Springer Proceedings in Physics 164

E.K. Polychroniadis Ahmet Yavuz Oral Mehmet Ozer *Editors*

2nd International Multidisciplinary Microscopy and Microanalysis Congress

Proceedings of InterM, October 16–19, 2014

Springer Proceedings in Physics

Volume 164

More information about this series at http://www.springer.com/series/361

E.K. Polychroniadis · Ahmet Yavuz Oral Mehmet Ozer Editors

2nd International Multidisciplinary Microscopy and Microanalysis Congress

Proceedings of InterM, October 16-19, 2014

Editors E.K. Polychroniadis Department of Physics Aristotle University of Thessaloniki Thessaloniki Greece

Ahmet Yavuz Oral Department of Materials Science and Engineering Gebze Technical University Gebze, Kocaeli Turkey Mehmet Ozer Department of Physics Istanbul Kultur University Istanbul, Bakirkoy Turkey

ISSN 0930-8989 Springer Proceedings in Physics ISBN 978-3-319-16918-7 DOI 10.1007/978-3-319-16919-4 ISSN 1867-4941 (electronic) ISBN 978-3-319-16919-4 (eBook)

Library of Congress Control Number: 2015936290

Springer Cham Heidelberg New York Dordrecht London

© Springer International Publishing Switzerland 2015

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed.

The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use.

The publisher, the authors and the editors are safe to assume that the advice and information in this book are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors give a warranty, express or implied, with respect to the material contained herein or for any errors or omissions that may have been made.

Printed on acid-free paper

Springer International Publishing AG Switzerland is part of Springer Science+Business Media (www.springer.com)

Preface

The second International Multidisciplinary Microscopy and Microanalysis Congress & Exhibition (INTERM 2014) provided all these scientists the opportunity to meet, present their work, discuss and mutually interact in order to enhance and promote their research work.

This volume, published by Springer, includes all the papers presented at this Congress, held in Liberty Hotels Lykia Oludeniz, Turkey, October 16–19, 2014.

On behalf of the organizing committee we would like to thank all the plenary and invited speakers for their valuable contribution and especially Professor Gustaaf Van Tendeloo (EMAT, University of Antwerp, Belgium) for his excellent opening lecture.

We would also like to thank TURA Tourism for their support in the organization of the Congress, as well as our sponsors: JEOL Ltd., NanoMEGAS, and PVA TePla. Finally, we would like to thank the publishers for the quality of this edition.

Thessaloniki, Greece Gebze, Turkey Istanbul, Turkey E.K. Polychroniadis Ahmet Yavuz Oral Mehmet Ozer

Organization

International Scientific Committee

Prof. Ernesto Diéguez Delgado, Universidad Autónoma de Madrid, Spain
Prof. Wolfgang Eberhardt, Technische Universität Berlin, Germany
Dr. Konstantinos, P. Giannakopoulos, National Centre for Scientific Research
"Demokritos", Greece
Prof. Tomasz Goryczka, University of Silesia, Poland
Prof. Christos B. Lioutas, Aristotle University of Thessaloniki, Greece
Dr. Stavros Nicolopoulos, NanoMEGAS, Belgium
Prof. Emer. E.K. Polychroniadis, Aristotle University of Thessaloniki, Greece
Assoc. Prof. Dr. Ahmet Yavuz Oral, Gebze Technical University, Turkey
Prof. Danuta Stróż, University of Silesia, Poland
Prof. Gustaaf Van Tendeloo, EMAT, University of Antwerp, Belgium

Organizing Committee

E.K. Polychroniadis, Aristotle University of Thessaloniki, Greece Ahmet Yavuz Oral, Gebze Technical University, Turkey Mehmet Ozer, Istanbul Kültür University (Scientific Secretariat), Turkey Z. Banu Bahsi, Gebze Institute of Technology, Turkey Ersin Kayahan, Kocaeli University, Turkey

Sponsorship & Exhibitation

The Company—JEOL Ltd.

The company NanoMEGAS

The company PVA TePla

Conference Organizing Company

TURA TOURISM LTD.

