Mark L. Braunstein

Practitioner's Guide to Health Informatics

Practitioner's Guide to Health Informatics

Mark L. Braunstein

Practitioner's Guide to Health Informatics

Mark L. Braunstein College of Computing Georgia Tech Atlanta, GA USA

ISBN 978-3-319-17661-1 ISBN 978-3-319-17662-8 (eBook) DOI 10 1007/978-3-319-17662-8

Library of Congress Control Number: 2015936165

Springer Cham Heidelberg New York Dordrecht London © Springer International Publishing Switzerland 2015

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed.

The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use.

The publisher, the authors and the editors are safe to assume that the advice and information in this book are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors give a warranty, express or implied, with respect to the material contained herein or for any errors or omissions that may have been made.

Printed on acid-free paper

Springer International Publishing AG Switzerland is part of Springer Science+Business Media (www.springer.com)

As a teacher I try to never forget the impact that we can have—sometimes in just a single conversation—on a young person's life.

Dr. David M. Kipnis died a few months before I began writing this book. He was chairman of the Department of Internal Medicine at Washington University.

Toward the end of my incredibly demanding internship he unexpectedly summoned me to his office. To say the least, I was quite nervous. We had little interaction that busy, often hectic year during which I was subsumed by the care of very sick patients, often basically on my own and in a major hospital setting.

He immediately asked something like: "Do you know why you were accepted to this program?" I had no answer (and feared I was about to hear something awful about my performance). He went on to explain that he, personally, had selected me because of my highly unusual combination of interests in medicine and computing, something he said would be very important over the coming years.

That comment particularly struck me because I never had an interest in medicine until, several years earlier, Dr. Leroy S. Lavine, a prominent physician and my cousin by marriage and whom I greatly respected, asked me what I planned to do after graduating from MIT. It was the sixties, a crazy time, and I told him I had no idea. He advised me that my strong interest in computing should be directed toward medicine because it would be an important and growing field over the course of my career. Even having never previously considered medicine, I followed his advice.

Kipnis then went on to say that I was not a traditional candidate for a prestigious program like Washington University—I'm sure it was clear from my medical school record that I had spent far more time programming than learning to be a doctor—and that his concern about accepting me had been whether I could actually be a good doctor. I imagine I was pale white by then, so he let me off the hook by saying I had actually done very well, and urged me to continue, even suggesting I could earn a faculty appointment in his department to pursue medical informatics, once I was done with my training.

Similar to the conversation with Dr. Hiram Curry which I'll relate in the Introduction, I told him I was honored by his interest in me, but I wanted to take a year off to see if I could finish the work on the pharmacy system I had developed at MUSC. His response was something

I'll also never forget. It was something like this: "I'd like to see you stay in medicine but no one achieves a great deal in life unless they pursue their real passion."

One year became two, and I never went back. In truth, health informatics was my passion and I owe it to Drs. Kipnis, Lavine, and Curry for helping me figure that out. As a result, I am honored to be able to dedicate this book to them.

PS: In my current role at Georgia Tech, I'm often approached by students (sometimes medical students from nearby Emory) with similar conflicts about their future direction and I invariably tell them the Kipnis story and give them the same advice he gave me so many years ago.

Why I Wrote This Book

As a medical student at the Medical University of South Carolina (MUSC) in the early 1970s I fell under the spell of the late Prof. Hiram B. Curry, a former general practitioner who said that job was so hard that he went to Harvard to study neurology! Years later, he founded MUSC's cutting edge academic department of family medicine. I needed a summer job and he was looking for students to help find families for his new clinic, so I arranged a Friday afternoon interview. After he described the job, I gathered the courage to say that I wanted to do something else—computers in medicine. Instead of laughing, he gave me a copy of Dr. Larry Weed's then-new book, Medical Records, Medical Education and Patient Care. I read it—twice—over the weekend. Returning to his office Monday morning, I said excitedly that Weed was right and computerized problem-oriented medical records were the future. Over the next few years we developed one of the first fully operational ambulatory electronic medical record (EMR) systems. 1,2 Today it might even be described as an electronic health record (EHR) because it encompassed virtually all of a patient's care. With the advice and counsel of Dr. William Golod, Dean of the MUSC School of Pharmacy, and John D. James, RPh whom he brought in from industry to run our dedicated, on-site pharmacy, we developed a particularly rich subsystem with advanced clinical functionality for the time, including interaction screening and monitoring patient compliance based on refill intervals. We had numerous visitors and the pharmacy component of our system attracted a great deal of interest. With the school's help, two colleagues and I started a company to create a commercial, standalone version of the pharmacy system. Both Kaiser (starting with their Southern California region under the guidance of Al Carver, someone to whom I owe a great debt for taking a chance on a very young, very green entrepreneur) and the U.S. Military Health System

¹Office of Technology Assessment 1977. Policy Implications of Medical Information Systems. http://ota-cdn.fas.org/reports/7708.pdf.

