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Preface

The present volume presents research carried out within the research group FOR 797
“Analysis and computation of microstructure in finite plasticity” (MICROPLAST),
financed by the German Science Foundation (DFG). The research group was es-
tablished in 2007 and came to an end in 2015. During this period more that thirty
researchers contributed actively to this endeavor, organized in eight sub-projects.

The aim of MICROPLAST was to understand and model dislocation based mi-
crostructure formation and evolution in materials, and develop tools to compute it
effectively. This is important because plasticity determines a number of industrial
and natural phenomena, ranging from the deformation of the earth crust to form-
ing of metals. Most plastic processes are strongly influenced by the formation and
evolution of dislocation patterns and other plastic microstructures. Classical plas-
ticity models were able to make useful predictions without accounting for the mi-
crostructure, and focusing on a phenomenological understanding of the macroscopic
material response. These models have, however, strong limitations, concerning in
particular the transferability of the results, the applicability to large deformations,
to small samples, and the treatment of ageing and fatigue.

The foundation of MICROPLAST was inspired both by new mathematical and
modeling developments and by new experimental techniques. Around the turn of
the millennium novel variational concepts became available allowing to formulate
finite plasticity and associated microstructure formation within a rigorous and pow-
erful mathematical framework. The systematic variational formulation of the evo-
lution of internal variables via dissipation potentials and dissipation distances made
it possible to apply the concepts of relaxation theory and Γ -convergence, that were
originally developed for static problems, to the evolution of inelastic materials.

At the same time experimental techniques had advanced to a stage where it be-
came possible to perform in situ measurements of dislocation microstructures and
their evolution, thus giving valuable information for the development of the cor-
responding models. For this reason, MICROPLAST was established as an interdis-
ciplinary cooperation of scientists from the fields of mathematics, mechanics and
materials sciences, working closely together on a common goal.



VI Preface

This volume contains reports on the various achievements reached within
MICROPLAST. These range from experimental evidence on the mechanisms of
microstructure formation to micromechanical and multiscale models of these pro-
cesses. They include derivations of relaxed envelopes of non-convex energies using
novel developments of variational calculus, as well as full mathematical analysis of
the models established, and the development of suitable and fast numerical schemes.

It is our hope that we succeeded in giving an insight into a new developing field,
and that the readers will find the material in this volume interesting and beneficial
for their research.

The contributions in this volume have undergone an internal peer-review. We are
convinced that this process led to significant improvements in the papers contained
in this book.

Finally, we would like to thank the German Science Foundation for their generous
support and the always very pleasant and professional cooperation.

April 2015 Sergio Conti
Klaus Hackl
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Chapter 1
Numerical Algorithms for the Simulation
of Finite Plasticity with Microstructures

Carsten Carstensen, Dietmar Gallistl, and Boris Krämer

Abstract. This article reports on recent developments in the analysis of finite ele-
ment methods for nonlinear PDEs with enforced microstructures. The first part stud-
ies the convergence of an adaptive finite element scheme for the two-well problem
in elasticity. The analysis is based on the relaxation of the classical model energy
by its quasiconvex envelope. The second part aims at the computation of guaran-
teed lower energy bounds for the two-well problem with nonconforming finite ele-
ment methods that involve a stabilization for the discrete linear Green strain tensor.
The third part of the paper investigates an adaptive discontinuous Galerkin method
for a degenerate convex problem from topology optimization and establishes some
equivalence to nonconforming finite element schemes.

1.1 Introduction

Mathematical models in the framework of nonlinear elasticity for phase transforma-
tions in solids [BJ87, CK88, BJ92] and for elastoplastic deformations [CHM02]
lead to variational problems for which the existence of minimizers cannot be
obtained by the direct method in the calculus of variations, for further applications
and references see [CDK11, CDK13, CDK15] and the literature quoted therein.

Carsten Carstensen
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2 C. Carstensen, D. Gallistl, and B. Krämer

The infimization of the energy enforces oscillations of the infimizing sequence
on finer and finer scales called microstructures and converge only weakly but not
strongly. Typically the weak limit is not a minimizer of the original minimiza-
tion problem and has to be replaced by a generalized minimizer which involves
the gradient Young measure associated to the sequence of deformation gradients
[KP91, MŠ99].

The numerical simulation of problems of this kind is an onging challenging task
and a direct minimization of the nonconvex energy in a finite element space leads
to strongly mesh-dependent effects [Lus96, Chi00, Car01]. An alternative approach
is based on a minimization of the relaxed variational problem [Dac08] obtained
by replacing the energy density W by its quasiconvex relaxation W qc, that is, one
minimizes

Iqc(v) :=
ˆ
Ω

W qc(ε(v))dx−
ˆ
Ω

f · vdx among all v in A := uD +H1
0 (Ω ;R2) .