Cumhuriyet Cad. No: 109/A Elmadag—Sisli/Istanbul E-mail: interem2013@turaturizm.com.tr Phone: +90 212 241 27 00 Fax: +90 212 241 29 89 Web: www.turaturizm.com.tr

Contents

Part I	Applications	of Microscopy	in the	Physical	Sciences
--------	--------------	---------------	--------	----------	----------

Electron Microscopy Study of Thermoelectric (Bi _x Sb _{1-x}) ₂ Te ₃	
Thin Film	3
Structural Characterization of Layers for AdvancedNon-volatile MemoriesK. Giannakopoulos, J. Giannopoulos, P. Bousoulas,E. Verrelli and D. Tsoukalas	9
Advanced Technology for Analytical Electron Microscopy by Using Aberration Corrected Transmission Electron Guillaume Brunetti	19
TEM Characterization of a Complex Twinning System in 3C–SiC Mamour Sall, Narendraraj Chandran, Anastasia Terzidou, Christos B. Lioutas and E.K. Polychroniadis	25
Microstructural Evaluation of Suspension Thermally Sprayed WC-Co Nanocomposite Coatings	31
Wavelength Depended Speckle Correlation Analyses of Engineered Metal Surfaces Ersin Kayahan	39
Effect of V_2O_5 Additives to the Sintering of Y_2O_3 Tarik Talib Issa, Kawakib Jassim Majeed and Jenan M. Hasan	51

Contents

Integrating Microscopic Analysis into Existing Quality Assurance Processes	57
Peter Frühberger, Thomas Stephan and Jürgen Beyerer	
Effect of Annealing Temperature on the Structural and Magnetic Properties of Terbium Iron Garnet Thin Films Prepared by Sol-Gel Method Ftema W. Aldbea and N.B. Ibrahim	65
Fibrous Growth of Chloride Minerals on Diatomite Saturatedwith a BrineTomasz Toboła, Marek Rembiś, Beata Figarska-Warchołand Grażyna Stańczak	73
Fractal Characteristics of the Pore Network in Diatomites Using Mercury Porosimetry and Image Analysis Grażyna Stańczak, Marek Rembiś, Beata Figarska-Warchoł and Tomasz Toboła	79
Development of an Off-Axis Digital Holographic Microscope for Large Scale Measurement in Fluid Mechanics K.F. Tamrin, B. Rahmatullah and S.M. Samuri	91
SEM-EDS Observation of Structure Changes in Synthetic Zeolites Modified for CO₂ Capture Needs Magdalena Wdowin, Rafal Panek and Wojciech Franus	97
SEM Investigation of Microstructures in Hydration Products of Portland Cement	105
Some Properties of 1.3343 Steel Treated by Pulse Plasma Technique	113
Investigation of Microstructure of Ceramics Produced from Gabbro and Zeolite Raw Materials	121
The Effect of MgO and MgO-Al ₂ O ₃ on Zirconia Produced by Precipitation Method M. Ipek	129

Contents

Microstructural Investigation of IF Steels Joined by Metal Inert Gas Brazing	137
Mehmet Ekici, Faruk Varol, Ugur Ozsaraç and Salim Aslanlar	
An ESEM/EDX Methodology for the Study of Additive Adsorption at the Polymer-Air Interface	145
Enhanced Confocal Fluorescence Microscope Performance Using a differential pinhole Rohan Kakade, John G. Walker and Andrew J. Phillips	153
Thermal Neutron Detection by Entrapping ⁶ LiF Nanodiamonds	
in Siloxane Scintillators	161
High Temperature Reliability of Ta-Based and TiW-Based	
Diffusion Barriers Nando Budhiman, Ulrich Schürmann, Björn Jensen, Steffen Chemnitz, Lorenz Kienle and Bernhard Wagner	169
The Direct Observation of Grain Refinement Mechanismin Advanced Multicomponent γ-TiAl Based StructuralIntermetallics Doped with BoronA.V. Kartavykh, M.V. Gorshenkov and D.A. Podgorny	175
Low Temperature Resistivity of the Rare Earth Diborides	
(Er, Ho, Tm)B ₂ Jumat B. Kargin, C.R. Sebastian Haines, Matthew J. Coak, Cheng Liu, Alexander V. Matovnikov, Vladimir V. Novikov, Alexander N. Vasiliev and Siddharth S. Saxena	183
Influence of Mechanical Parameters on the Friction and Wear of Sliding Brass-Steel Couple	187
Measuring the Degree of Sensitization (DOS) Using an Electrochemical Technique Mokhtar B. Abuzriba and Salem M. Musa	197
Substitution for Chromium and Nickel in Austenitic Stainless Steels	205
Mokhtar B. Abuzriba and Salem M. Musa	

