/ appears as an initial
condition in a kinematic extrapolation formula for the forward step. However, the
actual mapping xŒk� 7! xŒk C 1� is an explicit function of the regime (or regimes) of
operation over t 2 ŒkT; .kC1/T/. The initial value �Œk� does not capture the portion
of the kth-time interval during which the regime is actually �Œk�. Within this interval,
perhaps �t D �Œk� for a long time. Or perhaps �t D �Œk C 1� is dominant—or, in
the case of multiple modal transitions in a single interval, even a regime different
from either. The temporal partition precludes a nuanced description of the intra-
interval variation in the regime. With this is mind, we will suppose that multiple
intra-sample transitions occur infrequently, and further, that the initial regime will
serve as a proxy over the whole of the interval at least as concerning the kinematic
extrapolation to xŒk C 1�. Of course, this adds to our basket of uncertainty.

1.2.1.2 Regime Sequences and Languages

Extrapolation in the command architecture depends upon both where you are and
where you have been—the future depends upon the past and not just the present.
Our regime model requires concepts and notation for the past–present–future of
the regime state. Focusing on the kth intra-sample interval, the regime proxy is
�kT D �Œk� D ei. The kinematic extrapolation uses the ith primitive over the full
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interval, ŒkT; .k C 1/T/. Label the principal regime in the preceding interval ej, and
the successor regime by ep. Then Œep; ei; ej�, also represented as pij, is a regime string
centered on ŒkT; .k C 1/T/, representing a segment of state history in reverse time.
We can view pij as a word with alphabet S, or a three-digit number with radix S.
In this context, we will use “word,” “number,” and “string” interchangeably. If the
target is a motorcycle moving on the usual road grid, the event 144 points to the
motorcycle making a north turn from the west at t D .k C 1/T:

Our notation differs from that used to describe languages in automata [2]. In that
convention, the state sequence is listed from left to right with the oldest event to the
left; e.g., in the above illustration, the motorcycle motion would be labeled 441 or
(west, west, turn north). We wish to emphasize the current and future regimes, and
we will do so by placing them at the left of the regime sequence. Our strings are
retrograde when contrasted with the usual automata sequence labels.

We will have frequent occasion to consider these sequences of regimes. Let us
define three sets of interest in this application. Let L be an integer memory length
in the application. Let �L (which we shall usually abbreviate as �) be the set of all
S-radix, L-digit numbers with elements �. Define �C = �.LC1/ to be the set of all
S-radix, .L C 1/-digit numbers with elements �C, and define �� D �L�1 to be the
set of all S-radix, .L�1/-digit numbers with elements �� 2 ��. For example if L=3,
� D 144 2 � and �C D 1144 2 �C (west, west, turn north, north), reading right to
left as is our convention. In this case �� D 44 2 ��. Here � is a word in �, �� is a
word in ��, and �C is a word in �C.

As we model the evolving system behavior, we will refocus on the next sample
time, t D .K C 1/T , and we will consider a sequence of regimes of length
L C 1 moving back from t D .k C 2/T�. We can indicate this string by �C D
Œep; ei; ej; : : : ; er; el� D pij : : : rl 2 �C where �C is the set of all words of length
L C 1 from the alphabet S. Again, �C is a word in �C.

The augmented regime strings can be designated with numbers or unit vector
arrays. If �C is an S � .L C 1/ array of unit vectors, it can also be represented as an
.L C 1/-digit, S-radix number, or a word of length .L C 1/, or a string of regimes
of length .L C 1/. The set �C is the collection of all such regime strings however
they are indicated. For example, if L D 4, then �C D Œe1; e1; e1; e1; e3� D .11113/

identifies the event sequence Œ�Œk C 1� D e1; �Œk� D e1; �Œk � 1� D e1; �Œk � 2� D
e1; �Œk � 3� D e3�. In the illustration in which the regimes are direction events,
�C D Œe1; e1; e1; e1; e3� describes a north-bound motion coming from the east: the
vehicle was E-bound four samples ago but then turned and continued north. In
this illustration, �C contains all possible directional sequences over an interval of
length 5T .

To limit the complexity of the command algorithms we shall consider, we limit
the memory length L. At each sample time, before proceeding, we will reduce the
augmented regime sequence by “forgetting” the oldest regime. To illustrate, suppose
that at the current time the vehicle is moving north after a eastbound interval. With
an L D 4 memory, � D Œe1; e1; e1; e3�: Now suppose the vehicle continues north:
�C D Œe1; e1; e1; e1; e3�. As we move forward in time, our event memory must
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truncate �C. We do so by dropping the oldest (rightmost) regime from �C to obtain
the updated L D 4 regime history, Œe1; e1; e1; e1� 7! �. In this example, command
algorithm is no longer aware of the previous east motion.