(1.1)
Here the function uD ∈H1(Ω ;R2) defines the Dirichlet boundary conditions for the
problem and the linear Green strain ε(v) is the symmetric part of the deformation
gradient Du. Since the energy density in the relaxed minimization problem satis-
fies the necessary convexity conditions in the vector-valued calculus of variations,
problem (1.1) allows for a minimizer in A . Moreover, any minimizer u character-
izes a macroscopic deformation of the original problem in the sense that there exists
a sequence (u j) j∈N which infimizes the energy of the original variational problem
and converges weakly to u. If this convergence is also strong in H1(Ω ;R2), then
the minimum of the energy is attained and u is a classical minimizer of the original
problem.

This approach is extremely appealing, if an explicit formula for W qc is known.
In this case one can construct for a given deformation gradient F , a corresponding
gradient Young measure ν with center of mass F which realizes the relaxed energy,
W qc(F) := 〈ν,W 〉 :=

´
R2×2 W (F)dν(F), and provides at the same time a represen-

tation for the stress variable σ(F) = DW qc(F) := 〈ν,DW 〉 :=
´
R2×2 DW (F)dν(F);

see [BKK00] and [CM02] for a discussion of the regularity of the stress variable. In
this way one obtains the associated stresses which are of fundamental importance
in engineering applications. A successful example of this approach in the numerical
analysis of a relaxed problem can be found in [CP97, CP01].

A posteriori error estimation for relaxed nonconvex problems or degenerate con-
vex problems typically encounters the reliability-efficiency gap [CJ03]. This means
that reliable a posteriori error estimators converge with a worse rate compared to the
true error and, hence, is not efficient: The efficiency index even diverges towards ∞.

The motivation of effective numerical simulations of microstructures in finite
plasticity arose in [CHM02], where it is shown that a typical time-step in finite
plasticity leads to a non convex minimization problem and that shear bands may
be seen as microstructures in the corresponding minimization process. The relax-
ation models in the post-modern calculus of variations [Dac08] appears as the only
feasible approach for a computer simulation in [Car01] and this provoked massive
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research on relaxation models of single- and multiple-slip systems and their time
evolution in this research group. The numerical treatment needs an extra justifica-
tion and, even if some convergence analysis arises naturally in [CP97] for a class
of convexified model problems, there remain severe open questions in the adaptive
mesh-refining [Car08] and in efficient and reliable error control [CJ03]. The math-
ematical understanding of the performance of the related discretization schemes
could not follow the lines of an implicit function theorem [CD04] because of the
too restrictive smallness and uniform polyconvexity assumptions. The latter at least
seemingly contradicts the concept of a related hull in finite plasticity. The research
of this project therefore started at the understanding of the convexified model prob-
lems of [CM02, CP97, Car08] and their generalization to polyconvex problems with
standard [CP97, Car08] and nonstandard discretization [CGR12] and a focus on
adaptive mesh-refining with a complete a priori and posterior error analysis.

In the first part of this paper, we outline the convergence analysis for the re-
laxation of the classical model energy in a two-dimensional setting for which the
relaxation was obtained in [Koh91, LC88, Pip91]; see (1.6) below for the precise
formula. From the point of view of numerical analysis, one striking advantage of the
relaxed minimization problem is that the macroscopic deformation u can, in prin-
ciple, be computed with a strongly convergent sequence of minimizers in suitable
finite element spaces. The reliability-efficiency gap does not prevent the conver-
gence proof of the associated stresses for a large class of variational problems with
energy densities that fail to be strictly convex [Car08].

The second part of this paper is devoted to the computation of guaranteed lower
energy bounds for the two-well problem of [Koh91, LC88, Pip91]. The nonconform-
ing finite element method serves as the main tool for deriving those lower bounds.

In the third part of the paper, we investigate a discontinuous Galerkin method for
a degenerate convex problem from topology optimization. The reliability-efficiency
gap motivated stabilized finite element methods (FEMs) [BC10, BC14] for degen-
erate convex minimization problems. The recent developments of [CL15] could im-
prove the reliability-efficiency gap with duality methods and nonconforming FEMs.
The discontinuous Galerkin method here appears as a natural choice of a stabilized
discontinuous method and this paper succeeds in establishing an equivalence to a
nonconforming finite element method. The conclusion in Section 1.6 connects the
research in this project with the achievements of this research group and contains
various open questions for future research.