Part II Applications of Microscopy in the Biological Sciences	
Ca, P and Collagen Fibrils Period Measurements in the Vertebras of Lordotic <i>Sparus aurata</i> Panagiotis Berillis and Nikolaos Panagiotopoulos	217
Use of Bone Marrow-Derived Mesenchymal Stem Cells in Improving Thioacetamide Induced Liver Fibrosis in Rats Fatma A.A. Mansour, Iman Shaheed and Nabiha R.A. Hassan	223
Electrochemical Detection of Nicotine Using Cerium Nanoparticles Modified Carbon Paste Sensor and Anionic Surfactant	229
A.M. Fekry, S.M. Azab, M. Shehata and M.A. Ameer	22)
Exploring the Antibiotic Effects in Bacterial Biofilms by Epifluorescence and Scanning Electron Microscopy Luciana Calheiros Gomes, Laura Nunes Silva, Manuel Simões, Luís Ferreira de Melo and Filipe José Mergulhão	241
Quantitative Confocal Microscopy Analysis as a Basis for Search and Study of Potassium Kv1.x Channel Blockers Alexey V. Feofanov, Kseniya S. Kudryashova, Oksana V. Nekrasova, Alexander A. Vassilevski, Alexey I. Kuzmenkov, Yuliya V. Korolkova, Eugene V. Grishin and Mikhail P. Kirpichnikov	249
Analysis of Nucleosome Transcription Using Single-Particle FRET Alexey V. Feofanov, Kseniya S. Kudryashova, Oleg V. Chertkov, Dmitry V. Nikitin, Nikolai A. Pestov, Olga I. Kulaeva, Vasily M. Studitsky and Mikhail P. Kirpichnikov	255
Index	261

Contributors

Mokhtar B. Abuzriba Department of Materials and Metallurgical Engineering, University of Tripoli, Tripoli, Libya

R. Ahmed College of Engineering, Alfaisal University, Riyadh, Saudi Arabia; School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh, UK

Nayef M. Al-Anazi Materials Performance Unit, Research & Development Centre, Dhahran, Saudi Arabia

S. Al-Mutairi Materials Performance Unit, Research & Development Centre, Dhahran, Saudi Arabia

Ftema W. Aldbea Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Bangi, Malaysia; Faculty of Science, Sebha University, Sebha, Libya

O. Ali School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh, UK

M.A. Ameer Chemistry Department, Faculty of Science, Cairo University, Giza, Egypt

Salim Aslanlar Department of Metallurgical and Materials Engineering, Technology Faculty, Sakarya University, Sakarya, Turkey

S.M. Azab Pharmaceutical Chemistry Department, National Organization for Drug Control and Research (NODCAR), Giza-29, Egypt

Panagiotis Berillis Department of Ichthyology and Aquatic Environment, School of Agricultural Sciences, University of Thessaly, Volos, Greece

Jürgen Beyerer Fraunhofer Institute of Optronics, System Technologies and Image Exploitation IOSB, Karlsruhe, Germany

C. Boubechou Faculté de Technologie, Département de Génie Mécanique, Université de 20 Août 1955, Skikda, Algeria

A. Bouchoucha Laboratoire de Mécanique, Faculté des Sciences de la Technologie, Département de Mécanique Engineering, Université Constantine 1, Constantine, Algeria

P. Bousoulas Department of Applied Physics, National Technical University of Athens, Athens, Greece

Aikaterini Breza Department of Physics, Aristotle University of Thessaloniki, Thessaloniki, Greece

Guillaume Brunetti JEOL (Europe) SAS—Espace Claude Monet, Croissy-sur-Seine, France

Nando Budhiman Institute of Material Science, Christian-Albrechts-Universität zu Kiel, Kiel, Germany

Nuray Canikoğlu Department of Metallurgy and Materials Engineering, Engineering Faculty, Sakarya University, Sakarya, Turkey

S. Carturan INFN—Laboratori Nazionali di Legnaro, Legnaro, Italy; Department of Physics and Astronomy, University of Padova, Padua, Italy

Narendraraj Chandran Department of Physics, Aristotle University of Thessaloniki, Thessaloniki, Greece

Steffen Chemnitz Institute of Material Science, Christian-Albrechts-Universität zu Kiel, Kiel, Germany; Fraunhofer Institute for Silicon Technology (ISiT), Itzehoe, Germany

Oleg V. Chertkov Biological Faculty, Lomonosov Moscow State University, Moscow, Russia; Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia

M. Cinausero INFN-Laboratori Nazionali di Legnaro, Legnaro, Italy

Matthew J. Coak Cavendish Laboratory, University of Cambridge, Cambridge, UK

M. Dalla Palma INFN—Laboratori Nazionali di Legnaro, Legnaro, Italy; Department of Industrial Engineering, University of Trento, Trento, Italy

M. Degerlier Science and Art Faculty Physics Department, Nevsehir Haci Bektas Veli University, Nevsehir, Turkey

A. Şükran Demirkıran Department of Metallurgy and Materials Engineering, Engineering Faculty, Sakarya University, Sakarya, Turkey

