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Preface

This book can be considered as the result of a ten-year cooperation (starting in
2000) of the four authors within the so-called Stochastic Optimization Working
Group (SOWG), a research team of the CERMICS (Applied Mathematics
Laboratory) of Ecole Nationale des Ponts et Chaussées (ENPC-ParisTech). Among
the topics addressed in this working group, a major concern was to devise
numerical methods to effectively solve stochastic optimization problems, particu-
larly in a dynamic context, as this was the context of most real-life applications also
tackled by the group.

The background of the four authors is system theory and control but the 2000s
have seen the emergence of the Stochastic Programming stream, a stochastic
expansion of Mathematical Programming, so the group was interested in bridging
the gap between these two communities.

Of course, several Ph.D. students took part in the activities of this group, and
among them were Kengy Barty, Laetitia Andrieu, Babacar Seck, Cyrille Strugarek,
Anes Dallagi, Pierre Girardeau. Their contributions are gratefully acknowledged.
We hope this book can help future students to get familiar with the field.

The book comprises five parts and two appendices. The first part provides an
introduction to the main issues discussed later in the book, plus a chapter on the
stochastic gradient algorithm which addresses the so-called open-loop optimization
problems in which on-line information is absent. Part Two introduces the theo-
retical tools and notions needed to mathematically formalize and handle the topic of
information which plays a major part in stochastic dynamic problems. It also dis-
cusses optimality conditions for such problems, such as the dynamic programming
equation, and a variational approach which will lead to numerical methods in the
next part. Part Three is precisely about discretization and numerical approaches. A
simple benchmark illustrates the contribution of the particle method proposed in
Chap. 7. Convergence issues of all those techniques are discussed in Part Four. Part
Five is devoted to more advanced topics that are more or less out of reach of the
numerical methods previously discussed, namely multi-agent problems and the
presence of the so-called dual effect. Appendix A recalls some basic facts on
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Optimization, while Appendix B provides a brief description of essential tools of
Probability theory.

Although the four authors share the responsibility of the whole book contents,
the reader may be interested in knowing who was the primary writer of each
chapter. Here is the list:

Pierre Carpentier: Chapter 2, Appendix A;

Jean-Philippe Chancelier: Chapter 8, Appendix B;

Guy Cohen: Notation (in preliminary pages), Chapters 1, 5, 6, 7;
Michel De Lara: Chapters 3, 4, 9, 10.
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Notation

Here we explain some notation and typographical conventions that we have used
throughout this book. We conclude with a short list of symbols, abbreviations and
acronyms to which the reader may refer. In this discussion about notation, we raise
a tricky point that stems from some divergence between conventional mathematical
concepts on the one hand, and a long-standing practice and terminology used in
Probability Theory on the other. Most of the time, this divergence causes no
problem in understanding what is meant, but we point out a few circumstances
when some confusion may arise.

Some General Principles

This book is about stochastic optimization. As such, random variables are among
the main mathematical notions involved. Unless specific reasons prevent us from
doing so, we denote random variables by capital bold letters, e.g. U. As taught in
any elementary course in Probability Theory (see Appendix B in this book), random
variables are indeed functions or mappings from a set generally called £2 to some
other set, say [0fs

The space in which random variables, and more generally functions, take their
values are denoted with the BLACKBOARD font. However, as is expected, symbols
such as R and N have a special meaning, namely the set of real and integer numbers,
respectively (they are included in the list below with additional variations such as R).
Also, PP denotes a probability measure and E denotes mathematical expectation (or
conditional mathematical expectation). Functional spaces are generally denoted with
the calligraphic font; for example, a mapping U : £2 — U belongs to the set .

' Additional ingredients are also required (o-fields over £2 and U, a measurability requirement
about the mapping, probability measure I, etc.) but it is not our purpose to dwell on that here.
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The script font is generally used to denote o-fields (e.g. F). We now refer the reader
to the list of symbols and abbreviations at the end of this introduction.

A Tricky Point

Here we make a few remarks about the effects of calling (random) “variables”
objects which are indeed “functions”, and the consequences of this abuse of lan-
guage on notation. This abuse of language is customary in the world of Probability
Theory but may cause substantial confusion for less aware readers. We discuss this
issue by referring to several puzzling situations that arise in this book.

