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Preface

The threat of climate change makes it crucial to improve our understanding of the
climate system. However, the volume and diversity of climate data from satellites,
environmental sensors, and climate models can make the use of traditional analysis
tools impractical and necessitate the need to carry out knowledge discovery from
data. Machine learning has made significant impacts in fields ranging from web
search to bioinformatics, and the impact of machine learning on climate science
could be as profound (Monteleoni et al. 2013). However, because the goal of
machine learning in climate science is to improve our understanding of the climate
system, it is necessary to employ techniques that go beyond simply taking advantage
of co-occurrence and, instead, enable increased understanding.

The Climate Informatics workshop series seeks to build collaborative relation-
ships between researchers from statistics, machine learning, and data mining and
researchers in climate science. Because climate models and observed datasets are
increasing in complexity and volume, and because the nature of our changing
climate is an urgent area of discovery, there are many opportunities for such
partnerships. The series was cofounded by Claire Monteleoni and Gavin Schmidt
and the first workshop held in August 2011 at the New York Academy of Sciences,
New York, NY. Since then, the workshop has been held yearly at the National Center
for Atmospheric Research (NCAR) in Boulder, Colorado, with logistical support
from NCAR’s Mathematics Applied to Geosciences (IMAGe) led by Doug Nychka.

The 4th International Workshop on Climate Informatics was sponsored by the
National Science Foundation, The Climate Corporation, Oak Ridge Associated
Universities, and NCAR and held over 2 days, on September 25 and 26, 2014, in
Boulder, CO. The workshop drew 74 participants from universities, government
laboratories, and industry. There were 43 posters presented at the workshop, as
well as four invited talks. The editors selected and reviewed the 22 chapters in this
volume to represent the state of the field and provide indications of where new
advances will come from.

v



vi Preface

It has been heartening to see collaborations fostered in previous years bear fruit
in the form of presentations in later years. For researchers in either field (machine
learning or climate science) looking for a new subspecialty in which to make an
impact, Climate Informatics presents a great opportunity. We hope that this book
will spark new ideas and foster new collaborations and encourage interested readers
to join us in Boulder for the 5th International Workshop on Climate Informatics.

Seattle, WA, USA Valliappa Lakshmanan
Boulder, CO, USA Eric Gilleland
Norman, OK, USA Amy McGovern
State College, PA, USA Martin Tingley
February 2015
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Chapter 1
Combining Analog Method and Ensemble Data
Assimilation: Application to the Lorenz-63
Chaotic System

Pierre Tandeo, Pierre Ailliot, Juan Ruiz, Alexis Hannart, Bertrand Chapron,
Anne Cuzol, Valérie Monbet, Robert Easton, and Ronan Fablet

Abstract Nowadays, ocean and atmosphere sciences face a deluge of data from
space, in situ monitoring as well as numerical simulations. The availability of
these different data sources offers new opportunities, still largely underexploited, to
improve the understanding, modeling, and reconstruction of geophysical dynamics.
The classical way to reconstruct the space-time variations of a geophysical system
from observations relies on data assimilation methods using multiple runs of the
known dynamical model. This classical framework may have severe limitations
including its computational cost, the lack of adequacy of the model with observed
data, and modeling uncertainties. In this paper, we explore an alternative approach
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4 P. Tandeo et al.

and develop a fully data-driven framework, which combines machine learning
and statistical sampling to simulate the dynamics of complex system. As a proof
concept, we address the assimilation of the chaotic Lorenz-63 model. We demon-
strate that a nonparametric sampler from a catalog of historical datasets, namely,
a nearest neighbor or analog sampler, combined with a classical stochastic data
assimilation scheme, the ensemble Kalman filter and smoother, reaches state-of-
the-art performances, without online evaluations of the physical model.