1.2 Preliminaries and Notation

Let Ω ⊆ R2 be a bounded polygonal Lipschitz domain with outer unit normal ν
along the boundary ∂Ω . Let T be a regular triangulation of Ω into triangles in the
sense of Ciarlet, with edges F and vertices N . The interior (resp. boundary) edges
are denoted by F (Ω) (resp. F (∂Ω)). Analogously let N (Ω) denote the interior
vertices and N (∂Ω) denote the vertices on the boundary. The set of edges of a
triangle T ∈ T reads F (T ), the set of vertices of T is denoted by N (T ). For any
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T ∈ T let hT = diam(T ) and define the piecewise constant mesh-size function hT
by hT |T := hT . The length of an edge F ∈F is denoted by hF . For any interior edge
F ∈F (Ω), there exist two adjacent triangles T+ and T− such that F = ∂T+∩∂T−.
Let νF = (νF(1);νF (2)) denote the fixed normal vector of F that points from T+
to T−. For F ∈F (∂Ω), let νF denote the outward unit normal vector of Ω . The
tangential vector of an edge F is denoted by τF := (−νF(2);νF(1)). Given any
(possibly vector-valued) function v, define the jump and the average of v of across
F ∈F (Ω) by

[v]F := v|T+ − v|T− and 〈v〉F := (v|T+ + v|T−)/2 along F.

For a boundary edge F ∈F (∂Ω)∩F (T+), define [v]F := v|F − uD|F and 〈v〉F :=
(v|F + uD|F)/2 for the prescribed Dirichlet data uD.

For any T ∈T , the space of polynomial functions of degree at most k is denoted
by Pk(T ). The space of piecewise polynomials reads

Pk(T ) = {v ∈ L2(Ω) | ∀T ∈ T ,v|T ∈ Pk(T )}.

The piecewise action of the derivative D is denoted by DNC. The symmetric part
of the gradient reads ε := symD and its piecewise action reads εNC. The L2 projection
onto piecewise constants with respect to T is denoted by Π0.

Standard notation on Lebesgue and Sobolev spaces applies throughout this pa-
per; H−1(Ω) denotes the dual spaces of H1

0 (Ω). The space of smooth functions
with compact support in Ω is denoted by D(Ω). The L2 norm over the domain Ω
is abbreviated as ‖ · ‖ := ‖ · ‖L2(Ω). The L2 inner product reads (·, ·)L2(Ω). The inte-

gral mean is denoted by
ffl

. The space of real 2× 2 matrices reads M ≡ R2×2. The
symmetric part of a matrix A ∈M reads symA. The space of symmetric 2× 2 ma-
trices reads S := symM. The dot denotes the product of two one-dimensional lists
of the same length while the colon denotes the Euclidean product of matrices, e.g.,
a ·b = a
b ∈R for a,b ∈R2 and A : B = ∑2

j,k=1 A jkB jk for 2×2 matrices A, B. The
measure |·| is context-sensitive and refers to the number of elements of some finite
set or the length of an edge or the area of some domain and not just the modulus of
a real number or the Euclidean length of a vector.

1.3 Convergent Adaptive Finite Element Method for the
Two-Well Problem in Elasticity

In this section we outline the convergence analysis for the relaxation of the classical
model energy

W (E) = min
{1

2
〈C(E−A1),E−A1〉+w1 ,

1
2
〈C(E−A2),E−A2〉+w2

}
(1.2)

in a two-dimensional setting for which the relaxation was obtained in [Koh91, LC88,
Pip91]. see (1.6) below for the precise formula with given symmetric matrices A1
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and A2 called the wells. It turns out that the quasiconvex relaxation is in fact the
convex relaxation if and only if the two preferred strains A1 and A2 are compatible,
see [Koh91, Lemma 4.1] for necessary and sufficient conditions for compatibility.
The case of compatible wells was analyzed in [Car08] and therefore we focus on the
incompatible case in this paper. Moreover, we assume that the matrix A1−A2 is not
proportional to the identity matrix since in this case the uniqueness of minimizers
may be lost [Ser96, Remark 2.2]. Hence we assume that the eigenvalues η1 and η2

of the matrix A1−A2 satisfy
0 < η1 < η2 . (1.3)

We refer to the problem as nonconvex since for incompatible wells the relaxation is
not convex but quasiconvex.

1.3.1 Review of the Model Problem

In this subsection, we recall the model two-well problem following the discussion in
[CD14]. The starting point is the nonconvex energy density W for a two-dimensional
model in linear elasticity with linear kinematics for a phase transforming material
with two preferred elastic strains A1 and A2 ∈ S and elasticity tensor C for which

W (E) := min{W1(E),W2(E)} for all E ∈ S (1.4)

with suitable constants wj ∈ R and

Wj(E) :=
1
2
〈C(E−A j),E−A j〉+wj for j = 1,2. (1.5)

The focus lies on the classical case of an isotropic Hooke’s law with bulk modulus
κ > 0 and shear modulus μ > 0, i.e.,

CE := κ(trE)12×2 + 2μdevE for any E ∈ symM≡ S.