For example, consider the expression E(f(U)). With no hesitation, one under-
stands that f is a mapping from U to some other set (say R to fix ideas), that f(U)
must be interpreted as a new random variable, namely fo U : £2 — R, and that its
expectation—that is, the integral of this function over §2 against the probability
measure P—is then evaluated. Hence, while in f(U), U seems to play the part of a
“variable”, namely an argument of function f according to its position within
parentheses, it must indeed be remembered that this is a mapping to be composed
with f in order to produce a new mapping of the argument w € §2 whose integral is
then to be evaluated. Thus, there is no real difficulty.

The evaluation of the considered expression would change if U was replaced by
another random variable V. Because of the dependence of this expression upon this
random variable, one would naturally consider the result as a function of the
dummy argument U. If g denotes this function, we may write

¢(U) = E(f(U) = /g foU(w)P(dw) ,

and we may even replace the first sign = by := (which means that the left-hand side
is defined by the expression on the right-hand side). Observe that the parts played
by U in g(U) and in f(U) are quite different, despite the similarity in notation.
Strictly speaking, g(U) is a correct mathematical expression since g is indeed a
function of the random variable U, whereas f(U) is an ambiguous shortcut that
experienced readers are able to interpret. However, a problem may arise when both
expressions appear on both sides of an equality as in the first of the two equalities
above. Notice that if the intermediate expression in these two equalities is cancelled
and only the two extreme members of the equalities are kept, no question arises
since, now, everywhere U is interpreted as a function (and g is generally called a
“functional” as a function of a function).

Therefore, the correct notation would be g(U), whereas f(U) is a shortcut that
requires some appropriate interpretation, but in order to conform with a long-
standing tradition in Probability Theory, we sometimes change g(U) to g([U]) in
order to emphasize the fact that the “argument” U must rigorously be interpreted as
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the “global function” object and not only be used for the collection of its values
U(w) as in f(U).

Let us give other instances when such a distinction is necessary. In this book,
stochastic optimization problems of the following generic form are considered:

min E((U, W)) ,

in which

e U is a random variable taking values in U and plays the part of the decision
variable;

e W is another random variable taking values in W and plays the part of the
“noise”;

e j is a real-valued mapping defined over U x W playing the part of the cost
function.

A decision U is thus a random variable possibly subject to various constraints
that are described in this book, and whose performance is evaluated by computing
the expectation of the cost function which also involves an exogenous disturbance
W. The expression behind the min operator in the above formulation must be
interpreted as we did for f(U) in the previous discussion. Namely, a real-valued
random variable j(U(-), W(-)) must be considered and its expectation must be
evaluated. On the contrary, the minimization operation involves the random vari-
able U “as a whole”; in particular, as we shall see later in this book, some con-
straints (so-called informational or measurability constraints) may prevent
independent consideration of the individual values U(w) and force us to globally
consider the whole function U in this minimization operation. Thus, according to
our notational convention, we should instead write the previous stochastic opti-
mization problem as

n[ﬂl}]nE(i(U, w)).

Nevertheless, for the sake of simplicity, we keep the former notation since the
particular position of the decision in the min should prevent any ambiguity.

Finally, a third instance when this notation [X] proves useful is the following.
The reader may refer to Appendix B to find definitions of conditional expectations
E(X|Y)) where X and Y are two random variables with values in X and Y,
respectively. This conditional expectation is also a random variable with values in
X. Sometimes, we are also led to manipulate the function ¥ : Y — X which,
whenever the event {¥ = y} (that is the subset Y~'(y) = {w|¥Y(w) = y}) has a
positive probability for a given value y € Y, may be interpreted as the “expectation
of X conditioned by the event {¥Y = y}”. It is explained in the appendix that ¥ is a
function of y € Y, that is, of the values taken by the random variable Y, but that this
function also depends on the “whole” function Y (and of course also on the function
X as does the expectation E(X) itself). To emphasize this fact, we could write
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Yy (y) instead of merely ¥(y). In the former expression, both the values y taken by

Y and the “global” random variable Y appear to play a part.
We will occasionally refer back to this discussion in the rest of this book.