Keywords Data-driven modeling • Data assimilation • Stochastic filtering •
Nonparametric sampling • Analog method • Lorenz-63 model

1.1 Introduction

Understanding and estimating the space-time evolution of geophysical systems
constitute a challenge in geosciences. For an efficient restitution of geophysical
fields, classical approaches typically combine a physical model based on fluid
dynamics equations and remote sensing data or in situ observations. These
approaches are generally referred to as data assimilation methods and stated as
inverse problems for dynamical processes (see, e.g., Evensen 2009 and reference
therein). Two main categories of data assimilation approaches may be distinguished:
variational assimilation methods, which resort to the gradient-based minimization
of a variational cost function and rely on the computation of the adjoint of the
dynamical model (Lorenc et al. 2000), and stochastic data assimilation schemes,
which involve Monte Carlo strategies and are particularly appealing for their
modeling flexibility (Bertino et al. 2003). These stochastic methods iterate the
generation of a representative set of scenarios (hereinafter referred to members),
whose consistency is evaluated with respect to the available observations. To reach
good estimation performance, this number of members must be high enough to
explore the state space of the physical model.

Different limitations can occur in the stochastic data assimilation approaches
presented above. Firstly, it generally involves intensive computations for practical
applications since the physical model needs to be run with different initial conditions
at each time step in order to generate the members. Moreover, intensive modeling
efforts are needed to take into account fine-scale effects. Regional geophysical
models are typical examples (Ruiz et al. 2010). Secondly, dissimilarities often
occur between model outputs and observations. For instance, it can be the case
when combining high-resolution model forecasts with high-resolution satellite or
radar images. Thirdly, the dynamical model is not necessarily well known, and
parameterizations may be highly uncertain. This is particularly the case in subgrid-
scale processes, taking into account local and highly nonlinear effects (Lott and
Miller 1997). These different examples tend to show that multiple evaluations of
an explicit physical model are computationally demanding, and model uncertainties
can produce dissimilarities between forecasts and observations.
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As an alternative, the amount of observation and simulation data has grown very
quickly in the last decades. The availability of such historical datasets strongly
advocates for exploring implicit data-driven schemes to build realistic statistical
simulations of the dynamics for data assimilation issues. Satellite sequence images
are typical examples. When the spatiotemporal sampling and the amount of histori-
cal remote sensing data are sufficient, we may able to learn dynamical operators to
construct relevant statistical forecasts with a good consistency with satellite obser-
vations. Such implicit data-driven schemes may also provide fast implementation
alternatives as well as flexible strategies to deal with the abovementioned modeling
uncertainties. In this case, historical simulated data with different parameterizations,
initial conditions, and forcing terms may provide various scenarios to explore larger
state spaces.

In this paper, we aim at demonstrating a proof of concept of such data-driven
strategies to reconstruct complex dynamics from partial noisy observations. The
feasibility of our data assimilation method is illustrated on the classical chaotic
Lorenz-63 model (Lorenz 1963). The paper is organized as follows. In Sect. 1.2, we
propose to use a nonparametric sampler, based on the analog (or nearest neighbors)
method, to generate the forecast members (Delle Monache et al. 2013). Then, we use
the ensemble Kalman recursions to combine these members with the observations
(Evensen 2009). In Sect. 1.3, we numerically evaluate the methodology on the
Lorenz-63 model such as various previous works (see, e.g., Pham 2001, Hoteit et al.
2008). We further discuss and summarize the key results of our investigations in
Sect. 1.4.

1.2 Combining Machine Learning and Stochastic Filtering
Methods

Data assimilation for dynamical systems is generally stated according to the
following state space model (see, e.g., Bertino et al. 2003):

dx.t/
dt D M .x.t/; �.t// (1.1)

y.t/ D H .x.t/; �.t// : (1.2)

The dynamical model given in Eq. (1.1) describes the evolution of the true
physical process x.t/. It includes a random perturbation �.t/ which accounts for
the various sources of uncertainties (e.g., boundary conditions, forcing terms,
physical parameterization, etc.). As an illustration, M refers in the next sections
to the Lorenz-63 dynamical model, in which the state of the system x is a three-
dimensional vector .x; y; z/. The observation model given in Eq. (1.2) links the
observation y.t/ to the true state at the same time t. It also includes a random
noise �.t/ which models observation error and uncertainties, change of support (i.e.,
downscaling/upscaling effects), and so on.
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Fig. 1.1 Sketch of the forecast step in stochastic data assimilation schemes using pure (top) and
analog (bottom) dynamical models. As an example, we consider the three-dimensional Lorenz-
63 chaotic model. For visualization convenience, we only represent the x-y plane, centered at the
origin. We track five statistical members with the variability depicted by ellipsoids accounting for
the covariance structure