Since A1 and A2 are symmetric matrices, we may relabel the matrices in such a
way that the eigenvalues η1 and η2 of A1−A2 satisfy η1 ≥ |η2| and, after a suitable
change of coordinates, we may suppose that the eigenvectors are parallel to the coor-
dinate axes, i.e., A1−A2 = diag(η1,η2). It is well-established (see, e.g., Lemma 4.1
in [Koh91]) that A1 and A2 are incompatible as linear elastic strains if and only if
η2 > 0. The relaxed energy density W qc was computed by Kohn [Koh91], Lurie and
Cherkaev [LC88], and Pipkin [Pip91]. As mentioned, e.g., in [Koh91], Section 4,
the relaxation is piecewise quadratic and globally C1, and in the notation of this
reference given by the expression below. Define ν := (κ − μ)/μ as well as (for
j = 1,2)
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γ j := (κ− μ)tr(A1−A2)+ 2μη j and g :=
γ2

1

κ+ μ
=

γ2
1

μ(μ+ 2)
.

Let

P1 = {E ∈ S |W1(E)−W2(E)+ g/2≤ 0},
P2 = {E ∈ S |W1(E)−W2(E)− g/2≥ 0},
Prel = {E ∈ S | |W1(E)−W2(E)| ≤ g/2}.

The quasiconvex envelope of W [Koh91, Pip91, LC88] reads

W qc(E) =

⎧⎪⎨⎪⎩
W1(E) if E ∈P1,
W2(E) if E ∈P2,

W2(E)−
1

2g
(W2(E)−W1(E)+ g/2)2 if E ∈Prel

(1.6)

for any E ∈ S. This gives rise to the macroscopic energy

Iqc(v) :=
ˆ
Ω

W qc(ε(v))dx−
ˆ
Ω

f · vdx. (1.7)

Let
γ := μ(ν̃− (ν̃+ 2)γ2/γ1) for ν̃ := (κ− μ)/μ . (1.8)

The translated energy utilizes the shifted energy density

Φ(X) =W qc(symX)− γ detX for any X ∈M (1.9)

and amounts to

E(v) :=
ˆ
Ω
Φ(Dv)dx−

ˆ
Ω

f · vdx for any v ∈A .

It turns out [CD14] that this convex functional has (possibly non-unique) minimizers
in u ∈A which lead to a unique pseudostress τ := DΦ(Du).

1.3.2 Adaptive Algorithm

This section describes an algorithm for adaptive mesh-refining. The following para-
graphs are (in parts) a repetition of material published in [CD14].

Given an initial shape-regular triangulation T0, this scheme generates a sequence
of triangulations T� and corresponding finite element spaces V (�) which are shape-
regular depending on the initial configuration. In particular, all constants are inde-
pendent of �.
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1.3.2.1 INPUT

The input required by the numerical scheme is a shape-regular triangulation T0 of
the bounded domain Ω ⊂ R2, the associated finite element space V (0) = V (T0)
of continuous functions which are on all elements affine polynomials with values in
R2, and a fixed parameterΘ with 0<Θ < 1 for the marking strategy. For simplicity,
we assume that the Dirichlet condition uD is contained in V (0).

1.3.2.2 SOLVE and the Discrete Minimization Problems

Given the triangulation T�, � ∈ N0, with the corresponding discrete spaces V (�) =

V (T�) and V (�)
0 = V0(T�) on the level �, compute the discrete solution u� ∈ uD +

V (�)
0 ≡A� as the unique minimizer of the energy functional Iqc onA�. For simplicity,

we suppose that the discrete solution is computed exactly. Then, the discrete stress
is given by

σ� = DW qc(ε(u�)) ∈ L2(T�;S).

Note that DW qc is piecewise affine and globally continuous and hence globally Lips-
chitz continuous. Since ε(u�)∈P0(T�;S) is piecewise constant, so is σ� ∈ L2(T�;S).

1.3.2.3 ESTIMATE

Suppose that T+ and T− are two distinct triangles in T� with a common edge F =
∂T+∩∂T− ∈F�(Ω) of length |F |. The unit normal vector

νF = νT+ |F =−νT−|F along F

is defined up to the orientation which we fix as the orientation of the outer normal
νT+ of T+ along F . Given the discrete stress σ� = DW qc(ε(u�)) ∈ L2(T�;S) of the
previous subsection, the jump of σ� across the edge is defined as

[σ�]FνF = σ�|T+νT+ +σ�|T−νT− =
(
σ�|T+ −σ�|T−

)
νF along F.

