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Preface

The theory of finite-dimensional division algebras witnessed several break-
throughs in the latter decades of the twentieth century. Important advances,
such as Amitsur’s construction of noncrossed product division algebras and
Platonov’s solution of the Tannaka–Artin problem, relied on an inventive use
of valuation theory, applied in the context of noncommutative rings. The
subsequent development of valuation theory for finite-dimensional division
algebras led to significant simplifications of the initial results and to a host
of new constructions of division algebras satisfying various conditions, which
shed much light on the structure of these algebras. In this research area, val-
uation theory has become a standard tool, for which this book is intended to
provide a useful reference.

The theory of valuations and valuation rings has been extended to division
rings in several different ways. We treat here only the most stringent of these
extensions, which is the one that has turned out to be most useful in appli-
cations. Thus, our valuations on division algebras are defined by the same
axioms as the (Krull) valuations on fields; hence they restrict to a valuation
in the classical sense on the center of the division ring. Yet, noncommutative
valuation theory has some significant features that give it a different flavor
from the commutative theory. Notably, there are many fewer valuations on
division algebras than on fields: A valuation always extends from a field F
to any field containing F ; often there are many such extensions. But if D is
a division algebra with center F and finite-dimensional over F , a valuation
on F extends to D if and only if it has a unique extension to every field
between F and D. Thus, very often it has no extension to D at all. But if
it does extend, then the extension is unique. Consequently, the presence of a
valuation on a division algebra D is a rather special phenomenon. When this
occurs, it often gives a great deal of information about D and its subalgebras
that can be virtually inaccessible for most division algebras. For this reason,
valuation theory has had some of its greatest success in the construction of
examples, such as noncrossed product algebras and division algebras with
nontrivial reduced Whitehead group SK1.

v
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Henselian valuations on fields and Henselizations play a role for general val-
uations analogous to that of complete valuations and completions for rank 1
valuations. Henselian valuations on the center are even more important in
the noncommutative theory because a Henselian valuation on a field F has
a unique extension to each field algebraic over F . Consequently, it extends
(uniquely) to each division algebra finite-dimensional over F . Much of the
work on valued division algebra has thus focussed on algebras over Henselian
fields. Also, notable results on arbitrary valued division algebras have been
obtained by first proving the Henselian case (e.g., “Ostrowski’s Theorem” on
the defect of valued division algebras).

Another distinctive feature of valuation theory on division algebras is a
greater complexity of the residue structure, and some notable interaction
between the residue algebra and the value group: There is a canonical action
of the value group of a valued division algebra on the center of its residue
division algebra. This provides an important piece of information even in the
most classical cases studied by Hasse in the 1930s, as it is related to the local
invariant of division algebras over local fields.

When division algebras are being investigated, simple algebras with zero
divisors frequently arise, e.g., as tensor products or scalar extensions of divi-
sion algebras. Therefore, it has been a drawback for noncommutative valua-
tion theory that valuations make sense only for division algebras: The basic
axiom that

v(ab) = v(a) + v(b) (∗)
breaks down if ab = 0 for nonzero a and b. A few years ago the authors
found a way to address this difficulty by defining a more general notion of
value function that we call a gauge, which can exist on a (finite-dimensional)
semisimple algebra A over a field F , with respect to a valuation on F . For
a function α on A to be a gauge, we replace the multiplicative condition (∗)
for a valuation with the following surmultiplicativity condition:

α(ab) ≥ α(a) + α(b) for all a, b ∈ A.

The filtration of A induced by α yields an associated graded algebra gr(A),
and gauges are distinguished among surmultiplicative value functions by a
condition on gr(A): This graded algebra must be graded semisimple, which
means that it has no nilpotent homogeneous ideals.

Gauges work remarkably well. They show good behavior with respect to
tensor products of algebras and scalar extensions. Moreover, there are natural
constructions of gauges on many symbol algebras, cyclic algebras, and crossed
product algebras. Additionally, over a Henselian base field, the gauges on the
endomorphism algebra of a vector space are exactly the operator norms that
are familiar in functional analysis.