²Braunstein, ML, Schuman, SH and Curry, HB 1977. "An On-Line Clinical Information System in Family Practice," J Fam Pract, 5:617–26.

³Braunstein, ML and James, JD 1976. A Computer-Based System for Screening Outpatient Drug Utilization, J of Am Pharm Assoc. NS16:82–85.

(Tri-Service Medical Information System or TRIMIS) installed it successfully, and our tiny company attracted the interest of a much larger, public company that eventually acquired it. As a result, I left MUSC and ended up spending the next three decades or so in the commercial health information technology (HIT) sector.

Since 2007, when my last company was acquired, I've been teaching health informatics at Georgia Tech. In 2012, I published Health Informatics in the Cloud, a short guide to the field written with nontechnical readers in mind. Based on it, I developed what may have been the first Massive Open Online Course (MOOC) in the field and, to my amazement, a third of the 20,000 students who enrolled in its two sessions were either physicians, nurses, or other healthcare providers. Many more were in other positions in the healthcare delivery industry. Over this same period of time the U.S. has achieved widespread adoption of electronic records and patient-facing healthcare tools, but these technologies often still have limitations. Many providers are unsatisfied with them and don't feel there are benefits that warrant the pain of learning to use them well. A key reason for this is that they don't talk to each other, so the focus has now largely shifted from adoption (which is where it was when I wrote the earlier book), to interoperability, how to make these systems talk to each other and how to use the digital "big data" derived from them to improve health care through analytics. The clear interoperability "crisis" has spawned, with astonishing speed for health care, the development and even acceptance of "radical" new and far better technical approaches to data sharing.

This convergence of events convinced me there was a need to update the earlier book substantially while maintaining it as a practical guide to the field. What started as a rewrite morphed into a very different book, written more specifically for busy healthcare providers but still suitable for all nontechnical readers. I hope it makes the potential of health informatics in patient care far clearer and more exciting to providers. For all readers, I hope it will provide a sense of where we are on what has been a long journey that still has much further to go. Most importantly, I hope it will excite you to learn how health informatics—if properly conceived, implemented, and used—can help move us to a more effective, efficient, and safer healthcare system.

For the most part, this book is not technical. I've highlighted the sections that do go into technical detail so readers with no interest in that can skip ahead. Doing so should not impede your ability to grasp the key concepts I hope to convey. At the same time, for those of you who want more technical detail, I have provided many links and references to related information that is almost all freely available on the Internet.

Atlanta, GA Winter 2015 Mark L. Braunstein

Acknowledgments

My Georgia Tech health information technology colleagues, Marla Gorges, Phil Lamson, Steve Rushing, Rudy Snyder, and Margaret Wagner Dahl, provided invaluable help to me to find and correct numerous errors, omissions, and deficiencies in the draft version of this book. Dr. Eric Dahl, Associate Dean for Administrative Initiatives at the University of Georgia, College of Public Health, was kind enough to find time in his busy schedule to carefully review the entire text and provide many valuable comments and suggestions to improve its readability and clarity. Mary Boyd did an excellent job of final copyediting of the text.

Of course, any remaining problems are my responsibility alone.

Contents

Introduction	1
The Current Situation	5
Unique Complexity	9
EHR Adoption and Meaningful Use	17
Technologies for Sharing Health Information	31
Technologies to Assure Privacy, Security and Trust	45
Data Standards	55
Interoperability Standards	65
EHR Design and Usability Challenges	79
Patient Engagement and Empowerment	101
Population and Public Health	119
Aggregating Data	127
Health Big Data and Analytics	133
The Road Ahead	151

xiv			Contents

Index of Innovative Analytics in Healthcare	153
Glossary of Health and Information Technology Terms and Acronyms	155