Kalin I. Dragnevski Laboratory for In-situ Microscopy and Analysis, Department of Engineering Science, University of Oxford, Oxford, UK

Mehmet Ekici Vocational School of Yalova, Yalova University, Yalova, Turkey

N.H. Faisal College of Engineering, Alfaisal University, Riyadh, Saudi Arabia; School of Engineering, Robert Gordon University, Aberdeen, UK

A.M. Fekry Chemistry Department, Faculty of Science, Cairo University, Giza, Egypt

Alexey V. Feofanov Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia; Biological Faculty, Lomonosov Moscow State University, Moscow, Russia

Beata Figarska-Warchoł Faculty of Geology, Geophysics and Environmental Protection, AGH University of Science and Technology, Kraków, Polska

Wojciech Franus Division of Geotechnics, Lublin University of Technology, Lublin, Poland

Peter Frühberger Fraunhofer Institute of Optronics, System Technologies and Image Exploitation IOSB, Karlsruhe, Germany

K. Giannakopoulos Institute of Nanoscience and Nanotechnology, NCSR "Demokritos", Athens, Greece

J. Giannopoulos Institute of Nanoscience and Nanotechnology, NCSR "Demokritos", Athens, Greece; Department of Applied Physics, National Technical University of Athens, Athens, Greece

John Giapintzakis Department of Mechanical Engineering, University of Cyprus, Nicosia, Cyprus

Luciana Calheiros Gomes LEPABE, Department of Chemical Engineering, Faculty of Engineering, University of Porto, Porto, Portugal

M.F.A. Goosen Office of Research & Graduate Studies, Alfaisal University, Riyadh, Saudi Arabia

M.V. Gorshenkov National University of Science and Technology "MISIS", Moscow, Russia

F. Gramegna INFN-Laboratori Nazionali di Legnaro, Legnaro, Italy

Eugene V. Grishin Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia

Tuğçe Gökkaya Department of Metallurgy and Materials Engineering, Esentepe Campus, Sakarya University, Sakarya, Turkey

C.R. Sebastian Haines Cavendish Laboratory, University of Cambridge, Cambridge, UK

Jenan M. Hasan Physics Department, College of Science, University of Baghdad, Jadiriya, Baghdad, Iraq

Nabiha R.A. Hassan Department of Pathology, Faculty of Veterinary Medicine, Cairo University, Cairo, Egypt

N.B. Ibrahim Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Bangi, Malaysia

M. Ipek Department of Metallurgy and Materials Engineering, Engineering Faculty, Esentepe Campus, Sakarya University, Sakarya, Turkey

Omar Islam Laboratory for In-situ Microscopy & Analysis, Department of Engineering Science, University of Oxford, Oxford, UK

Tarik Talib Issa Physics Department, College of Science, University of Baghdad, Jadiriya, Baghdad, Iraq

Björn Jensen Fraunhofer Institute for Silicon Technology (ISiT), Itzehoe, Germany

Rohan Kakade Applied Optics Group, Faculty of Engineering, The University of Nottingham, University Park, Nottingham, UK

Jumat B. Kargin Cavendish Laboratory, University of Cambridge, Cambridge, UK; Eurasian National University, Astana, Kazakhstan

A.V. Kartavykh National University of Science and Technology "MISIS", Moscow, Russia

Ersin Kayahan Electro-Optic and System Engineering, Kocaeli University, Umuttepe, Kocaeli, Turkey; Kocaeli University-LATARUM Laboratory, Yenikoy, Kocaeli, Turkey; Barbaros Denizcilik YO, Kocaeli University, Karamürsel, Kocaeli, Turkey

Lorenz Kienle Institute of Material Science, Christian-Albrechts-Universität zu Kiel, Kiel, Germany

Mikhail P. Kirpichnikov Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia; Biological Faculty, Lomonosov Moscow State University, Moscow, Russia

Yuliya V. Korolkova Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia

Kseniya S. Kudryashova Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia; Biological Faculty, Lomonosov Moscow State University, Moscow, Russia

Olga I. Kulaeva Biological Faculty, Lomonosov Moscow State University, Moscow, Russia; Cancer Epigenetics Program, Fox Chase Cancer Center, Philadelphia, USA

Alexey I. Kuzmenkov Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia Christos B. Lioutas Department of Physics, Aristotle University of Thessaloniki, Thessaloniki, Greece

Cheng Liu Cavendish Laboratory, University of Cambridge, Cambridge, UK

G. Maggioni INFN—Laboratori Nazionali di Legnaro, Legnaro, Italy; Department of Physics and Astronomy, University of Padova, Padua, Italy