Even for valuations on division algebras associated graded structures prove
particularly useful. They encapsulate all the information about the residue
algebra, the value group, and the canonical action of the value group on the
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center of the residue algebra. They should be regarded as a substantially
enhanced analogue of the residue algebra. Usually, when one passes from
a ring to an associated graded ring one obtains a simplified structure, but
at the price of significant loss of information about the original ring. With
valued division algebras, the graded ring is definitely simpler and easier to
work with than the original valued algebra, with surprisingly little lost in
the transition to the graded setting. Indeed, if the valuation on the center
is Henselian, we will see that under mild tameness conditions (which hold
automatically whenever the characteristic of the residue field is 0 or prime
to the degree of the division algebra) the graded algebra gr(D) associated to
a division algebra D determines D up to isomorphism; moreover, the graded
subalgebras of gr(D) then classify the subalgebras of D.

Graded structures are thus central to our approach of valuation theory.
Our general strategy is to prove results first in the graded setting, where
the arguments are often easier and more transparent. With gauges at our
disposal, the passage to the corresponding results for valued division algebras
is often very quick. To take full advantage of this method, we build a solid
foundation on graded algebras with grade set lying in a torsion-free abelian
group. It is worth pointing out that, in contrast with the classical theory,
which mostly deals with valuations with value group Z, our valuations take
their values in arbitrary totally ordered abelian groups. Valuations of higher
rank (i.e., with value group not embeddable in R) allow a greater richness in
the possible structure of the value group and of the residue algebra. Moreover,
new phenomena occur, such as totally ramified division algebras and algebras
with noncyclic center of the residue—these have been particularly important
in the construction of significant examples.

The material in this book can be roughly divided into three parts, which
we briefly outline below, referring to the introduction of each chapter for
additional information.

The first part consists of Chapters 1–4. They lay the groundwork for the
theory of valuations on finite-dimensional division algebras and its extension
to the theory of gauges on finite-dimensional semisimple algebras. The first
chapter introduces the fundamental notions associated with valuations on
division algebras and provides assorted examples. We view a valuation on
the algebra as an extension of a known valuation on its center. In Chapter 2,
the focus shifts to graded structures with a torsion-free abelian grade group.
Graded rings in which the nonzero homogeneous elements are invertible are
called graded division rings, because they display properties that are strik-
ingly similar to those of the usual division rings. We are thus led to introduce
graded vector spaces, and we develop a graded analogue of the Wedderburn
and Noether theory of simple algebras. In Chapter 3, we return to the theme
of valuations, which we extend to vector spaces and algebras over valued fields
in order to define gauges on semisimple algebras. This first part of the book
culminates in Chapter 4 with a determination of the necessary and sufficient
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condition for the existence of gauges. This condition involves the division al-
gebras Brauer-equivalent to the simple components of the semisimple algebra
after scalar extension to a Henselization of the base field: These division al-
gebras must each be defectless, which means that their dimension over their
center must be the product of the residue degree and the ramification index.
In particular, gauges always exist when the residue characteristic is zero.

The second part, comprising Chapters 5–7, addresses various topics related
to the Brauer group of valued fields. We first discuss graded field extensions
in Chapter 5, and review properties of valued field extensions from the per-
spective of their associated graded field extensions. Brauer groups of graded
fields and of valued fields form the subject of Chapter 6. Valuation-theoretic
properties define an ascending sequence of three subgroups of the Brauer
group Br(F ) of a valued field: the inertial part Br in(F ), the inertially split
part Br is(F ), and the tamely ramified part Brtr(F ). We use gauges to relate
these subgroups to corresponding subgroups of the Brauer group Br(gr(F ))
of the associated graded field gr(F ). The main result of this part of the
book yields for a Henselian field F a canonical index-preserving isomorphism
Brtr(F ) ∼−→ Br(gr(F )) mapping the Brauer class of a tame division algebra D
to the Brauer class of gr(D). We can then easily read off information about
the pieces of Brtr(F ) from the corresponding data about Br(gr(F )). The in-
ertial, or unramified part of the Brauer group is canonically isomorphic to
the Brauer group of the residue field: Br in(F ) ∼= Br(F ). The inertially split
part Br is(F ) consists of the classes of division algebras split by the maxi-
mal inertial (= unramified) extension field of F . We give a generalization
of Witt’s classical description of the Brauer group of a complete discretely-
valued field, in the form of a “ramification” isomorphism from the quotient
Br is(F )/Br in(F ) to a group of characters of the absolute Galois group of the
residue field F . The next quotient Brtr(F )/Br is(F ) is described in Chapter 7,
where division algebras totally ramified over their centers are thoroughly in-
vestigated. When the base field is Henselian, the properties of such algebras
can be read off from the extension of value groups, with the help of a canoni-
cal alternating pairing with values in the group of roots of unity of the residue
field. Since totally ramified division algebras arise only when the value group
has rank at least 2, such algebras have been relatively less studied in the
literature; yet their structure is very simple and explicit.