The key originality of the methodology proposed in this paper consists in using a
nonparametric statistical sampling within a classical ensemble Kalman framework.
As described in Fig. 1.1 (top), the classical approach exploits an explicit knowledge
of the pure dynamical model (PDM) to propagate the ensemble members from a
given time step to the next one. By contrast, we assume here that a representative
catalog of examples of the time evolution of the state is available. This catalog is
used to build an analog dynamical model (ADM) to simulate M and the associated
error � given in Eq. (1.1). We proceed as follows. Let us denote by x.t/ the state
at time t. Its analogs or nearest neighbors are the samples in the catalog which are
the closest to x.t/. Such nearest neighbor schemes are among the state-of-the-art
machine learning strategies (Friedman et al. 1977). In the geoscience literature, we
talk about analog methods (see, e.g., Lorenz 1963 or Van den Dool 2006). They
were initially devised for weather prediction, but applications to downscaling issues
(Timbal et al. 2003) or climate reconstructions (Schenk and Zorita 2012; Yiou et al.
2013) were also proposed. As described in Fig. 1.1 (bottom), for each member at a
given time, we use the successors of its analogs to generate possible forecast states at
time tCdt. The variability of the selected successors also provides a characterization
of the forecast error, namely, here, its covariance. From a methodological point of
view, analog techniques provide nonparametric representations. They are associated
with computationally efficient implementations and prove highly flexible to account
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for nonlinear and chaotic patterns as soon as the catalog of observed situations is rich
enough to describe all possible state dynamics (Lorenz 1969).

Then, this nonparametric data-driven sampling of the state dynamics is plugged
into a classical ensemble data assimilation method. It leads to the estimation
of the filtering or smoothing probabilities of the state-space model given in
Eqs. (1.1)–(1.2). It might be noted that previous works have analyzed the conver-
gence of these estimated probabilities to the true ones, when the size of the catalog
tends to infinity (Monbet et al. 2008). Here, we exploit the low-computational
ensemble Kalman recursions (see Evensen 2009 for more details), but other
stochastic methods could be used such as particle filters.

1.3 Application to the Lorenz-63 Chaotic System

In this section, we perform a simulation study to assess the assimilation performance
of the proposed method on the classical Lorenz-63 model. This model has been
extensively used in the literature on data assimilation (see, e.g., Miller et al. 1994,
Anderson and Anderson 1999 or Van Leeuwen 1999). From a methodological
point of view, it is particularly interesting due to its simplicity (in terms of
dimensionality and computational cost) and its chaotic behavior. We first describe
how we generate the catalog (Sect. 1.3.1) and detail how we implement the analog
dynamical model in a classical stochastic filtering (Sect. 1.3.2). We then evaluate
assimilation performance with respect to classical state-of-the-art data assimilation
techniques (Sect. 1.3.3).

1.3.1 Synthetic Data

We generate three different datasets (true state, noisy observations, and catalog)
using the exact Lorenz-63 differential equations given in Fig. 1.1 (top) with the
classical parameters � D 28, � D 10, ˇ D 8=3 and the time step dt D 0:01.
From a random initial condition and after 500 time steps, the trajectory converges to
the attractor, and we append the associated data to our datasets as follows. At each
time t, the corresponding Lorenz trajectory is given by the variables x, y, and z. We
store the three variables in the true state vector x.t/. Then, we randomly generate
the observations y.t/ as the sum of the state vector and of independent Gaussian
white noises with variance 2. To generate the catalog, we use another random initial
condition, and after 500 time steps, we start to append the consecutive state vectors
z.t/ (the analogs) and z.t C dt/ (the successors) in the catalog. Examples of the
samples stored in this catalog are given in Table 1.1.
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Table 1.1 Samples of the catalog used in the ADM presented in Fig. 1.1 (bottom) to simulate
realistic Lorenz-63 trajectories with a time step dt D 0:01

z.t/ ! Analogs z.t C dt/ ! Successors

.�0:3268; C3:2644; C25:5134/ .C0:0131; C3:2278; C24:8371/

.C0:0131; C3:2278; C24:8371/ .C0:3177; C3:2017; C24:1889/

:
:
:

:
:
:

.�2:7587; �4:5007; C19:1790/ .�2:9344; �4:7112; C18:8037/

.�2:9344; �4:7112; C18:8037/ .�3:1147; �4:9464; C18:4530/

1.3.2 The Analog Ensemble Kalman Filter and Smoother

As stressed in Sect. 1.2, the key feature of the proposed approach is to build a
nonparametric sampler of the dynamics (ADM). For the considered application to
Lorenz-63 dynamics, we resort to a first-order autoregressive process between z.t/
and z.t C dt/ with dt D 0:01 (see Sprott 2003, chapter 10, for similar applications
in other chaotic models). We consider the first ten analogs (or the first ten
nearest neighbors) of a given state within the built catalog of simulated Lorenz-63
trajectories presented in Table 1.1. Note that we here consider an exhaustive search
within the entire catalog. This ADM is plugged into classical ensemble Kalman
recursions. We implement both the ensemble Kalman filter (EnKF) and smoother
(EnKS). Whereas EnKF only exploits the available observation up to the current
state (i.e., past and current observations), EnKS exploits the entire observation series
(i.e., both past, present, and future observations with respect to the current state). We
implement the EnKF and EnKS with 100 members, value sufficiently important
to correctly estimate the covariances. In the next results, we perform numerical
experiments to assess the performance of the proposed approach. We vary both the
time steps of the observations and the size of the catalog and analyze the impact
on assimilation performance. We carry out a comparative evaluation with respect
to reference assimilation models using a parametric autoregressive process and the
pure dynamical Lorenz-63 equations (PDM). For each experiment, we display the
ensemble mean and the 95 % confidence interval (transparent error area) of the
assimilated states issued from the Gaussian smoothing probabilities estimated by
the EnKS.

1.3.3 Evaluation of Assimilation Performance

We first analyze assimilation performance for noisy observations sampled at
different time rates (noted as dtobs), from 0:01 to 0:40. Considering the analogy
between the Lorenz-63 and atmospheric time scales, note that dtobs D 0:08 is
equivalent to a 6 h variability in the atmosphere. As an illustration of the complexity
of Lorenz-63 dynamics, we report in Fig. 1.2 (left column) the scatter cloud of two
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Fig. 1.2 The left column displays the scatter plot between two consecutive values of the Lorenz-
63 second variable y. In the right column, the noisy observations and true states of the Lorenz-63
are respectively represented with black dots and black curves. We also display the smoothed mean
estimate and the 95 % confidence interval of the assimilation of the noisy observations using a
simple linear and parametric AR(1) model (red) and the proposed nonparametric ADM (blue).
Experiments are carried out for different sampling rates between consecutive observations, from
0:01 to 0:40 (top to bottom)
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consecutive values of the second Lorenz-63 variable y in the catalog. Whereas we
observe a linear-like pattern for the fine sampling rate of 0:01 (first row), all other
sampling rates clearly exhibit nonlinear patterns, which can hardly be captured by
a linear dynamical model. For each time step setting, we also compare in Fig. 1.2
(right column) the observations (black dots), the true state (black curves), and the
assimilation results using different dynamical models. Two results are reported:
the nonparametric ADM presented in Sect. 1.3.2 (blue curves) and the parametric
first-order linear autoregressive AR(1) model (red curves). For very small sampling
rates between consecutive observations, a simple linear AR(1) dynamical model
proves sufficient to assimilate the state of the system. But, as soon as the sampling
rate becomes greater (from 0:08), such an AR(1) model can no longer drive the
assimilation to relevant states. By contrast, the proposed ADM does not suffer from
these limitations and show weak effects of the sampling rates on the quality of the
assimilated states.