1.2.1.3 Regime Dynamics

Change in system mode or regime is unpredictable. All of the random processes1

that follow are defined on a probability space .˝;F ;P/ and time interval t 2 Œ0; T�.
These random processes are adapted to a common right-continuous filtration
fFtI 0 � t � Tg. Specifically, the regime process, f�tg, is constant in the main,
but isolated events cause abrupt changes.

To first order, the regime state will be thought to be exogenous—though much
more will be said of this later. Specifically, we will suppose f�tg is a right
continuous, piecewise constant, Ft-adapted Markov process taking on values in the
set of canonical unit vectors in R

S (�t 2 fe1; : : : ; eSg).
We will represent the incremental behavior of the regime state with an S � S-

matrix Q: if i ¤ p; P.�tCdt D ep j �t D ei/ D Qip dt with Qii D �Pp¤i Qip > 0.
It is known that the mean sojourn time in state �t D ei is �Q�1

ii , and if �t D ei, the
probability that the next modal transition will be ei 7! ep is �Qip=Qii. Consequently,
Q can be evaluated from observations of the regime process.

The regime state process is described by the stochastic equation

d�t D Q0�tdt C dmt (1.1)

with initial condition �0. The second term in (1.1) is a purely discontinuous
Ft-martingale increment: Efdmt jFtg D 0 [4].

For now, we will suppose that the transition rates of the regime process are
constant. This restriction will be considerably modified in the context of specific
applications. But more of that later. The model of the time-discrete regime state
process derives from (1.1). If we sample f�tg every T seconds, we have

�Œk C 1� D ˘�Œk� C mŒk C 1�; (1.2)

where F Œk� D FkT , fmŒk�g is a time-discrete, F Œk�-martingale difference sequence,
(EfmŒk C 1� j F Œk�g D 0), and ˘pi D P.�Œk C 1� D ep j �Œk� D ei/ is the modal
transition matrix. With a fixed sample interval T , ˘ D exp.Q0T/. The time-discrete
regime model may allow events prohibited in (1.1). For example, a transition from
e1 to e2 may be prohibited—a sudden U-turn from north-to-south is not allowed

1Readers seeking an introduction to stochastic processes and terms like martingale, adapted, and
filtration will find an abundance of material in the published literature. Introductions and overviews
abound on the worldwide web. See, for example, Wikipedia articles on stochastic processes and
probability space.
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and Q12 D 0. However a transition from e1 to e2 through e4 may be permissible.
Since a north-west-south segment is allowed over a time interval of length T , the
north-south transition possibility will appear in ˘ , .˘21 > 0/, albeit with small
probability if T is small.

Equation (1.2) gives the time-discrete regime dynamics. The evolution of a modal
state � 2 � derives from this. The regime sequence, f�Œk�g, is a random process with
initial value �Œ0�. The f�Œk�g process is adapted to the fF Œk�g-filtration. Clearly, the
realization of � is adapted to F Œk�, and �C is adapted to F Œk C 1� though neither
gives the full regime history. To refer to this latter, we will use �˚ 2 F Œk�. Then � is
a prefix of �˚—the most recent part of the modal string.

We have used the notation �Œk� D ei to express the fact that the current regime
is the ith. Let us extend this notation to say that �Œk� D e� if the L-prefix of
�˚ is �. Or more broadly, �� points to the L-string �: ��Œk� D 1 if � is true and
��Œk� D 0 otherwise. Indeed, �string D 1 if the string condition is satisfied and zero
otherwise. Or we might even say �Œk� D estring. This notation is useful in sums; e.g.,P

��2�.i;��/
.M�/��is a function of i 2 S.

1.2.2 Kinematic State

1.2.2.1 Fundamental Models

At first order, we have supposed that the modal process is exogenous. But the
kinematic state, fXtg, is tightly linked to the modal state. The range space of the
kinematic state is Rn. The evolution of the kinematic state depends upon the operat-
ing regime, past regime intervals, endogenous commands, and an agglomeration of
exogenous disturbances.

At some inclusive level, target motion would naturally be represented with a
non-linear stochastic differential equation. During intervals in which the motion
mode is constant, �t � ei, the evolution of the kinematic state equation would be
delineated by

dXt D f.Xt; ut; ei/ dt C g.Xt; ei/ dwt; (1.3)

where Xt is this global kinematic state, futg is an endogenous command, and
the random process fwtg represents the unstructured and unpredictable exogenous
influences on the system.

The kinematic model is an intermediary for synthesizing an implementable
estimator. Except in special cases, (1.3) is far too complex to be used directly. Such
equations are difficult to use to create an implementable tracker/classifier.