In the third part of the book, Chapters 8–12, we apply the preceding results
to investigate the structure of division algebras over Henselian fields, and we
present several applications. Following the same methodology as in previous
chapters, in Chapter 8 we first consider the structure of graded division alge-
bras; we then derive corresponding structure theorems for division algebras
over Henselian fields by relating the algebra to its associated graded algebra.
We thereby recover easily several results that have been previously established
by much more complicated methods. Historically, a primary application of
valuation theory has been in the construction of significant examples. Our
last four chapters are devoted to the presentation of such examples. In Chap-
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ter 9 we obtain information on the maximal subfields and splitting fields of
valued division algebras, and construct noncyclic division algebras with pure
maximal subfields, noncyclic p-algebras, and noncrossed product algebras.
Examples of division algebras that do not decompose into tensor products
of proper subalgebras are given in Chapter 10, and Chapter 11 discusses
reduced Whitehead group computations: We show that if D is a division al-
gebra tamely ramified over a Henselian field then SK1(D) ∼= SK1(gr(D)).
This leads to quick proofs of many formulas for SK1(D). Finally, we give
in Chapter 12 a modified version of recent results of Merkurjev and Baek–
Merkurjev using valuation theory to obtain lower bounds on the essential
dimension of central simple algebras of given degree and exponent.

The assumed background for this book is acquaintance with the classi-
cal theory of central simple algebras, together with a basic knowledge of the
valuation theory of fields, as given for example in Bourbaki, Algèbre Com-
mutative, Ch. VI. For the convenience of the reader, we have included an
appendix covering some of the more technical facts we need in commutative
valuation theory, especially concerning Henselian valuations and Henseliza-
tions. The theoretical aspects developed throughout the book are illustrated
by many examples, which are listed by chapter in another appendix.

We thank Mauŕıcio Ferreira for his collaboration on the material in §4.3.4.
In addition, we are grateful to Cécile Coyette, Mauŕıcio Ferreira, Timo Hanke,
and Mélanie Raczek for reading drafts of parts of the book and making many
valuable comments. A significant part of the book was written while the first
author was a Senior Fellow of the Zukunftskolleg of the Universität Konstanz
(Germany) between April 2010 and January 2012. He gratefully acknowl-
edges the excellent working conditions and stimulating atmosphere enjoyed
there, and the hospitality of Karim-Johannes Becher and the staff of the
Zukunftskolleg. He also acknowledges support from the Fonds de la Recherche
Scientifique–FNRS under grants n◦ 1.5181.08, 1.5009.11, and 1.5054.12.

A note on notation

As pointed out above, we compare throughout most of the book algebras
over valued fields and graded algebras. As a visual aid to help the reader de-
termine whether a given statement lies in the context of graded algebras, we
use sans serif letters (A, F, V, . . . ) to designate graded structures and asso-
ciated constructions. Thus, for instance EndD(V) denotes the graded algebra
of endomorphisms of the graded vector space V over the graded division al-
gebra D, and we write gr(D) for the graded algebra associated to the valued
division algebra D, and Br(F) for the Brauer group of a graded field F.

The blackboard bold symbols C, Fq, N, Q, Qp, R, and Z have their cus-
tomary meanings: the complex numbers, the finite field of cardinality q, the
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nonnegative integers, the rational numbers, the p-adic completion of Q, the
real numbers, and the integers.

Louvain-la-Neuve, La Jolla Jean-Pierre Tignol
June 2014 Adrian Wadsworth
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Chapter 1

Valuations on Division Rings

In this chapter we introduce the central object of study in this book: val-
uations on division algebras D finite-dimensional over their centers. In §1.1
we define valuations (not assuming finite-dimensionality of D) and describe
the associated structures familiar from commutative valuation theory: the
valuation ring OD, its unique maximal left and maximal right ideal mD,
the residue division algebra D, and the value group ΓD. While the residue
field Z(D) of the center of D lies in the center Z(D) of D, the inclusion is
often strict. We describe an important and distinctively noncommutative fea-
ture, namely a canonical homomorphism θD from ΓD to the automorphism
group Aut

(
Z(D)

/
Z(D)

)
; θD is induced by conjugation by elements of D×.