Kawakib Jassim Majeed Physics Department, College of Science, University of Baghdad, Jadiriya, Baghdad, Iraq

S. Mamour Department of Physics, Aristotle University of Thessaloniki, Thessaloniki, Greece

Fatma A.A. Mansour Department of Pathology, Faculty of Veterinary Medicine, Cairo University, Cairo, Egypt

T. Marchi INFN-Laboratori Nazionali di Legnaro, Legnaro, Italy

Alexander V. Matovnikov Bryansk State University, Bryansk, Russia

Luís Ferreira de Melo LEPABE, Department of Chemical Engineering, Faculty of Engineering, University of Porto, Porto, Portugal

Filipe José Mergulhão LEPABE, Department of Chemical Engineering, Faculty of Engineering, University of Porto, Porto, Portugal

Salem M. Musa Department of Materials and Metallurgical Engineering, University of Tripoli, Tripoli, Libya

Oksana V. Nekrasova Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia

Dmitry V. Nikitin Biological Faculty, Lomonosov Moscow State University, Moscow, Russia

Vladimir V. Novikov Bryansk State University, Bryansk, Russia

Nikolaos Panagiotopoulos Department of Physics, University of Ioannina, Ioannina, Greece

Rafal Panek Division of Geotechnics, Lublin University of Technology, Lublin, Poland

Nikolai A. Pestov Biological Faculty, Lomonosov Moscow State University, Moscow, Russia

Andrew J. Phillips Applied Optics Group, Faculty of Engineering, The University of Nottingham, University Park, Nottingham, UK

D.A. Podgorny National University of Science and Technology "MISIS", Moscow, Russia

E.K. Polychroniadis Department of Physics, Aristotle University of Thessaloniki, Thessaloniki, Greece

A. Quaranta INFN—Laboratori Nazionali di Legnaro, Legnaro, Italy; Department of Industrial Engineering, University of Trento, Trento, Italy

B. Rahmatullah Computing Department, Faculty of Arts, Computing and Creative Industry, Universiti Pendidikan Sultan Idris, Perak, Malaysia

Marek Rembis Faculty of Geology, Geophysics and Environmental Protection, AGH University of Science and Technology, Kraków, Polska

Marek Rembis Faculty of Geology, Geophysics and Environmental Protection, AGH University of Science and Technology, Krakow, Poland

Mamour Sall Department of Physics, Aristotle University of Thessaloniki, Thessaloniki, Greece

S.M. Samuri Computing Department, Faculty of Arts, Computing and Creative Industry, Universiti Pendidikan Sultan Idris, Perak, Malaysia

Siddharth S. Saxena Cavendish Laboratory, University of Cambridge, Cambridge, UK

Ulrich Schürmann Institute of Material Science, Christian-Albrechts-Universität zu Kiel, Kiel, Germany

Iman Shaheed Department of Pathology, Faculty of Veterinary Medicine, Cairo University, Cairo, Egypt

M. Shehata Chemistry Department, Faculty of Science, Cairo University, Giza, Egypt

Laura Nunes Silva LEPABE, Department of Chemical Engineering, Faculty of Engineering, University of Porto, Porto, Portugal

Manuel Simões LEPABE, Department of Chemical Engineering, Faculty of Engineering, University of Porto, Porto, Portugal

Clive R. Siviour Laboratory for In-situ Microscopy & Analysis, Department of Engineering Science, University of Oxford, Oxford, UK

Grażyna Stańczak Faculty of Geology, Geophysics and Environmental Protection, AGH University of Science and Technology, Kraków, Polska

Thomas Stephan Fraunhofer Institute of Optronics, System Technologies and Image Exploitation IOSB, Karlsruhe, Germany

Vasily M. Studitsky Biological Faculty, Lomonosov Moscow State University, Moscow, Russia; Cancer Epigenetics Program, Fox Chase Cancer Center, Philadelphia, USA **K.F. Tamrin** Computing Department, Faculty of Arts, Computing and Creative Industry, Universiti Pendidikan Sultan Idris, Perak, Malaysia

Anastasia Terzidou Department of Physics, Aristotle University of Thessaloniki, Thessaloniki, Greece

Tomasz Toboła Faculty of Geology, Geophysics and Environmental Protection, AGH University of Science and Technology, Krakow, Poland

D. Tsoukalas Department of Applied Physics, National Technical University of Athens, Athens, Greece

Faruk Varol Vocational School of Karasu, Sakarya University, Sakarya, Turkey

Alexander N. Vasiliev Moscow State University, Moscow, Russia

Alexander A. Vassilevski Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia

E. Verrelli Department of Applied Physics, National Technical University of Athens, Athens, Greece

Bernhard Wagner Institute of Material Science, Christian-Albrechts-Universität zu Kiel, Kiel, Germany; Fraunhofer Institute for Silicon Technology (ISiT), Itzehoe, Germany