Symbols and Abbreviations

N Set of integer (natural) numbers
R Set of real numbers

R RU{—o0} U {400}

E Mathematical expectation

P Probability measure

Var Variance (of a random variable)
Is Identity function over set A

X, Characteristic function of subset A
14 Indicator function of subset A

|- Absolute value
(-,-)  Scalar product
|

[l Norm

\Y Gradient

Vi Partial gradient (with respect to x)
0 Subdifferential

0-/0x Partial derivative (with respect to x)

Proj, Projection onto subset A

U<V Random variable U measurable with respect to V (same as V > U; used
also with functions, o-fields, partitions, etc.)

xT Transposition of vector x

dom Domain (of a function)

coA Convex hull of subset A

CoA Closed convex hull of subset A
D Convergence in distribution

P Convergence in probability

as Almost sure convergence

Ls.c. Lower semicontinuous

u.s.c. Upper semicontinuous

ii.d. Independently identically distributed
iff If and only if

w.r.t. With respect to

s.t. Subject to

a.s. Almost surely (or almost sure)

P-a.s.  Almost surely (or almost sure) w.r.t. to the probability measure [P
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Acronyms

ADP Approximate Dynamic Programming
APP Auxiliary Problem Principle

DIS Dynamic Information Structure

DP Dynamic Programming

LBG Linearly Bounded Gradient

LQG Linear-Quadratic-Gaussian

MASIOS Multi-Agent Stochastic Input—Output System
MQE Mean Quadratic Error

NOLDE  No Open-Loop Dual Effect

SA Stochastic Approximation

SAA Sample Average Approximation

SDDP Stochastic Dual Dynamic Programming
SIS Static Information Structure

SoC Stochastic Optimal Control

SP Stochastic Programming
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Chapter 1
Issues and Problems in Decision Making
Under Uncertainty

1.1 Introduction

The future cannot be predicted exactly, but one may learn from past observations. Past
decisions can also improve future predictability. This is the context in which decisions
are generally made. Herein, we discuss some mathematical issues pertaining to this
topic.

1.1.1 Decision Making as Constrained Optimization Problems

Making decisions in a rational way is a problem which can be mathematically formu-
lated as an optimization problem. Generally, several conflicting goals must be taken
into account simultaneously. A choice must be made about which goals are formu-
lated as constraints to be satisfied at a certain “level” (apart from constraints which
are imposed by physical limitations), and which goals are reflected by (and aggre-
gated within) a cost function.! Duality theory for constrained optimization problems
provides a way to analyze, afterwards, the sensitivity of the best achievable cost as
a function of constraint levels which were fixed a priori, and, possibly, to tune those
levels to achieve a better trade-off between conflicting goals.

Problems thatinvolve systems evolving in time enter the realm of Optimal Control.
In a deterministic setting, Optimal Control has a long history dating back to the fifties
with famous names such as Pontryagin [124] and Bellman [15]. The former, with
his Maximum Principle, was more in the line of a variational approach of such
problems, whereas the latter introduced the Dynamic Programming (DP) technique
in connection with the state space approach.

IThroughout this book, without loss of generality, optimization problems are formulated as mini-
mization problems, hence the objective function to be minimized is called a cost.

© Springer International Publishing Switzerland 2015 3
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1.1.2 Facing Uncertainty

In general, when making decisions, one is faced with uncertainties which affect
the cost function and, generally, the constraints. There are several possible attitudes
associated with uncertainties, and consequently, several possible mathematical for-
mulations of decision making problems under uncertainty. Let us mention two main
possibilities.

Worst Case Design

The assumption here is that uncertainties lie in particular bounded subsets and, that
one must consider the worst situation to be faced and try to make it as good as
possible. In more mathematical terms, and considering the cost only for the time
being (see hereafter for constraints), since one would like to minimize that cost, one
must minimize the maximal possible value Nature can give to that cost by playing
with uncertainties within the assumed bounded subsets. That is, a min-max (game
like) problem is formulated and a guaranteed performance can be evaluated (as long
as assumptions on uncertainties hold true).

The treatment of constraints in such an approach should normally follow the same
lines of thought (one must fight against the worst possible uncertainty outcomes from
the point of view of constraint satisfaction). Sometimes the terminology of robust
decision making (or control) is used for approaches along those lines [16].

Stochastic Programming or Stochastic Control

Here, uncertainties are viewed as random variables following a priori probability
laws. We shall call them “primitive” random variables as opposed to other “sec-
ondary” random variables involved in the problem and which are derived from the
primitive ones by applying functions such as dynamic equations, feedback laws (see
hereafter), etc. Then the cost to be minimized is the mathematical expectation of
some performance index depending on those random variables and on decisions.