List of Figures

Chapter 4

Figure 1	This presents a network depiction of the typical PCP's practice. It illustrates that 14 providers are involved in the care of the average multichronic disease patient (e.g. a patient with four or more conditions); on average 86 providers are involved in the care of all the multichronic disease patients in a typical PCP's practice; and that, in total, the typical PCP has referral relationships with 229 other providers. Trying to manage such a complex care network on paper has been a primary reason for the lack of well-
Figure 2	coordinated care of chronic disease. (Source Author)
Figure 3	This graph shows the percentage of physicians with an EHR capability sufficient to meet selected Meaningful Use Stage 2 objectives (http://www.cdc.gov/nchs/data/databriefs/db143.htm). (Source CDC)
Chapter 5	
Figure 1	Direct HIE is now an integrated component of Cerner's PowerChart EHR. As shown here, a primary care provider can initiate a Direct message to a specialist to whom they wish to refer the patient. This is done from within the charting session and the necessary electronic CCD is automatically produced and attached to the Direct e-mail message. In this example, the referring provider is also

xvi List of Figures

Figure 2	sending a chest x-ray. This might well eliminate a duplicate procedure when the patient sees the specialist, lowering healthcare costs. (Courtesy Cerner Corporation, All Rights Reserved)	38
Figure 3	(Courtesy Cerner Corporation, All Rights Reserved) The typical multi-HISP Direct scenario uses many existing web technologies for email transport and certificate management. In this diagram the sending practice is on the left and the recipient practice is on the right. Note in particular, that they each are associated with their own HISP. While XDR is shown here as an alternative web services based transport mechanism, we won't discuss it further. (Courtesy Dr. Myung Choi, Georgia Tech)	41
Chapter 6		
Figure 1	The X-ID system assists an expert to arrive at the right balance between the utility of a clinical dataset and the risk of re-identifying the patients within it. Risk can be minimized by subtle alterations of the data, but the more that is done, the less useful the data might be for a specific research purpose. The tool helps the expert find the right balance between these two conflicting objectives. It is operated using a simple slider control which produces different options each of which is characterized by a "Disclosure Risk" and a "Utility" score. (Courtesy NORC, University of Chicago)	46
Figure 2	Dr. Johnathan Nebeker's design proposal for an EMR based on its understanding clinical relationships. (Courtesy	40

List of Figures xvii

Chapter	7
---------	---

Figure 1	Semantic (meaning) and syntactic (structural) incompatibilities in the same or similar data stored in diverse systems create the need for standards. (Courtesy © Health Level Seven International)	56
Figure 2	The ICD-9 code set for breast cancer shows the site within the breast but not which breast is affected. (Source CMS)	59
Figure 3	An ICD-10 code for chronic gout provides clinical detail about its etiology, location (and laterality) and the presence or absence of a tophus. (Courtesy AAPC)	59
Figure 4	A LOINC name can have up to six parts, separated by colons. They can describe the component or analyte that was submitted for testing, the observation or measurement, whether the test is for a point in time or some interval, the sample that was submitted, the scale of the result and the testing method. In this example, Alpha 1 globulin (a serum protein constituent) is measured quantitatively (Qn) as mass concentration (MCnc) which is the ratio of mass to serum (Ser) volume, at a point in time (Pt) using electrophoresis.	
Figure 5	(Courtesy Regenstrief Institute)	60
Figure 6	SNOMED-CT is a hierarchy that, in this example, represents the fact that bacterial pneumonia is a subset of infective pneumonia and bacterial lower respiratory infections. It also shows its Concept ID (53084003) and its relationships to the affected body structure (lung), infective agent (superkingdom bacteria) and clinical manifestations (consolidation and inflammation). (Courtesy the Veterinary Medical Informatics Laboratory at the Virginia-Maryland Regional College of Veterinary Medicine)	62
Chapter 8		
Figure 1	Data from a CCD is presented in a more useful, human-readable form. This illustrates the data that can be contained within a CCD and also that XML can be visualized in a browser. (Courtesy ABEL Medical Software, All Rights Reserved)	68