John G. Walker Applied Optics Group, Faculty of Engineering, The University of Nottingham, University Park, Nottingham, UK

Magdalena Wdowin The Mineral and Energy Economy Research Institute of the Polish Academy of Sciences, Kraków, Poland

Yıldız Yaralı Özbek Department of Metallurgy and Materials Engineering, Esentepe Campus, Sakarya University, Sakarya, Turkey

H. Zaidi Laboratoire LMS (UMR-6610-CNRS), SP2MI, Téléport 2, Boulevard Marie et Pierre Curie, Université of Poitiers, Futuroscope Chasseneuil Cedex, Poitiers, France

Uğur Özsaraç Technology Faculty, Department of Metallurgical and Materials Engineering, Sakarya University, Sakarya, Turkey

Part I Applications of Microscopy in the Physical Sciences

Electron Microscopy Study of Thermoelectric (Bi_xSb_{1-x})₂Te₃ Thin Film

Aikaterini Breza, Christos B. Lioutas and John Giapintzakis

Abstract In the present work, transmission electron microscopy (TEM) techniques were used in order to study the morphology and investigate the structural properties of a $(Bi_xSb_{1-x})_2Te_3$ (BST) thin film. The sample was fabricated on silicon substrate by pulsed laser deposition (PLD) method. Towards this aim, cross sectional and planar view samples were prepared, suitable for High Resolution Electron Microscopy. Results revealed a polycrystalline, c-axis oriented film with coherent boundaries between neighboring columnar grains.

1 Introduction

In the past decades, thermoelectric films have received increasing interests due to their application on electronic devices in the micro- heating and cooling areas [1]. Bismuth telluride based thin films have gained growing interest since they have attractive thermoelectric properties and can potentially contribute to saving energy issues [2]. Generally, the performance of thermoelectric materials is characterized by the dimensionless figure-of-merit, ZT, defined as $ZT = S2\sigma T/\kappa$, where S is the Seebeck coefficient, σ is the electrical conductivity, T is the absolute temperature and κ is the total thermal conductivity with contributions from the lattice thermal conductivity (κ L) and the electronic thermal conductivity (κ e). Theoretical

A. Breza · C.B. Lioutas (⊠)
 Department of Physics, Aristotle University of Thessaloniki, 54124
 Thessaloniki, Greece
 e-mail: lioutas@physics.auth.gr

A. Breza e-mail: abreza@physics.auth.gr

J. Giapintzakis Department of Mechanical Engineering, University of Cyprus, 75 Kallipoleos Avenue, PO Box 20537, 1678 Nicosia, Cyprus e-mail: giapintz@ucy.ac.cy

[©] Springer International Publishing Switzerland 2015 E.K. Polychroniadis et al. (eds.), 2nd International Multidisciplinary Microscopy and Microanalysis Congress, Springer Proceedings in Physics 164, DOI 10.1007/978-3-319-16919-4_1

approach has shown that nanostructuring Bi_2Te_3 alloys enhances their performance compared to the corresponding bulk materials, as quantum confinement effect leads in reduction in thermal conductivity [3]. In this direction, researcher groups have fabricated several types of low-dimension structures and confirmed that spatial confinement significantly improves ZT [4–9].

From a structural point of view, bismuth antimony telluride has the same rhombohedral tetradymite structure as Bi_2Te_3 of the space group R-3m. It could be described as a hexagonal unit cell consisting of five covalently bonded atomic lamellae stacked in the rhombohedral [111] direction [10]. It is worth noting that nanostructuring these materials is due this anisotropic character. In this work, we report on the morphological characteristics and structural properties of a BST thin film.

2 Experimental Details

The BST thin film that we studied in this work, was deposited on n-type Si (1 0 0) single crystal substrate by PLD method. UV-excimer laser pulses with wavelength $\lambda = 248$ nm, pulse duration $\tau_L = 25$ ns, pulse repetition rate of 10 Hz and fluence $\Phi = 2$ J cm⁻² were employed for target ablation. For depositions 700 laser pulses were used. The substrate was heated to 350 °C. The BST target was a polycrystalline pellet with density higher than 90 % of the theoretical density. The structural features of the film were studied by TEM using a JEOL 2011 transmission electron microscope, operating at 200 kV and having a point resolution of 1.94 Å. Specimens suitable for cross-sectional and planar view TEM observations, were prepared using well-known techniques, including mechanical griding followed by ion milling with Ar ions of energy of 4 keV (Gatan PIPS).