For this mathematical expectation to make sense, the decisions must also become
random variables defined on the same underlying probability space. A trivial case is
when those decisions are indeed deterministic: we shall call them open-loop decisions
or “controls” later on. But they may also be true random variables because they are
produced by applying functions to either primitive or secondary random variables.
Here, we enter the domain of feedback or closed-loop control which plays a prominent
part in decision making under uncertainty.

Let us now say a few words about constraint satisfaction. Constraints may be
imposed as almost sure (a.s.) constraints. This is generally the case of equality or
inequality constraints expressing physical laws or limitations. Other constraints may
be formulated with mathematical expectations, although it is generally difficult to
give a sound practical meaning to this approach. If a.s. requirements may sometimes
be either unfeasible or not economically viable, one may appeal to “constraints in
probability”: the satisfaction of those constraints is required only “sufficiently often”,
that is, with a certain prescribed probability. We do not pursue this discussion here,
as we mostly consider a.s. constraints in this book.
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In the title of this section, we have used the words “Stochastic Programming”
and “Stochastic Control”. Stochastic Control, or rather Stochastic Optimal Control
(SOC), is the extension of the theory of Deterministic Optimal Control to the situa-
tion when uncertainties are present and modeled by random variables, or stochastic
processes since control theory mostly addresses dynamic problems. SOC problems
were introduced not long after their deterministic counterparts, and the DP approach
has been readily extended (under specific assumptions) to the stochastic framework.
“Pontryagin like” or “variational” approaches appeared much later in the literature
[25] and we shall come back to explanations for this fact. SOC is used to deal
with dynamic problems. The notion of feedback, as naturally delivered by the DP
approach, plays a central part in this area.

Stochastic Programming (SP), which can be traced back to such early contribu-
tors as Dantzig [50], is the extension of Mathematical Programming to the stochastic
framework. As such, the initial emphasis is on optimization, possibly in a static
setting, and numerical resolution methods are based on variational techniques; ran-
domness is generally addressed by appealing to the Monte Carlo technique which,
roughly speaking, amounts to representing this uncertainty through the consideration
of several “samples” or “scenarios”. This is why, historically, the notions of feedback
and information were less present in SP than they were in SOC.

However, the SP community? has progressively considered two-stage, and then
multi-stage problems. Inevitably, the question of information structures popped up
in the field, at least to handle the elementary constraint of nonanticipativeness: one
should not assume that the exact realizations of random variables at and after stage
t 4+ 1 are known when making decisions at stage ¢; only a probabilistic description
of future occurrences can be taken into account.

It is therefore natural that the two communities of SOC and SP tend to merge and
borrow ideas from each other. The concepts of information and feedback are more
developed in the former, and the variational and Monte Carlo approaches are more
widespread in the latter. Getting closer to each other for the two communities should
perhaps begin with unifying the terminology: as far as we understand, recourse in the
SP community is used as a substitute for feedback. This book is an attempt to close
the gap. The comparison between SOC and SP approaches is already addressed by
Varaiya and Wets in this interesting paper [148].

1.1.3 The Role of Information in the Presence of Uncertainty

In Deterministic Optimal Control, as mentioned previously, there are two main
approaches in connection with Pontryagin’s and Bellman’s contributions. The former

2The official web page of the SP community http://www.stoprog.org/ offers links to several tutorials
and examples of applications of SP.
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focuses on open-loop controls, whereas the latter provides closed-loop solutions. By
open-loop controls, we mean that the decisions are given as a function of time only,
whereas closed-loop strategies compute the control to be implemented at each time
instant as a function of both time and observations; the observations may be the state
itself.

In fact, there are no discrepancies in the performance achieved by both approaches
because, in a deterministic situation, everything is uniquely determined by the deci-
sion maker. Therefore, if closed-loop strategies are implemented, one can simulate
the closed-loop dynamic system, record the trajectories of state, control and obser-
vations variables, substitute those trajectories in the control strategy, and compute
an open-loop control history that would generate exactly the same trajectories.

The situation is quite different in an uncertain environment, since trajectories are
not predictable in advance (off-line) because they depend on on-line realizations
of random variables. Available observations reveal some information about those
realizations, at least on past realizations (because of causality). By using this on-line
information, one can do better than simply apply a blind open-loop control which
has been determined only on the basis of a priori probability laws followed by the
random “noises”.