In §1.2 we focus on a division algebra D finite-dimensional over its cen-
ter F . We prove the “Fundamental Inequality” for valued division algebras.
We then look at valuations on D from the perspective of F . We show that
a valuation on F has at most one extension to D, and prove a criterion for
when such an extension exists. When this occurs, we show that Z(D) is a
finite-dimensional normal field extension of F and that θD is surjective. We
also describe the technical adjustments needed to apply the classical method
of “composition” of valuations to division algebras.

The filtration on D induced by a valuation leads to an associated graded
ring gr(D), which we describe in §1.3. Throughout the book we emphasize
use of gr(D) to help understand the valuation on D. We give many examples
of division algebras with valuations throughout the chapter.

1.1 Basic definitions and examples

The fundamental structures associated to valuations on division rings are
defined in §1.1.1, and illustrated in §1.1.2–§1.1.4 for several examples obtained
by various kinds of series constructions.
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J.-P. Tignol, A.R. Wadsworth, Value Functions on Simple Algebras,
and Associated Graded Rings, Springer Monographs in Mathematics,
DOI 10.1007/978-3-319-16360-4 1

1

http://dx.doi.org/10.1007/978-3-319-16360-4_1


2 1 Valuations on Division Rings

1.1.1 Valuations and associated structures

The valuations we consider on a division ring D are functions

v : D −→ Γ ∪ {∞}

where Γ is a totally ordered additive abelian group and ∞ is a symbol such
that γ <∞ and γ +∞ =∞+∞ =∞ for all γ ∈ Γ, subject to the following
conditions: for all x, y ∈ D,

(i) v(x) =∞ if and only if x = 0;
(ii) v(x+ y) ≥ min

(
v(x), v(y)

)
;

(iii) v(xy) = v(x) + v(y).

Thus, the restriction of v to the multiplicative group of units D× is a group
homomorphism D× → Γ. It readily follows that

v(1) = 0 and v(x−1) = −v(x) for all x ∈ D×.

Also, since Γ has no torsion, we have

v(−1) = 0 hence v(−x) = v(x) for all x ∈ D.

By writing x = (x+y)−y, it follows from (ii) that v(x) ≥ min
(
v(x+y), v(y)

)
;

hence, v(x+ y) = v(x) if v(y) > v(x). Therefore, we have for all x, y ∈ D

v(x+ y) = min
(
v(x), v(y)

)
if v(x) 
= v(y).

Associated to the valuation v there are the following structures:

� ΓD = v(D×), the value group of v, which is a subgroup of Γ;
� OD = {x ∈ D | v(x) ≥ 0}, which is a subring of D called the valuation

ring of D;
� mD = {x ∈ D | v(x) > 0}, which is a two-sided ideal that is the unique

maximal left and maximal right ideal of OD since the group of units in
OD is O×

D = {x ∈ D | v(x) = 0} = OD \mD;
� D = OD/mD, the residue division ring.

If we need to specify the valuation on D, we will write ΓD,v, OD,v, mD,v,

and D
v
. But most of the time we will be considering only one valuation

on D, and the simpler notation will suffice.
For x ∈ OD we let x be the image of x in D,

x = x+mD ∈ D.

A distinctive feature of noncommutative valuation theory is the interac-
tion between the value group and the residue division ring, which takes the
following form: any valuation v on a division ring D restricts to a valuation
on its center Z(D), and we may consider Z(D) ⊆ D. Clearly, we have

Z(D) ⊆ Z(D).
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Certain automorphisms of this field extension are associated to elements in
the value group: any d∈D×determines the inner automorphism int(d) :D→D
given by x �→ dxd−1. Since v

(
int(d)(x)

)
= v(x), we have

int(d)(OD) = OD and int(d)(mD) = mD,

so int(d) induces an automorphism int(d) of D, hence by restriction an
automorphism of Z(D) fixing every element of Z(D). If v(d) = 0, then
int(d) = int(d), and the restriction of int(d) to Z(D) is the identity. Thus,
conjugation induces a group homomorphism mapping D×/O×

D to

Aut
(
Z(D)

/
Z(D)

)
. On the other hand, v induces an isomorphism

D×/O×
D

∼−→ ΓD, so there is a well-defined group homomorphism

θD : ΓD −→ Aut
(
Z(D)

/
Z(D)

)
, (1.1)

which can be described as follows: for any γ ∈ ΓD and any d ∈ D× with
v(d) = γ and any x ∈ OD with x ∈ Z(D),

θD(γ)(x) = dxd−1.