3 Results and Discussion

The main features of the film are shown on a typical cross-sectional picture of the film presented in Fig. 1a. As it can be seen from the lower part of the film, it consists of almost columnar crystals, growing from the substrate up to the surface of the sample, of sizes from 80 to 150 nm, while its thickness is measured at 330 nm. A closer look at the interface with the Si substrate reveals the presence of an amorphous SiO₂ layer, having thickness of about 6.5 nm. Study of the corresponding electron diffraction pattern (Fig. 1b) confirms the epitaxial grown of the film, which is c-axis of all crystals parallel to [001]Si direction. Furthermore, all diffraction spots derived from the film were identified to belong to $(Bi_{0.5}Sb_{0.5})_2Te_3$ compound (72-1835#PDF).

High Resolution TEM study was performed in order to clarify the structure of the interfaces between the nano-columns. A typical micrograph of a boundary Electron Microscopy Study of Thermoelectric ...

Fig. 1 a Bright-field image of film and substrate and ${\bf b}$ the corresponding electron diffraction pattern

Fig. 2 a A typical coherent boundary is shown, while **b** and **c** FFTs correspond to crystallites I and II respectively and reveal the orientation relation between the columns

between two columns is given in Fig. 2a. It is worth noting that (0001) planes are coherent throughout the boundary. As identified by the corresponding FFTs (Fig. 2c, d), crystallites I and II are observed along [1-100] and [10-10] zones, respectively.

A planar-view image of the film is given in Fig. 3a, revealing the polygon shape of the crystals, observed along [0001] direction. In the corresponding electron diffraction pattern (Fig. 3b), diffraction rings confirm that it is polycrystalline.

Fig. 3 a Bright-field image of the multigrains b the corresponding SAED of film

At the first view there is no preferential orientation of a-axis of the crystallites, regarding the substrate. Although, additional measurements of the angles between adjacent crystals, shows a tendency to form angles in good agreement with Coincide Site Lattice (CSL) theory.

4 Conclusion

We investigated by means of TEM the characteristics of a thermoelectric $(Bi_xSb_{1-x})_2Te_3$ thin film grown by pulsed laser deposition technique. Throughout the examined areas, the hexagonal $(Bi_{0.5}Sb_{0.5})_2Te_3$ compound (72-1835#PDF) was found. TEM micrographs and EDs showed that the 330 nm-thick film is polycrystalline and consists of columnar crystals of 80–150 nm width with orientations close to that predicted from CLS theory. HRTEM images revealed the epitaxial relationship between film and substrate, which is $[0001]_{film}//[001]_{sub}$.

References

- 1. Fr. J. DiSalvo, Thermoelectric cooling and power generation, Science, 285, 703-706 (1999)
- C. Wood, Materials for thermoelectric energy conversion. Rep. Prog. Phys. 51, 459–539 (1988)
- L.D. Hicks, M.S. Dresselhaus, Effect of quantum-well structures on the thermoelectric figure of merit. Phys. Rev. B 47, 12727–12731 (1993)
- Y. Lan, B. Poudel, Y. Ma, D. Wang, M.S. Dresselhaus, G. Chen, Z. Ren, Structure study of bulk nanograined thermoelectric bismuth antimony telluride. Nano Lett. 9, 1419–1422 (2009)
- M. Takashiri, S. Tanaka, K. Miyazaki, Improved thermoelectric performance of highlyoriented nanocrystalline bismuth antimony telluride thin films. Thin Solid Films 519, 619–624 (2010)

- A. Purkayastha, F. Lupo, S. Kim, T. Borca-Tasciuc, G. Ramanath, Low-temperature, template-free synthesis of single-crystal bismuth telluride nanorods. Adv. Mater. 18, 496–500 (2006)
- M. Takashiri, S. Tanaka, K. Miyazaki, Growth of single-crystalline bismuth antimony telluride nanoplates on the surface of nanoparticle thin films. J. Cryst. Growth 372, 199–204 (2013)
- 8. Y. Deng, Y. Xiang, Y. Song, Template-free Synthesis and transport properties of Bi_2Te_3 ordered nanowire arrays via a physical vapor process. Cryst. Growth Des. 9, 3079–3082 (2009)
- J.L. Mi, N. Lock, T. Sun, M. Christensen, M. Sondergaard, P. Hald, H.H. Hng, J. Ma, B.B. Iversen, Biomolecule-assisted hydrothermal synthesis and self-assembly of Bi₂Te₃ nanostring-cluster hierarchical structure. ACS Nano 4, 2523–2530 (2010)
- Y. Feutelais, B. Legendre, N. Rodier, V. Agafonov, A study of the phases in the bismuth tellurium system. Mater. Res. Bull. 28, 591–596 (1993)