We also compare the performance of the proposed nonparametric ADM to the
classical EnKS assimilation using the PDM, i.e., allowing online evaluations of the
Lorenz-63 equations. We perform different simulations varying the time sampling
rate between two consecutive observations dtobs D f0:01; 0:08; 0:24; 0:40g and the
size of the catalog n D f103; 104; 105; 106g. For each experiment, we compute the
root mean square error (RMSE) between the true and estimated smoothed states of
the Lorenz-63 trajectories. These RMSE are computed over 105 time steps. To solve
the differential equations of the Lorenz-63 model in the PDM, we use the explicit
(4,5) Runge-Kutta integrating method (cf. Dormand and Prince 1980). Figure 1.3
summarizes the results. As benchmark curves, in dashed lines, we plot the results
of the classical EnKS using the PDM. In solid lines, we report the results of the
proposed EnKS using ADM. We observe a decrease of the error when the size n of

Fig. 1.3 root mean square error (RMSE) for the three variables of the Lorenz-63 model as a
function of the size of the catalog (n) and the time sampling rate between consecutive observations
(dtobs). Dashed and solid lines refer respectively to the reanalysis (smoothed estimates) for the
classical EnKS using PDM and the proposed EnKS using ADM (see Fig. 1.1 for the difference
between the two approaches)
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the catalog increases (x-axis in log scale). It also shows that the difference in RMSE
between the two kinds of reanalysis (with and without an explicit knowledge of the
Lorenz-63 equations) decreases when the time sampling rate (and thus the forecast
error) between two consecutive observations dtobs increases (colors in legend).
Overall, for a catalog of 106 samples, we report RMSE difference below 0:05 for
sampling rates equal or greater than 0:08.

1.4 Conclusion and Perspectives

In this paper, we show that the statistical combination of Monte Carlo filters
and analog procedures is able to retrieve the chaotic behavior of the Lorenz-
63 model when the size of the catalog is sufficiently important. The proposed
methodology may be a relevant alternative to the classical data assimilation schemes
when (i) large observational or model-simulated databases of the process are
available and (ii) physical models are computationally demanding and/or modeling
uncertainties are important. The data-driven methodology proposed in this paper
is a relatively low-cost procedure, which directly samples new ensembles from
previously observed or simulated data, and potentially allows for an exploration
of more scenarios.

Our future work will particularly investigate the application of the proposed
methodology to archives of in situ measurements, remote sensing observations, and
model-simulated data for the multi-source reconstruction of geophysical parameters
at the surface of the ocean. The methodology seems particularly appealing for
such surface oceanographic studies for three reasons: (i) the low dimensionality
of the state in comparison with atmosphere and a 3D spatial grid, (ii) the less
chaotic behavior of the dynamics due to the water viscosity and (iii) the amount
oceanographic data at the surface of the ocean. Indeed, in the last two decades,
satellite and in situ measurements have provided a wealth of information with high
spatial and temporal resolutions.

Future work will also address methodological aspects, especially regarding the
search procedures for the analogs and the construction of the catalog. In this Lorenz-
63 example, a small part of the trajectory is really chaotic (zone close to the origin,
between the two attractors), and most of the time, a simple autoregressive process
is able to produce relevant forecasts in non-chaotic regions. An effort is therefore
needed to evaluate the complexity of the trajectory, what may, for instance, rely on
Lyapunov exponent (see Sprott 2003, chapter 10), and carefully select the samples
indexed in the catalog upon their representativeness of the underlying chaotic
dynamics. Another important aspect is the size of the sampled trajectories between
analogs and successors in the catalog. In this paper, we use a very small time lag
(dt D 0:01), but other strategies can be used, e.g., sampling successors with the
same time lag than consecutive observations (dtobs). A last methodological aspect
concerns the filtering methods. In such low-cost emulation of the dynamical model,
particle filters and smoothers may allow more flexibility to take into account non-
Gaussian assumptions.
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Chapter 2
Machine Learning Methods for ENSO Analysis
and Prediction