Let F (T ) denote the set of the three edges of a triangle T ∈ T� and Fint(T ) =
F (T )\F�(∂Ω) the subset of interior edges. To each triangle T ∈ T� with area |T |
we associate the error estimator contribution η�(T ) given by

η2
� (T ) = |T |‖ f + divσ�‖2

L2(T) + |T |
1/2 ∑

F∈Fint (T)

‖[σ�]FνF‖2
L2(F).

The sum
η2
� = ∑

T∈T�

η2
� (T )

is indeed an error estimator for the accompanying pseudo-stress approximations
from the translated energy minimization problem, see [CD14]. However, the upper
bound η� of the pseudo-stress error is not sharp, the reliable error estimator η� is not
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efficient. This dramatic difficulty in the a posteriori error control is called reliability-
efficiency gap in [CJ03] and is caused by the degenerate convexity typically encoun-
tered in relaxed variational problems in the effective modelling of microstructures.

1.3.2.4 MARK and REFINE

Suppose that all element contributions (η2
� (T ) : T ∈ T�) defined in the previous

subsection are known on the current level � with triangulation T�. Given the input
parameterΘ ∈ (0,1) select a subset M� of T� (of minimal cardinality) with

Θη2
� ≤ ∑

T∈M�

η2
� (T ) =: η2

� (M�). (1.10)

This selection condition is also called bulk criterion or Dörfler marking [Dör96,
MNS02] and is easily arranged with some greedy algorithm.

Any marked element is bisected according to the rules in Figure 1.1 and further
mesh refinements may be necessary (e.g., via newest vertex bisection) such that
T�+1 is a refinement of T� with M� ⊂T� \T�+1.

Theorem 1.3.2 does not need the refinement with five bisections to obtain the
interior node property and may focus on green-blue-red or green-blue refinement
strategies.
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Fig. 1.1 Possible refinements of a triangle (up to rotations)

1.3.2.5 OUTPUT and Convergence Result

For a given triangulation T� the adaptive scheme generates the triangulation at the
next level T�+1 by a successive completion of the subroutines

SOLVE → ESTIMATE → MARK → REFINE (1.11)
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Based on the input triangulation T0, this scheme defines a sequence of meshes
T0,T1,T2, . . . and associated discrete subspaces

V (0)
� V (1)

� · · · � V (�)
� V (�+1)

� · · · � V = H1(Ω ;R2) (1.12)

with discrete minimizers u� ∈ uD +V (�)
0 , � ∈ N0. The main properties of this se-

quence of solutions are formulated in Theorem 1.3.1 and Theorem 1.3.2.

1.3.3 Convergence for the Deformation Gradient

The first main result of [CD14] shows strong convergence for three out of four
components in the deformation gradient. The fact that the last component cannot be
controlled is related to the degenerate convexity of the relaxed energy.

Theorem 1.3.1. Let u ∈ A be a minimizer of Iqc, and let uh be a minimizer of Iqc

in a finite element space uD +Vh,0 with uD ∈Vh and Courant finite element method
with respect to some shape-regular triangulation Th. Then there exist constants C1

and C2 which depend on the triangulation only through the shape-regularity such
that, in a suitable coordinate system with A1−A2 = diag(η1,η2),

‖∂1(u− uh)1‖H−1(Ω) + ∑
j,k=1,2;( j,k) �=(1,1)

‖∂k(u− uh) j‖

≤C1 min
vh∈uD+h,0

(
Iqc(vh)− Iqc(u)

)
.

If u ∈ H2(Ω ;R2) then

min
vh∈uD+Vh,0

(
Iqc(vh)− Iqc(u)

)
≤C2h‖D2u‖.

The second main result of [CD14] guarantees the convergence of the adaptive
mesh-refining process of 1.3.2.

Theorem 1.3.2. Suppose that the assumptions in Theorem 1.3.1 hold. Then the se-

quence (u�)�∈N with u� ∈ uD +V (�)
0 , � ∈ N0, computed by the adaptive scheme con-

verges with respect to the weak topology of H1(Ω ;R2) to the unique minimizer u
of the variational integral Iqc in the class of admissible functions A . Moreover, the
energies Iqc(u�) converge, i.e.,

lim
�→∞

Iqc(u�) = Iqc(u) = min
v∈uD+H1

0 (Ω ;R2)
Iqc(v) ,

and, in a suitable coordinate system with A1−A2 = diag(η1,η2), all components of
the deformation gradient except the (1,1)-component converge strongly L2(Ω), i.e.,
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‖∂1(u− u�)1‖H−1(Ω) + ∑
j,k=1,2;( j,k) �=(1,1)

‖∂k(u− u�) j‖→ 0 as �→ ∞.