This means that the achievable performance is dependent on what we call the
information pattern or information structure of the problem: a decision making
problem under uncertainty is not well-posed until the exact amount of information
available prior to making every decision has been defined. Open-loop problems
are problems in which no actual realization can be observed, and thus, the optimal
decisions solely depend on a priori probability laws. In dynamic situations, every
decision may depend on certain on-line observations that must be specified. Of
course, the optimal decisions also depend on a priori probability laws since, generally,
not all random realizations can be observed prior to making decisions, if only because
of causality or nonanticipativeness.

Because of these considerations, one must keep in mind that solving stochastic
optimization problems, especially in dynamic situations when on-line observations
are made available, is not just a matter of optimization, of dealing with conventional
constraints, or even of computing or evaluating mathematical expectations (which
is generally a difficult task by itself); it is also the question of properly handling
specific constraints that we shall call informational constraints. Indeed, as this book
illustrates, there are essentially two ways of dealing with such constraints. That used
by the DP approach is a functional way: decisions are searched for as functions
of observations (feedback laws). But another way, which is more adapted to varia-
tional approaches in stochastic optimization, may also be considered: all variables
of the problem, including decisions, are considered as random variables or stochas-
tic processes; then the dependency of decisions upon observations must go through
notions of measurability as used by Measure Theory. We shall call this alternative
approach an algebraic handling of informational constraints (this terminology stems
from the fact that information may be mathematically captured by o-algebras, also
called o-fields, another important notion introduced by Measure Theory). A difficult
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aspect of numerical resolution schemes is precisely the practical translation of those
measurability or algebraic constraints into the numerical problem.

An even more difficult aspect of dynamic information patterns is that future
information may be affected by past decisions. Such situations are called situations
with dual effect, a terminology which tries to convey the idea that present decisions
have two, very often conflicting, effects or objectives: directly contributing to opti-
mizing the cost function on the one hand, modifying the informational constraints
to which future decisions are subject, on the other. Problems with dual effect are
generally among the most difficult decision making problems (see again [148] about
this topic).

1.2 Problem Formulations and Information Structures

In this section, two formulations of stochastic optimization problems are proposed:
they pertain to the two schools of SOC and SP alluded to above. The important issue
of information structures is also discussed.

1.2.1 Stochastic Optimal Control (SOC)

General Formulation
We consider the following formulation of a stochastic optimal control (SOC) problem
in discrete time: for every time instant ¢, X, (“state”?), U, (control) and W, (noise)
are all random variables over a probability space (2, A, P). They are related to each
other by the dynamics

X, =X, U, W) (1.1a)

which is satisfied P-almost surely forr = 0, ..., T — 1. Here, to keep things simple, T,
the time horizon, should be a given deterministic integer value, but it may be a random
variable in more general formulations. The variable X, is a given random variable.
It is convenient to view X, as a given function of some other random variable called
W, in such a way that all primitive random variables are denoted W, s =0, ..., T,
whereas W denotes the corresponding stochastic process { W }s—o,....7. The purpose
is to minimize a cost function

T-1
E(ZL,(X,,U,,WH_I)—FK(XT)) (1.1b)
=0

3Those quotes around the word state become clearer when discussing the Markovian case by the
end of this subsection.
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in which K is the final cost whereas L; is called the instantaneous cost. The symbol
[E(-) denotes expectation w.r.t. P (assuming of course that the functions involved are
measurable and integrable). The minimization is achieved by choosing the control
variable U, at each time instant ¢, but as previously mentioned, this is done after
some on-line information has been collected (in addition to the off-line informa-
tion composed of the model—dynamics and cost—and the a priori distribution of
{W,}s=o,...,7)- This on-line information is supposed to be at least causal or nonantic-
ipative, that is, the largest possible amount of information available at time instant ¢
is equivalent to the observation of the realizations of the random variables W for
s =0, ..., (butnot beyond ¢ ). In the language of Probability Theory, this amounts
to saying that U,, as arandom variable, is measurable w.r.t. the o-field generated by
{W,}s=0,...,, which is denoted J;:

= J({Wg‘}S:O ..... t) (L.Ic)
(the reader may refer to Appendix B for all those standard notions.) Of course, this
o-field increases as time passes, that is, F;, C F,41: it is then called a filtration.