We call θD the canonical homomorphism of the valuation v on D. It is clear
that ΓZ(D) ⊆ ker θD, so we may also consider the induced homomorphism

θD : ΓD/ΓZ(D) −→ Aut
(
Z(D)

/
Z(D)

)
.

1.1.2 Examples: twisted Laurent series

Let A be a division ring, and let σ be an automorphism of A. The twisted
Laurent series ring A((x;σ)) is defined as the set of formal series

∞∑

i=k

aix
i, where k ∈ Z and ai ∈ A for all i.

The addition is defined as usual, and multiplication is given by
∑

i

aix
i ·

∑

j

bjx
j =

∑

i,j

aiσ
i(bj)x

i+j for ai, bj ∈ A.

Let D = A((x;σ)). For d =
∑∞

i=k aix
i ∈ D, let

supp(d) = {i ∈ Z | ai 
= 0} and vx(d) = min
(
supp(d)

)
(so vx(0) =∞).

If vx(d) > 0, then the element 1 + d+ d2 + . . . is defined in D, and

(1− d)(1 + d+ d2 + . . .) = 1 = (1 + d+ d2 + . . .)(1− d),

so 1 − d is invertible. It is then easy to see that D is a division ring: for an
arbitrary nonzero element d =

∑∞
i=k aix

i with ak 
= 0, we have

σ−k(a−1
k )x−kd = x−ka−1

k d = 1− d0
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and
dσ−k(a−1

k )x−k = dx−ka−1
k = 1− d1

for some d0, d1 ∈ D with vx(d0), vx(d1) > 0. As 1 − d0 and 1 − d1 are
invertible, it follows that d is invertible. Therefore, D is a division ring. It is
easy to check that vx is a valuation on D with ΓD = Z. It is known as the
x-adic valuation on D. Clearly D = A.

A series
∑∞

i=k aix
i ∈ D lies in the center of D if and only if it commutes

with x and centralizes A. Therefore,

Z(D) =
{ ∞∑

i=k

aix
i | σ(ai) = ai and bai = aiσ

i(b) for all i and all b ∈ A
}
.

In particular, the residue field of Z(D) is the subfield of Z(A) fixed under σ,

Z(D) = Z(A)σ.

The homomorphism θD : Z→ Aut(Z(A)/Z(A)σ) maps 1 ∈ Z to σ|Z(A).

1.1.3 Examples: iterated Laurent series

The construction above can of course be iterated: if τ is an automorphism
of A((x;σ)) we may consider the division ring A((x;σ))((y; τ)). This division
ring carries the y-adic valuation vy with value group Z, but it also has a
composite valuation vx ∗ vy with value group Z

2, as we will see shortly. We
will make use of the following result:

Proposition 1.1. Every automorphism τ of A((x;σ)) preserves the x-adic
valuation vx, i.e., vx ◦ τ = vx.

Proof. We need to show that vx
(
τ(d)

)
= vx(d) for all d ∈ A((x;σ)). We

proceed in four steps:

Step 1: If vx(d) > 0, then vx
(
τ(d)

)
≥ 0. Let n be any positive integer

prime to the characteristic of A. By substituting d for the variable X in the
Taylor expansion of the function n

√
1 +X, we obtain a series s ∈ A((x;σ))

such that sn = 1 + d, hence also τ(s)n = 1 + τ(d). If vx
(
τ(d)

)
< 0, this

equality shows that vx
(
τ(d)

)
= n vx

(
τ(s)

)
∈ nZ. This relation cannot hold

for infinitely many integers n, hence it is impossible that vx
(
τ(d)

)
< 0.

Step 2: If vx(d) = 0, then vx
(
τ(d)

)
= 0. Suppose instead that vx

(
τ(d)

)

= 0.