One key ingredient in the proof is the observation [Koh91] that the relaxation of
the energy (1.4) can be written as the sum of a convex and a polyaffine function
which in the case at hand is a multiple of the determinant. This special structure
has, e.g., been used in [Ser96, Ser98] to obtain uniqueness results and regularity of
phase boundaries while our approach is in the spirit of the translation method which
has been widely used in homogenization theory to separate nonconvex terms with
special structure, usually polyaffine functions, from others terms. The key lemma of
[CD14] reads as follows.

Lemma 1.3.3 (convexity control). There exists some matrix D with the maxi-
mal eigenvalue ρ(D) such that the constant λ1 := max{1/(4(γ2

1 + γ2
2 )), 4ρ(D)}

satisfies

λ1|DΦ(A)−DΦ(B)|2 ≤Φ(A)−Φ(B)−DΦ(B) : (A−B) for all A,B ∈M.

Proof. The proof in [CD14, Theorem 4.1] leads to the existence of the constant λ1.
The matrix D and the new explicit expression of λ1 are derived in the appendix of
this paper. ��

1.4 Guaranteed Lower Energy Bounds for the Two-Well
Problem

The conforming finite element method from the previous section leads to upper
energy bounds. This section discusses the computation of guaranteed lower energy
bounds with nonconforming finite elements.

1.4.1 Nonconforming FEM and Discrete Energy Functional

The nonconforming P1 finite element space (also named after Couzeix-Raviart) is
defined by

CR1(T ) := {v ∈ P1(T ) | v is continuous in the interior edges’ midpoints}.

The space of nonconforming finite element functions that vanish in the boundary
edges’ midpoints is denoted by

CR1
0(T ) := {v ∈ CR1(T ) | v vanishes in the boundary edges’ midpoints}.

Set
CR1(T ;R2) := [CR1(T )]2 and CR1

0(T ;R2) := [CR1
0(T )]2.



1 Numerical Simulation of Microstructure 11

For a triangle T , the Crouzeix-Raviart interpolation ICR : H1(T )→ P1(T ) acts on
v ∈ H1(T ) through

ICRv(mid(F)) =

 
F

vds for all F ∈F (T )

and enjoys the integral mean property of the gradient

∇ICRv =
 

T
∇vdx. (1.13)

The following approximation property of ICR with the constantκ :=
√

1/48+ j−2
1,1 =

0.298234942888 is proven in [CG14].

Proposition 1.4.1 (Thm. 4 of [CG14]). For any v ∈ H1(T ) on a triangle T the
Crouzeix-Raviart interpolation operator satisfies

‖v− ICRv‖L2(T ) ≤ κhT‖∇(v− ICRv)‖L2(T ). ��

It is well-known that the classical nonconforming P1 FEM may be unstable for
problems involving the linearized Green strain tensor due to the lack of a discrete
Korn inequality. Indeed, the nonconforming FEM allows for configurations with
piecewise (infinitesimal) rigid body motions vh ∈ CR1

0(T ) such that DNCvh is a
nonzero skew-symmetric matrix field. The technique from [HL03] employs, with
some positive parameter α , the stabilization term

α ∑
F∈F

 
F
|[vh]F |2 ds.

The following discrete Korn inequality is proven in [HL03].

Proposition 1.4.2 (Proposition 2.2 of [HL03]). For any α > 0 there exists a posi-
tive constant C(α) which only depends on the shape-regularity in T such that any
vh ∈ CR1(T ) satisfies

C(α)−1‖DNCvh‖2 ≤ ‖εNC(vh)‖2 +α ∑
F∈F

 
F
|[vh]F |2 ds. ��

The discrete convex energy functional reads (for all vh ∈ CR1(T ;R2))

ENC(vh) :=
ˆ
Ω
Φ(DNCvh)dx+α ∑

F∈F

 
F
|[vh]F |2 dx−

ˆ
Ω

f · vh ds.

The discrete set of admissible functions reads

ACR := ICRuD +CR1
0(T ;R2)

and gives rise to the discrete problem
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uh ∈ argminvh∈ANC
ENC(vh).

Note that super-linear growth of ENC (and thus well-posedness of the minimization
problem) follows with Lemma 1.4.3 below provided α > 0 is sufficiently large (de-
pendent on γ). This restriction on α is required because the term in (1.9) involves
the determinant of quadratic growth.