Remark 1.1 Observe that in the right-hand side of (1.1a), U, must be chosen before
W, is observed: this is called the decision-hazard framework, as opposed to
the hazard-decision framework in which the decision maker plays after “nature”
at each time stage. This is why we put W, rather than W, in the right-hand

side of (1.1a). O

It may be that U, is constrained to be measurable w.r.t. some o-field §; smaller
than &;:
U, is §;-measurable, 5, C F;, t=0,...,T -1 (1.1d)

Unlike F;, the o-field G, is not necessarily increasing with ¢ (see hereafter).

Information Structure

Very often, G, itselfis a o-field generated by some random variable ¥, called observa-
tion. Actually, ¥, should be considered as the collection of all observations available
at . That is, if Z, denotes a new observation made available at ¢, but if the decision
maker has perfect memory of all observations made so far, then ¥, = {Z };—o, . ;.
In this case, as for F;, the o-field G, is increasing with 7, but this is not necessarily
always true.

The o-fields JF;, generated by {W,},—o,... s, are of course only dependent upon the
data of the problem, and this is also the case of the G; if the observations ¥, are solely
dependent on the primitive random variables W,. But if the observations depend also
on the controls U, (for example, if Z, is a function of the “state” X, possibly a
function corrupted by noise), it is likely that the o-field G, depends on controls
too, and therefore, the measurability constraint (1.1d) is an implicit constraint in
that control is subject to constraints depending on controls! Fortunately, thanks to
causality, this implicit character is only apparent, that is, the constraint on U, depends
on controls U, with s strictly less than 7.
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Nevertheless, this is generally a source of huge complexity in SOC problems
which is known under the name of the dual effect of control. This terminology tries
to convey the fact that when making decisions at every time instant s, the decision
maker has to take care of the following double effect: on the one hand, his decision
affects cost (directly, at the same time instant, and in the future time instants, through
the “state” variables); but, on the other hand, it makes the next decisions U,, t > s
more or less constrained through (1.1d).

Example 1.2 Let us give an example of this double or dual effect in the real life: the
decision of investing in research in any industrial activity. On the one hand, investing
in research costs money. On the other hand, an improved knowledge of the field of
activity may help save money in the future by allowing better decisions to be made.
This example shows that this future effect is very often contradictory with immediate
cost considerations and thus the matter of a trade-off to be achieved. A

‘We now return to our general discussion of information structure in SOC problems.
Even if the observations Y, depend on past controls, it may happen than the o-fields G,
they generate do not depend on those controls. This tricky phenomenon is discussed in
Chap. 10. Apart from this rather exceptional situation, there are other circumstances
when things turn out to be less complex than it may have seemed a priori.

The most classical such case is the Markovian case. Suppose the stochastic process
W is a “white noise”, that is, the random variables {W };—o, .. 7, are all mutually
independent. Then, X, truly deserves the name of the stafe variable at time # (this is
why, until now, we put the word “state” between quotes—see Footnote 3). Indeed,
because of this assumption of white noise, the pastrealizations of the noise process W
provide no additional information about the likelihood of future realizations. Hence,
remembering X, is sufficient information to keep to predict the future evolution of
the system after ¢. That is, X, “summarizes” the past and additional observations
are therefore useless. The Markovian case is defined as the situation when W is a
white noise stochastic process and G; is generated at each time ¢ by the variable X,.
Otherwise stated, the available observation Y, at time ¢ is simply X,. This is a perfect
(noiseless) and full size observation of the state vector. If the observation is partial
(a non injective function of X,) and/or a noisy such function, then the Markovian
situation is broken.

In the Markovian case, G; does depend, in general, upon past controls U, s < t,
but we would not do better with F; replacing G;. This is why the Markovian case,
although potentially falling into the most difficult category of problems with a dual
effect, is not so complex as more general problems in this category. The Markovian
feature is exploited by the Dynamic Programming (DP) approach (see Sect.4.4)
which is conceptually simple, but quickly becomes numerically difficult, and, indeed,
impossible when the dimension of the state vector X, becomes large.
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1.2.2 Stochastic Programming (SP)

Formulation

Here we consider another formulation of stochastic optimization problems which
ignores “intermediate” variables (such as the “state” X in the previous SOC formu-
lation) and which concentrates on the essential items, namely, the

control or decision U: arandom variable over a probability space (£2, A, P) with
values in a measurable space (U, U);
noise W: another random variable with values in a measurable space (W, W);
cost function: a measurable mapping j : U x W — R;
o-fields: J denotes the o-field generated by W whereas G denotes the one
w.r.t. which U is constrained to be measurable; generally, G is generated by an
observation Y: another random variable with values in a measurable space (Y, Y);
in this case, we use the notation
U=<xY 1.2)

to mean that U is measurable w.r.t. (the o-field generated by) Y. As we see in
Chap. 3, this relation between random variables corresponds to an order relation.
‘We also use this notation in constraints as U < G to mean that the random variable
U is measurable w.r.t. the o-field G.