Carlos H.R. Lima, Upmanu Lall, Tony Jebara, and Anthony G. Barnston

Abstract The El Niño-Southern Oscillation (ENSO) plays a vital role in the
interannual variability of the global climate. In order to reduce its adverse impacts on
society, many statistical and dynamical models have been used to predict its future
states. However, most of these models present a limited forecast skill for lead times
beyond 6 months. In this paper, we present and discuss results from previous work
and describe the University of Brasilia/Columbia Water Center (UNB/CWC) ENSO
forecast model, which has been recently developed and incorporated into the ENSO
Prediction Plume provided by the International Research Institute for Climate and
Society. The model is based on a nonlinear method of dimensionality reduction and
on a regularized least squares regression. This model is shown to have a skill similar
to or better than other ENSO forecast models, particularly for longer lead times.
Many dynamical and statistical models predicted a strong El Niño event in 2014.
The UNB/CWC model did not, consistent with the subsequent observations. The
model’s ENSO predictions for 2014 are presented and discussed.
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2.1 Introduction

The term El Niño-Southern Oscillation (ENSO) refers to a coupled ocean-atmosphere
phenomenon that takes place along the Tropical Pacific Ocean and consists of
anomalies in the sea surface temperature (SST) and sea level pressure (SLP) across
the entire Pacific basin. Positive anomalies (warm events) in the eastern Tropical
Pacific SST are associated with a reduction in the SLP gradient across the basin,
and this event is called El Niño. It has a periodicity of about 4–6 years (Diaz and
Markgraf 2000) and is accompanied by changes in the atmospheric circulation in the
equatorial region, most notably in the Walker circulation cells, which in turn affect
rainfall and temperature patterns across the globe. The opposite phase of El Niño is
called La Niña (ENSO cold events) and consists of negative anomalies in the SST
in the central and eastern part of the equatorial Pacific basin and an enhancement
of the cross-basin SLP gradient and consequently in the trade winds. We refer the
reader to Diaz and Markgraf (2000) for further details on ENSO variability and its
impacts on climate and society.

A recent review (Barnston et al. 2012) of the skill of 12 dynamical and 8
statistical ENSO models for real-time forecasts during 2002–2011 shows an average
correlation skill of 0.42 at a 6-month lead time, which is lower than the average
correlation skill (0.65) for the 1981–2010 period obtained from the same models and
lead time but in a hindcast design. Barnston et al. (2012) suggest that the difference
in the skills is explained by the design of the forecasts (real time vs. hindcast) as
well as by the lower ENSO variability during 2002–2011, which makes forecasts
more challenging. Barnston et al. (2012) emphasize that predictions at lead times
greater than 6 months continue to lack skill.

For predicting ENSO indices, statistical models have used gridded SST, wind
and SLP fields, and, more recently, ocean subsurface temperature data (Drosdowsky
2006). Principal component analysis (PCA) has been widely applied to identify
the key modes of variability in such data and for reducing the dimensionality of
the predictors in forecasting models. A regression model that uses the leading
modes is then used to predict an ENSO index. However, since PCA is based on the
eigenvalue decomposition of the covariance (or correlation) matrix of the input data,
it considers only the linear dependence structure. In high-dimensional spaces, where
variables are nonlinearly correlated, PCA may need a large number of principal
components to approximate the main modes of spatiotemporal variability of such
systems.

In this paper, we extend previous work (Lima et al. 2009) and describe the
University of Brasilia/Columbia Water Center (UNB/CWC) ENSO forecast model,
which has been recently developed and incorporated into the ENSO Prediction
Plume provided by the International Research Institute for Climate and Society
(IRI). We apply a nonlinear method of dimensionality reduction developed by
the machine learning community (Weinberger and Saul 2006) to identify the
spatiotemporal variability of the depth of the 20ıC isotherm (D20) along the Tropical
Pacific Ocean, which is a proxy for the thermocline and a carrier of the long-lead
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ENSO signal (Drosdowsky 2006). The leading modes of variability of the Tropical
Pacific thermocline data are obtained by this method and used as predictors in a
regression model for operational ENSO forecasts at different lead times. We use
the top three modes at different lags to predict ENSO through a regularized least
squares regression model. The rest of this paper is organized as follows. In Sect. 2.2,
we present the climate dataset. The mathematical details of the forecast model are
presented in Sect. 2.3. Some features of the spatial modes of the D20 field and the
model skills for cross-validated ENSO forecasts are offered in Sect. 2.4, which is
followed by a summary of the paper.