We may then find an integer z ∈ Z such that z vx
(
τ(d)

)
< −vx

(
τ(x)

)
. Then

vx
(
τ(dzx)

)
= z vx

(
τ(d)

)
+ vx

(
τ(x)

)
< 0 while vx(d

zx) = 1, a contradiction
to step 1.

Step 3: If d 
= 0, then vx
(
τ(d)

)
= vx(d)vx

(
τ(x)

)
. Let z = vx(d). We

have vx(d
−1xz) = 0; hence step 2 yields vx

(
τ(d−1xz)

)
= 0, and it follows

that vx
(
τ(d)

)
= z vx

(
τ(x)

)
.
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Step 4: vx
(
τ(x)

)
= 1. Step 1 shows that vx

(
τ(x)

)
≥ 0, and step 3 shows

that vx
(
τ(x)

)
divides vx

(
τ(d)

)
for all nonzero d ∈ A((x;σ)). Since τ is onto,

vx
(
τ(x)

)
divides every integer, so vx

(
τ(x)

)
= 1.

The proposition follows from steps 3 and 4. ��

One way to build an automorphism on A((x, σ)) is by extending an auto-
morphism of A:

Lemma 1.2. Suppose ρ is an automorphism of A, and suppose there is a
b ∈ A× with int(b)σρ = ρσ. Then, there is an automorphism ρ̂ of A((x;σ))
with ρ̂|A = ρ and ρ̂(x) = bx.

Proof. Define ρ̂ by ρ̂
(∑∞

i=k aix
i
)
=

∑∞
i=k ρ(ai)(bx)

i. The hypothesis on b
implies that (bx)ρ(c) = ρσ(c)(bx) and (bx)−1ρ(c) = ρσ−1(c)(bx)−1. Hence,
by upward and downward induction on i,

(bx)iρ(c) = ρσi(c) (bx)i for all i ∈ Z, c ∈ A. (1.2)

Clearly ρ̂(1) = 1 and ρ̂(s + t) = ρ̂(s) + ρ̂(t) for all s, t ∈ A((x;σ)). To verify
that ρ̂(st) = ρ̂(s)ρ̂(t), it suffices to check this for monomials. Say s = axi and
t = cxj with a, c ∈ A, i, j ∈ Z. Then, using (1.2),

ρ̂(st) = ρ̂
(
aσi(c)xi+j

)
= ρ(a)ρσi(c)(bx)i+j

=
[
ρ(a)(bx)i

][
ρ(c)(bx)j

]
= ρ̂(s) ρ̂(t),

as desired. ��

Now, fix some automorphism τ of A((x;σ)) and consider the division
ring E = A((x;σ))((y; τ)). Let vx be the x-adic valuation on A((x;σ)) and
vy the y-adic valuation on E. For any nonzero series s =

∑∞
i=k diy

i ∈ E with
di ∈ A((x;σ)) define

vx,y(s) = (vx(dk), k) ∈ Z
2 if dk 
= 0.

Let also vx,y(0) = ∞. If s = dky
k +

∑
i>k diy

i and s′ = d′�y
� +

∑
j>� d

′
jy

j ,
then

ss′ = dkτ
k(d′�)y

k+� +
∑

i+j>k+�

diτ
i(d′j)y

i+j .

Since vx
(
dkτ

k(d′�)
)
= vx(dk) + vx(d

′
�) by Prop. 1.1, we have

vx,y(ss
′) = vx,y(s) + vx,y(s

′).

It is also easy to see that vx,y(s+s′) ≥ min
(
vx,y(s), vx,y(s

′)
)
when Z

2 is given
the right-to-left lexicographic ordering: indeed we have vx,y(x + y) = (1, 0),
hence (1, 0) < (0, 1). The map vx,y is thus a valuation on E with value
group Z

2. It is called the (x, y)-adic valuation, which is the composite vx ∗ vy
of the y-adic valuation vy on E and the x-adic valuation vx on the residue

division ring E
vy

= A((x;σ)). See Exercise 1.2 for a general construction of
composite valuations on division rings of Laurent series.
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With a view toward the general construction of Mal’cev–Neumann series
below, observe that the nonzero elements in E are formal series
s =

∑
i,j ai,jx

iyj (with ai,j ∈ A) for which the set S = {(i, j) ∈ Z
2 | ai,j 
= 0},

called the support of s, has a characteristic property with respect to the right-
to-left lexicographic ordering on Z

2: it has a minimum, which is vx,y(s), but
also every subset of S has a minimum because for (i, j) ∈ S there are only
finitely many k ∈ Z such that k ≤ i and (k, j) ∈ S. This property is expressed
by saying that the set S is well-ordered for the right-to-left lexicographic or-
dering. Conversely, if S ⊂ Z

2 is any nonempty well-ordered subset, then the
series

∑
(i,j)∈S ai,jx

iyj lies in E for any choice of the coefficients ai,j ∈ A.