With these ingredients at hand, the problem under consideration is set as follows:

;]njité]E(j(U,W)) or lIJnﬁir}l/E(j(U,W)). (1.3)

Without going into detailed technical assumptions, we assume that expectations do
exist, and that infima are reached (hence the use of the min symbol).

Typology of Information Structures
According to the nature of G or Y, we distinguish the following three cases.

Open-loop optimization: this is the case when § is the trivial o-field {#, £2}, or
equivalently, Y is any deterministic variable (that is, a constant map over £2). In
this case, an optimal decision is based solely on the a priori (off-line) knowledge
of the model, and not on any on-line observation. Therefore, the decision itself
is a deterministic variable # € U which must minimize a cost function J(u)
defined as an expectation of j (u, W). The numerical resolution of such problems
is considered in Chap. 2.

Static Information Structure (SIS):  this is the case when G or Y are non trivial
but fixed, that is, a priori given, independently of the decision U . The terminology
“static” does not imply that no dynamics such as (1.1a) are involved in the problem
formulation. It just expresses that the o-field G constraining the decision is a priori
given at the problem formulation stage. If time 7 is involved, one must rewrite the
measurability constraint as prescribed at each time stage 7 as “U, is §;-measurable”


http://dx.doi.org/10.1007/978-3-319-18138-7_3
http://dx.doi.org/10.1007/978-3-319-18138-7_2
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as in (1.1d), and this does leave room for information made available on-line as
time evolves. “Static” just says that this on-line information cannot be manipulated
by past controls.

Remark 1.3 When the collection {U,}s—o,... 7—1 of random variables is interpreted
as a random vector over the probability space (§2, A, P), then its measurability
is characterized by the o-field oc({U,}s—o,...,7—1) on (£2, A). However, with this
interpretation, the collection of constraints (1.1d) cannot in general be reduced to a
single “vector” constraint U < G where U would be the “vector” {U,}s—o, .. 7-1
and Gao-field on (§2, A), like c({U, }s=0,..., 7—1) is. For example, over a probability
space (£2, A, P), with T = 2,G9 = {0, £2} and G| = A, consider a random variable
U, suchthato(U,) = A. WritingU < Gimplies that § would be the o-field A, which
does not translate that U, must be a constant (deterministic) variable as implied by
U() = 90- <>

Remark 1.4 1f G is generated by an observation Y, either Y does not depend on U,
or the o-field it generates is fixed despite ¥ does depend on U (as already mentioned,
this may also happen in some special situations addressed in Chap. 10). One may
also wonder whether Y has any relation with W, for example, whether Y is given as
a function 2(W), in which case § would be a sub-o-field of &, the o-field generated
by W. For example, in the SOC problem (1.1), ¥, may be the complete or partial
observation of pastnoises W, s =0, ..., t,sothat§; € J; C Fr. Nevertheless, the
fact that Y does or does not have a connection with W is not fundamental. Indeed, by
manipulating notation, one can consider that this connection does exist. As a matter
of fact, one can redefine the noise variable as the couple W' = (W, Y) so that Y is
a function of W'. That the cost function j does not depend on the “full” W’ does not
matter. O

Dynamic Information Structure (DIS): thisis the situation when G or Y depends
on U, which yields a seemingly implicit measurability constraint. Actually, it is
difficult to imagine such problems without explicitly introducing several stages
at which decisions must be taken based on observations which may depend on
decisions at other stages.

Those stages may be a priori ordered, and the order may be a total order. This is the
case of SOC problems (1.1); but other examples are considered hereafter in which
those stages are not directly interpreted as “time instants” but rather as “agents”
acting one after the other. As soon as such a total order of stages can be defined
a priori, the notion of causality (who is “upstream” and who is “downstream”) is
natural and helps untangling the implicit character of the measurability constraint.
Nevertheless, the difficulty of such problems with DIS still remains sometimes
tremendous as it is shown with help of an example in Sect. 1.3.3.