2.2 Climate Dataset

As a proxy for the Tropical Pacific thermocline and heat content, we use the
National Oceanic and Atmospheric Administration (NOAA)/National Centers for
Environmental Prediction (NCEP) thermocline depth at 20 ıC .D20/, which is
derived from a global ocean data assimilation system (GODAS) (Behringer and
Xue 2004). Our focus here is on the Pacific D20 bounded by the region 26ıN–28ıS
and 122ıE–77ıW. The dataset starts in January 1980 and is updated regularly. It
consists of 26,243 data points located in an equally spaced grid cell with resolution
1/3 degree by 1/3 degree. As a representative of ENSO events (Barnston et al. 1997),
we use the NCEP NINO3.4 index defined as the monthly mean SST anomalies
averaged over the area 5ıN–5ıS and 170ıW–120ıW. Both datasets are provided by
IRI at http://iridl.ldeo.columbia.edu/SOURCES/.

2.3 Technical Approach

2.3.1 Nonlinear Dimensionality Reduction

Nonlinear methods of dimensionality reduction are usually derived by first mapping
the original dataset that lies on a nonlinear space (or manifold) onto a linear space
(the feature space) and second by applying PCA on the projected input data. A
common method is kernel principal component analysis, which was first introduced
by Schölkopf et al. (1998) and uses the concept of kernels to map the original
dataset onto a linear feature space. Mathematically, let XT be a N � M centered
matrix of inputs. Here, XT refers to the transpose matrix of X, and N and M are the
number of months and grid points of the D20 data used in the analysis, respectively.
Using the concept of singular value decomposition factorization XT D U†VT, the
L � N matrix Y of the projection of the data matrix X onto the first L eigenvectors
is given by:

Y D †VT (2.1)

http://iridl.ldeo.columbia.edu/ SOURCES/
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where V is the N � L matrix of eigenvectors of the Gram matrix G D XXT

corresponding to the top L eigenvalues and † is the diagonal matrix of square roots
of the top L eigenvalues of G.

Consider now a nonlinear function ˆ defined by any nonlinear basis function
(e.g., ˆ.xi/ D x2

i ) that maps each point of the input data to the feature space H .
The idea here is to apply PCA in the space defined by ˆ.X/ rather than X, in order
to obtain a set of low-dimensional vectors that accounts for the maximum variance
in the new space H . The leading modes can be obtained in a manner similar to
PCA:

ˆ.X/T D U†VT (2.2)

where U has the eigenvectors of ˆ.X/Tˆ.X/, V the eigenvectors of K D
ˆ.X/ˆ.X/T; and † is the diagonal matrix of square roots of the eigenvalues of K.

Using the so-called kernel trick, the elements of the N by N Gram matrix K
are obtained without the need to compute ˆ.x/ explicitly. The principal modes of
X are obtained as in Eq. (2.1), but substituting the Gram matrix G by the kernel
function K.

Instead of defining a function ˆ, Weinberger and Saul (2006) proposed to maxi-
mize the trace (sum of the eigenvalues) of the kernel matrix K by exploring choices
of kernel values between pairs of inputs that still preserve the distances between
nearby points in the original space. This method, known as maximum variance
unfolding (MVU), can be defined through the following optimization problem:

Maximize trace(K) s.t.:

K � 0I (2.3)

X

ij

Kij D 0I (2.4)

Kii C Kjj � Kij � Kji D Gii C Gjj � Gij � Gji; 8i; j where �ij D 1; (2.5)

where �ij is 1 if i and j are k-nearest neighbors of each other and 0 otherwise. More
details about the optimization problem can be seen in Weinberger and Saul (2006).
The leading modes Y of X in the new space H are obtained as in Eq. (2.1) but
substituting G by K.

2.3.2 Forecast Model

The forecast model for the NINO3.4 index for a lead time � can be written as:

F.tC�/ D ˇ0;�;t Cˇ1;�;t �O.t/C
tX

lDt�24

ˇ2;�;l �Y1.l/Cˇ3;�;l �Y2.l/Cˇ4;�;l �Y3.l/C�� .t/;

(2.6)