Structural Characterization of Layers for Advanced Non-volatile Memories

K. Giannakopoulos, J. Giannopoulos, P. Bousoulas, F. Verrelli and D. Tsoukalas

Abstract Non-volatile memory cells are the devices with the most aggressive scaling on the market. For this reason the accurate characterization of their layer stacks is of great importance. We present a review of our recent work on a large variety of such stacks, for charge-trap and resistive memories, which have been characterized structurally with Transmission Electron Microscopy and Conducting Atomic Force Microscopy; we discuss the features of their structure on their function as memory elements.

1 Introduction

The technology for creating advanced memory cells plays a central role in the miniaturisation of electronic devices; new process nodes usually enter production with the manufacturing of memory cells. At this moment the 16 nm memory cells are in production. The recent slowdown of the transistor scaling has partially been compensated by the improvements in memory performance and by their integration on various chips. There is a fierce competition between memory manufacturers which is governed by their ability to introduce new processes on time that are improving the speed, the reliability and the density of the memory cells, while keeping the production and development cost at a low level.

Non-volatile memories are at the centre of this technology and during the last years Solid State Disks have become mainstream computer components. Flash memories have dominated this vast field for a long time, and because their scaling

K. Giannakopoulos (🖂) · J. Giannopoulos

Institute of Nanoscience and Nanotechnology, NCSR "Demokritos", Aghia Paraskevi, 15310 Athens, Greece

e-mail: K.giannakopoulos@inn.demokritos.gr

Department of Applied Physics, National Technical University of Athens, Iroon Polytechniou 9 Zografou, 15780 Athens, Greece

J. Giannopoulos · P. Bousoulas · E. Verrelli · D. Tsoukalas

[©] Springer International Publishing Switzerland 2015

E.K. Polychroniadis et al. (eds.), 2nd International Multidisciplinary

Microscopy and Microanalysis Congress, Springer Proceedings in Physics 164, DOI 10.1007/978-3-319-16919-4_2

has also been slowed down, the interest of the scientific community is shifting increasingly towards other technologies, such as the Resistive Memories. The resistive memory is currently the most promising non-volatile memory technology, as it offers low-power, reliable and denser memory cells with the option to exploit not only single level cell storage (storing one bit of information) but also multilevel cells, a feature that multiplies the effective information density storage.

From a Materials Science point of view, advanced non-volatile memories consist of nanometer scale stacks that can be processed with a large number of methods, in order to achieve the best balance of their electrical properties. Insulating, semiconducting and metallic properties are pushed to their limits while there is a constant search for new materials and device geometries. Of course, the introduction of new materials and process is not easily welcomed by the manufacturers, as it may lower the production yield and therefore increase significantly the cost of the devices. They prefer to work with "CMOS compatible" materials and processes, i.e. materials that they know better, such as Si and its compounds (Silicon Dioxide, Silicon Nitride) that can be integrated in the existing processes and that will not cause cross-contamination concerns in their ultra-clean production environments.

Whatever the approach for creating non-volatile memories, structural characterization is a critical part of the research effort that is required for their development. Because of the complicated nature of their functional properties (retention time, write/erase speed etc.), the structural and morphological data of these devices must be combined with other materials' properties and esp. the electrical, in order to understand their operation.

2 Flash Memories

Flash memories consist of at least 3 layers that are deposited on a semiconducting substrate (usually Si) covered by an electrode (or gate) where the write/erase voltage (VG) is applied (Fig. 1). In these 3 layers, the middle layer is the charge storage layer (floating gate or charge trap layer), where the charge is being stored and the other two layers are the insulating layers that block the transfer of electrons to and from the middle layer. The insulating layer next to the substrate (called "tunneling" layer) is thin enough to allow the control of the tunneling of the charges to the substrate, i.e. the charging and discharging of the charge storage layer; the tunneling layer is usually SiO₂ (thermally grown on the Si) because of the unique stability of this material, a crucial property for this position in the stack. The second insulating layer, the "blocking" or "control" oxide, has also very critical properties for the operation of the memory cell, as this is the medium through which the current may flow to the gate electrode. The device operates with the application of a voltage to the top electrode; charge is then injected from the substrate into the charge storage layer. The presence of charge near the Si substrate affects its local conductivity; if we replace the gate stack of a Field Effect Transistor (FET) with this stack, we have a transistor that can also store a bit permanently (see Fig. 1); it will