1.4.2 Lower Energy Bounds

Let Cell = 2min{μ ,κ} denote the ellipticity constant that satisfies

Cell|E|2 ≤ |E|2C := E : CE for any E ∈ S. (1.14)

Lemma 1.4.3 (growth condition). The constants C1 := 2/Cell = max{1/μ ,1/κ}
and C2 :=C1 (max{|A1|C, |A2|C}−min{w1,w2− g/2}) satisfy, for any E ∈ S, that

|E|2 ≤C1W qc(E)+C2.

Proof. Let E ∈ S. In case that E ∈Prel, the definition of Prel yields |W1(E)−
W2(E)| ≤ g/2 and, hence,

1
2g

(W2(E)−W1(E)+ g/2)2 ≤ g/2. (1.15)

For any j = 1,2, the Young inequality reads

1
2
|E|2C−|A j|2C ≤ |E−A j|2C. (1.16)

The combination of (1.15)–(1.16) with the definition of W qc from (1.6) results in

1
2
|E|2C−max{|A1|C, |A2|C}+min{w1,w2− g/2}≤W qc(E).

The ellipticity (1.14) and elementary algebra conclude the proof. ��

Lemma 1.4.4 (Korn-type inequality). Any v ∈A satisfies

‖Dv‖2 ≤ 4‖ε(v)‖2 + 5‖DuD‖2. (1.17)

Proof. The Korn inequality

‖Dv‖2 ≤ 2‖ε(v)‖2 for any v ∈ H1
0 (Ω ;R2)

is an elementary consequence of the integration by parts formula. For a general
function v∈ A, the split v= v0+vD into v0 ∈H1

0 (Ω ;R2) and the harmonic extension
vD ∈A of the Dirichlet data uD|∂Ω leads to
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‖Dv‖2 ≤ 2‖ε(v0)‖2 + ‖DvD‖2.

The Young inequality 4ab≤ a2 + 4b2 for any (a,b) ∈ R
2 implies

0≤ ‖ε(v0)‖2 + 4‖ε(vD)‖2 + 4(ε(v0),ε(vD))L2(Ω).

Therefore,

1
2
‖ε(v0)‖2 ≤ ‖ε(v0)‖2 + 2‖ε(vD)‖2 + 2(ε(v0),ε(vD))L2(Ω) = ‖ε(v)‖2 + ‖ε(vD)‖2.

Hence, the elementary estimate ‖ε(vD)‖ ≤ ‖D(vD)‖ leads to

‖Dv‖2 ≤ 4‖ε(v)‖2 + 5‖DvD‖2.

Since the harmonic extension vD minimizes the H1 seminorm subject to the bound-
ary conditions uD|∂Ω , any other extension uD ∈ A provides the upper bound
‖DvD‖≤ ‖DuD‖. This proves (1.17). ��

Lemma 1.4.5. With the Friedrichs constant CF , the constants C1, C2 from Lemma
1.4.3, and γ from (1.8), any v ∈A satisfies

‖Dv‖2 ≤ 8C1E(v)+ 8γC1

ˆ
Ω

detDvdx+ 8|Ω |C2 + 16C2
1C2

F‖ f‖2 + 5‖uD‖2.

Proof. The Korn-type estimate (1.17), Lemma 1.4.3 and the definition of E imply

‖ε(v)‖2 ≤ C1

ˆ
Ω

W qc(ε(v))dx+
ˆ
Ω

C2 dx

= C1E(v)+C1

ˆ
Ω

f · vdx+C1γ
ˆ
Ω

detDudx+
ˆ
Ω

C2 dx.

The Friedrichs inequality with constant CF and the Young inequality prove

C1

ˆ
Ω

f · vdx ≤ C1‖ f‖‖v‖

≤ C1CF‖ f‖‖Dv‖ ≤ 2C2
1C2

F‖ f‖2 +
1
8
‖Dv‖2.

The combination of the foregoing displayed formulas proves the result. ��

Lemma 1.4.6. It holds

λ1‖DΦ(Du)−DΦ(DNCICRu)‖2 +ENC(uh)

≤ E(u)+κ‖hT f‖ ‖(1−Π0)Du‖+α ∑
F∈F

 
F
|[ICRu]F |2 dx.
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Proof. The discrete problem shows that

ENC(uh) = min
vh∈ACR

ENC(DNCvh)

≤ ENC(ICRu) (1.18)

= ∑
T∈T

ˆ
T
Φ(DNCICRu)dx+α ∑

F∈F

 
F
|[ICRu]F |2 dx−

ˆ
Ω

f · ICRudx.