xviii List of Figures

Figure 2	A group of five Arden Syntax MLMs are sufficient to provide CDS for the proper use and dosing of warfarin. (Courtesy AMIA). (http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2579091/)	70
Figure 3	SMART on FHIR apps are directly accessed by physicians during charting using the same menu they might use, for example, to add notes. This is a large step forward in workflow that saves physician time, eliminates duplicate data entry and should lead to increased use of the apps.	
Figure 4	(Courtesy Polygot Systems, All Rights Reserved)	73 74
Chapter 9		
Figure 1	Key results from the 2013 Rand/AMA survey of physicians shows that the majority note both administrative/financial as well as clinical benefits from the use of their EHR. The data suggests that specialists may see the benefits of care coordination to a greater degree than the PCPs who refer patients to them. Much earlier, we saw that specialists often see patients with incomplete or no data on prior care. (Adapted from the 2013 Rand/AMA Physician EHR Survey)	83
Figure 2	M*Modal's voice engine converts dictation to text, finds clinical concept in that text and encodes them into data standards such as SNOMED-CT. (Courtesy M*Modal, All	
Figure 3	Rights Reserved)	86 88
Figure 4	Inference rules use clinical data such as medications and lab tests as well as billing to infer the presence of clinical problems and prompt physicians to add missing problems to a patient's list. (Courtesy Adam Wright,	00
	Partners HealthCare)	90

List of Figures xix

Chapter 10

Figure 1	PatientsLikeMe provides patients with an integrated view of their health to organize and track their symptoms, treatments, side effects labs and tests and other data, so they can see how they are progressing and prepare for clinician encounters. Here are two selected sections of a profile from a member, a 45 year old cancer patient, showing what he has reported as general symptoms and weight in the past year. (http://www.patientslikeme.com/patients/view/231000? utm_source=plm_blog&utm_medium=blog&utm_campaign=garth_callaghan_december). (Courtesy Patients-	
Figure 2	LikeMe, All Rights Reserved)	107
	health data through its support of Direct and the Blue Button. (Courtesy RelayHealth, All Rights Reserved)	108
Figure 3	Sections of the Blue Button+ XML according to CCDA. (Source ONC)	110
Chapter 1	11	
Figure 1	This illustrates the basic popHealth system architecture. The key design characteristic is that queries are run within the provider's firewall so protected health information (PHI) never leaves their control. (Source ONC)	120
Figure 2	popHealth aggregates and summarizes quality metrics for 500 patients from a 10-provider practice (in which individual physicians could be using different EHRs). The numerator (the number of patients meeting each criterion) is clearly identified using the color green while the denominator (the target subpopulation for this metric) is in blue. (Source ONC)	121
Figure 3	Public QHF reporting of diabetes care outcomes based on HbA1C level shows seven practices are below the state average (red line) while five are below their regional average (green line). (Courtesy © IHIE)	123
Figure 4	A Wellcentive visual analytics report (in a format called a "treemap") helps find the most cost-effective providers of diabetes care. Each provider is represented by a box with a darker box representing poorer control of that provider's diabetes population and a smaller box representing a higher percentage of annual visits for those patients. The providers	

xx List of Figures

	at the upper left have the best control and also see their patients at least annually. The provider at the lower right has a virtually equal degree of control with far less frequent visits and may deliver the most cost-effective care. A further analysis of this provider's care process for diabetes would be worth doing to find approaches other, less cost-effective, providers might adopt. (Courtesy Wellcentive, All Rights Reserved)	124
Chapter	12	
Figure 1	hQuery provides a simple point-and-click user interface that is designed so that nontechnical users, such as providers, can initiate queries. (Courtesy Gregorowicz and Hadley, ONC) (http://wiki.siframework.org/file/view/hQuery+Summer+Concert+Presentation.pdf)	129
Chapter	13	
Figure 1	The Duke University effort to create "big data" by combining clinical EHR data with Geographic Information System data has the potential to reveal the social determinants of health. (Courtesy Shelley Rusincovitch, Duke University)	135
Figure 2	Research shows that, when faced with a complex multidimensional predictive decision, such as which patients will be readmitted, even skilled clinicians, case managers and simple models on average do little better than a coin flip. Models based on rich variety of clinical data often do much better. (Courtesy John D'Amore, Diameter Health, All Rights Reserved)	136
Figure 3	A decision tree for the most cost-effective choice of antibiotics illustrates that there is no recursion (going back to repeat a step) and time is not explicitly represented. (Courtesy S. Sriram, MPharm, PhD)	137
Figure 4	A Markov Model is used to compare quality-adjusted survival and cost of three alternative drugs (ximelagatran, warfarin, and aspirin) to prevent blood clots in a hypothetical group of 70 year old atrial fibrillation patients with varying risk of stroke, and no contraindications to anti-coagulation therapy. (Courtesy Dr. Cara O'Brien, Washington University School of Medicine)	138
	Denote of Michielle J	130