In some applications, there is an (n � S) array of stasis conditions, one for each
regime: Xt � XS

:i when �t D ei. The local base-state is the deviation of the global
state from the current reference, xt D Xt �XS�t, and the ith local model provides the
forward dynamics. If the global kinematic state process is continuous and if ei 7! ep
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at time t, the reference level changes from XS
:i to XS

:p, and xt D xt� C XS
:i � XS

:p. In

the time-discrete case, xŒk C 1�� 7! xŒk C 1�� C XS
:i � XS

:p. Thus, there are several
simultaneous values of the deviation variables for the same global kinematic state.

On the other hand, if the common reference state is the origin in the state space,
the global state and the local state are identical. In algorithm development, we will
suppose that fXtg evolves in a regime-constrained mode of operation in which the
nonlinear kinematic model can be replaced locally by a linear dynamic equation.
Each such localization is indexed by a regime state (or more broadly, the mode). The
global state, Xt, is replaced by the pair .xt; �t/ where xt is deviation from the nominal
kinematic state associated with index �t. The deviation variable, xt, is called the base
or kinematic state and carries the same labels as did Xt; e.g., the first component of
xt is horizontal position referenced to a nominal condition associated with �t, the
second component is vertical position, and so on. This will be the common situation
in what follows.

To illustrate this, consider a target moving in the (east, north)-plane. The motion
equation in the X-direction is

d2

dt2
X D aX; (1.4)

where f.aX/tg combines the endogenous acceleration with exogenous disturbances
in the X-direction. Motion in the Y-direction is described similarly.

The planar model integrates both motions:

d

dt

�
�

�

�
D
�
02�2 I2�2

02�2 02�2
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�

�

�
C
�
02�2

I2�2

� �
aX

aY

�
; (1.5)

where �t is position with respect to the .X; Y/ coordinate system and �t D .VX; VY/0
the velocity. Equation (1.5) is a global description of motion in the plane.

1.2.2.2 Constant Velocity and Constant Turn Models: Continuous
and Discrete

In many tracking applications, the endogenous acceleration is integrated into the
reference path. The residual acceleration is a wide-band random process which
creates the ensemble of possible deviations about the nominal. Commonly, this
residual is represented with a vector white-noise process.

Complicated motions are achieved by selecting the endogenous acceleration
in keeping with some objective; e.g., evasion [14]. The endogenous accelerations
create primal motion templates, and a composite motion is generated by joining
these templates at random times. For example, suppose an agile target is capable of
a coordinated turn with angular frequency !iI i 2 S. An endogenous acceleration
can be chosen to execute this motion. Indeed, the acceleration is a linear function of



1.2 A Hybrid State Model of a Maneuvering Target 15

the kinematic state, and (1.5) can be adjusted to yield a linear differential equation
that delineates a constant turn (CT) motion:

d

dt
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3
775 : (1.6)

When the turn rate is zero, we have a constant velocity (CV) motion.
A jinking motion is created by mixing periods of turning with nearly CV

flight. For example, the target can intersperse intervals in which the endogenous
acceleration is zero with intervals in which the turn rate is ˙!1. In this instance,
the kinematic states in the local turn-specific models are all referenced to the same
point in motion space, � D 0I � D 0. But the different motion regimes have different
kinematic descriptions.

The process model given in (1.6) describes a point target moving without
exogenous forcing. The target is actually an extended object. Further, the vehicle
is subject to various exogenous accelerations that will be viewed as wide-band in
the context of the tracking problem. A more useful motion model would be

d
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; (1.7)

where PwX is Gaussian white noise and similarly PwY . Equation (1.7) aggregates all of
the disturbances and modeling errors into the white-noise process f Pwg.

In what follows, when operating in the ith regime, we will use the local model

dxt D Aixt dt Cp
Pw

i dwt; (1.8)

where fwtg is an Ft-unit Brownian motion (an Ft-martingale) independent of other
exogenous excitations.

In each regime, there is a specific local model what manifests the idiosyncrasies
of the kinematic state in that operating condition. We will assume that the state
labels are the same for each regime; e.g., the first components of xt are �. But the
deviation variables are referenced to the common nominal; i.e., the kinematic state
is centered at the origin in the state space. In this way, the single nonlinear motion
model in (1.3) is replaced with the family of S localizations in (1.8).

Equation (1.8) is a plausible approximation when regime state is constant.
However, the kinematic state may be discontinuous at regime transition times:
��t ¤ 0 might imply �xt ¤ 0. If the reference point for a kinematic state changes,
the perturbation state will experience a corresponding increment. For example,
when a target moves from CV-motion to a coordinated turn, the position and velocity