Lemma 1.3.3 for A := Du and B := ICRu and an integration over T ∈ T lead to

λ1‖DΦ(Du)−DΦ(DICRu)‖2
L2(T ) +

ˆ
T
Φ(DICRu)dx

≤
ˆ

T
Φ(Du)dx+

ˆ
T

DΦ(DICRu) : D(u− ICRu)dx.

Since DΦ(DICRu) is constant on T , the projection property (1.13) shows that the
last term on the right-hand side vanishes. This, (1.18), and Proposition 1.4.1 lead to

λ1‖DΦ(Du)−DΦ(DNCICRu)‖2 +ENC(uh)

≤
ˆ
Ω
Φ(DNCICRu)dx+α ∑

F∈F

 
F
|[ICRu]F |2 dx−

ˆ
Ω

f · ICRudx

= E(u)+α ∑
F∈F

 
F
|[ICRu]F |2 dx+

ˆ
Ω

f · (u− ICRu)dx

≤ E(u)+κ‖hT f‖ ‖(1−Π0)Du‖+α ∑
F∈F

 
F
|[ICRu]F |2 dx. ��

Let Csr := maxT∈T h2
T/|T | be the shape-regularity constant.

Theorem 1.4.7 (guaranteed lower energy bound). Any v ∈A and

C( f ,v) :=

(
8C1E(v)+ 8γC1

ˆ
Ω

detDvdx+ 8|Ω |C2 + 16C2
1C2

F‖ f‖2 + 5‖uD‖2
)1/2

satisfy
ENC(uh)≤ E(u)+C( f ,v)(κ ‖hT f‖+ 3αCsr/π2).

Proof. For any v ∈ A , the term
´
Ω detDvdx does not depend on the particular

choice of v but only depends on the boundary data uD. Hence, the combination
of Lemma 1.4.5–1.4.6 leads to

ENC(uh)≤ E(u)+κ‖hT f‖C( f ,v)+α ∑
F∈F

 
F
|[ICRu]F |2 ds.
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For any edge F ∈F , the Poincaré inequality along F and the the trace inequality
[DE12, eqn (1.42)] reveal for the edge patch ωF that

 
F
|[ICRu]F |2 dx≤ π−2hF‖∂ [ICRu]F/∂ s‖2

L2(F) ≤ π−2Csr‖DNCICRu‖2
L2(ωF )

.

The sum over all edges in F and Lemma 1.4.5 conclude the proof. ��

Remark 1.4.8. The efficiency of the lower bound is topic of ongoing research. In
particular, the requirement of a sufficiently large stabilization parameter α leads to
an additive shift in the lower bound. The numerical tests below will investigate the
dependence for a model situation.

1.4.3 Guaranteed Error Control for the Pseudo-stress

This section presents an application to guaranteed a posteriori error estimates for
the pseudo-stress. Let τ := DΦ(Du) and τh := DΦ(DNCuh) denote the exact and
discrete pseudo-stress.

The computable a posteriori error estimator for ‖τ − τh‖ utilizes the conform-
ing companion operator J3 : CR1(T )→ P3(T )∩H1(Ω) from [CS15, Lemma 3.3]
which satisfies, for any vh ∈ CR1(T ) and any T ∈T , that

ˆ
T
(vh− J3vh)dx = 0 and

ˆ
T

DNC(vh− J3vh)dx = 0.

Proposition 1.4.9 (guaranteed a posteriori error estimate). The exact minimizer
u∈A of E and its pseudo-stress τ := DΦ(Du) and the discrete minimizer uh of ENC

with discrete pseudo-stress τh := DΦ(DNCuh) satisfy

λ1‖τ− τh‖2 ≤ 2

(
ENC(uh)−E(u)+

ˆ
Ω

f · (uh− J3uh)dx

)
+

1
λ1
‖DNC(uh− J3uh)‖2.

Proof. The convexity control from Lemma 1.3.3 for A := DNCuh and B := Du and
an integration over Ω lead to

λ1‖τ− τh‖2 ≤
ˆ
Ω
Φ(DNCuh)dx−

ˆ
Ω
Φ(Du)dx−

ˆ
Ω
τ : DNC(uh− u)dx

= ENC(uh)−E(u)+
ˆ
Ω

f · (uh− u)dx−
ˆ
Ω
τ : DNC(uh− u)dx.

The projection property of the companion operator J3 and the discrete Euler-
Lagrange equation reveal
ˆ
Ω
τ : DNC(uh− u)dx =

ˆ
Ω
(1−Π0)τ : DNC(uh− J3uh)dx+

ˆ
Ω

f · (J3uh− u)dx.