More general problems may arise in which the order of stages or agent actions
is only partial, and the situation may be even worse if this order itself depend on
outcomes of the decisions and/or of hazard. At least in the case of a fixed but
partial order, it turns out that two notions are paramount for the level of difficulty
of the problem resolution:


http://dx.doi.org/10.1007/978-3-319-18138-7_10
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e Who influences the available observations of whom?
e Who knows more than whom?

‘We shall not pursue the discussion of this difficult topic here. It is more thoroughly
examined in Chap. 9. The forthcoming examples help us scratch the surface.

1.3 Examples

This section introduces a few simple examples in order to illustrate the impact of
information structures on the formulation of stochastic optimization problems. The
stress is more on this aspect than on being fussy about mathematical details (in
particular, we assume that all expectations make sense without going into more
precise assumptions).

1.3.1 A Basic Example in Static Information

Consider two given scalar random variables, W and Y, plus the decision U, and
finally the following problem of type (1.3):

. 2
Inin E((W -U)”). (1.4)

It is well known that the solution of this problem, which consists in finding the best
approximation of W which is Y -measurable (that is, the projection of W onto the
subspace of Y -measurable random variables), is given by U f = E(W | Y), that is,
the conditional expectation of W knowing Y (see Sect.3.5.3 and Definition B.5).

Generally speaking, as we see it later on in Sects.3.5.2 and 8.3.5, Problem (1.3)
can be reformulated as follows:

E(%%E(j(u, W) | Y)). (1.5)

In this form, since the conditional expectation subject to minimization is indeed
a Y -measurable random variable, it should be understood that the minimization
operates parametrically for every realization driven by w and this yields an arg min
also parametrized by w, that is, in fact, a random variable which is also ¥ -measurable.
When using this new formulation for Problem (1.4), the solution is readily derived
(Hint: expand the square in the cost function and observe that ¥ -measurable random
variables “get out” of the inner conditional expectation).


http://dx.doi.org/10.1007/978-3-319-18138-7_9
http://dx.doi.org/10.1007/978-3-319-18138-7_3
http://dx.doi.org/10.1007/978-3-319-18138-7_3
http://dx.doi.org/10.1007/978-3-319-18138-7_8
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1.3.2 The Communication Channel

Description of the Problem

This is the story of two agents trying to communicate through a noisy channel. This
story is depicted in Fig. 1.1. The first agent (called the “encoder”) gets a “message”,
here simply a random variable W, supposed to be centered (E(W,) = 0), and he
wants to communicate it to the other agent. We may consider that the encoder’s
observation ¥, is precisely this W,,. He knows that the channel adds a noise, say
a centered random variable W, to the message he sends, and so he must choose
which “best” message to send. He has to “encode” the original signal Y, into another
variable U, (what he decides to send through the channel), but the other agent (the
“decoder”) receives a noisy message U, + W,. Finally, the decoder has to make
his decision U, about what was the original message W, based on his observation,
namely ¥, = UO + W,, the message he received. That is, he has to “decode”, in an
“optimal” manner, the signal ¥; which is his observation.

This game is cooperative in that the encoder and the decoder try to help each
other so as to reduce the error of communication as much as possible (a problem in
“team theory” [104], which deals with decision problems involving several agents
or decision makers with a common objective function but possibly different obser-
vations). Mathematically, this can be expressed by saying that they seek to minimize
the expected square error E ((U 1= WO)Z). However, without any other limitation or
penalty, such a problem turns out to be rather trivial. For example, if the encoder
sends an amplified signal U, = kY|, where k is an arbitrarily large constant, then the
noise W, added by the channel is negligible in front of this very large signal, and
the decoder can then decode it by dividing it by the same constant k. For the game
to be interesting and realistic, one must put a penalty on the “power” ]E(Ug) sent
over the channel, either with help of a constraint limiting this power to a maximum
level, or by introducing an additional term proportional to this power into the cost.
To stay closer to the generic formulation (1.3), we choose the latter option. Finally,
the problem under consideration is the following:

min E(aUg + (U, — Wy)?) (1.6a)
Yot
st. Uy<Y,, U <Y, (1.6b)
W,y
signal o transmitted received %, restored
o > chaniel OOO} :
W & Uy =7(Wo) Yi=Us+W: % Ui =n(Y))

Fig. 1.1 Communication through a noisy channel