This construction can be used inductively to obtain iterated twisted Lau-
rent series rings with a valuation with value group Z

n, for any integer n ≥ 1.
As a typical example, consider a fieldM with a family σ = (σi)

n
i=1 of pairwise

commuting automorphisms, and fix a collection u = (ui,j)
n
i,j=1 of elements

in M× subject to the following conditions:

ui,i = 1, ui,juj,i = 1, ui,juj,kuk,i = σk(ui,j)σi(uj,k)σj(uk,i) (1.3)

for all i, j, k = 1, . . . , n. Consider the division ring of iterated Laurent series

L((M ;σ,u)) = M((x1;σ1))((x2; σ̂2)) . . . ((xn; σ̂n)), (1.4)

where the automorphism σ̂i of M((x1;σ1))((x2; σ̂2)) . . . ((xi−1; σ̂i−1)) is de-
fined for i = 2, . . . , n by

σ̂i

(∑
mk1...ki−1x

k1
1 . . . x

ki−1

i−1

)
=

∑
σi(mk1...ki−1)(ui,1x1)

k1. . .(ui,i−1xi−1)
ki−1 .

To see that σ̂i is an automorphism, assume inductively that σ̂2, . . . , σ̂i−1 are
automorphisms, and let

A0 = M and Aj = M((x1;σ1))((x2; σ̂2)) . . . ((xj ; σ̂j))

for 1 ≤ j ≤ i− 1, and let σi,j = σ̂i|Aj . Then, σi,0 is the automorphism σi

on M . For � with 1 ≤ � ≤ i− 1, assume σi,�−1 is an automorphism of A�−1.
We apply Lemma 1.2 to A� = A�−1((x�; σ̂�)) with ρ = σi,�−1 and b = ui,� to
see that ρ̂ = σi,� is an automorphism of A�. For this we need

int(ui,�) σ̂� σi,�−1(a) = σi,�−1 σ̂�(a) for all a ∈ A�−1. (1.5)

It suffices to check this equality for a ∈ M and a = xj for 1 ≤ j ≤ � − 1.
It holds for a ∈ M as M is commutative, σ̂�|M = σ�, σi,�−1|M = σi, and
σiσ� = σ�σi. For a = xj , (1.5) becomes

ui,� σ�(ui,j,)u�,j xj u
−1
i,� = σi(u�,j)ui,j xj ,

which holds by (1.3) as xju
−1
i,� = σj(u

−1
i,� )xj and M is commutative. Thus,

by induction on �, σ̂i = σi,i−1 is an automorphism of Ai−1. Note that the
fundamental relations in L((M ;σ,u)) are

xim = σi(m)xi and xixj = ui,jxjxi for all m ∈M and i, j = 1, . . . , n.
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For simplicity, let D = L((M ;σ,u)). The ring D carries the (x1, . . . , xn)-
adic valuation vx1,...,xn with value group Z

n given the right-to-left lexico-
graphic ordering. This is the total ordering in which

(r1, . . . , rn) < (s1, . . . , sn) just when

{
there is an � with r� < s�
and rj = sj for �+ 1 ≤ j ≤ n.

Since Zn with this ordering is discrete of rank n as an ordered abelian group,
the valuation vx1,...,xn is discrete of rank n. (See the review of ranks for
valuations in §A.4 of Appendix A, and Remark A.34 on discrete valuations.)
The residue ring ofD isD = M (= Z(D)). A series inOD∩Z(D) has constant
term fixed under σ1, . . . , σn, hence Z(D) is the subfield of M fixed under
σ1, . . . , σn. The map θD : Zn → Aut(Z(D)

/
Z(D) ) carries (i1, . . . , in) ∈ Z

n

to σi1
1 . . . σin

n .

1.1.4 Examples: Mal’cev–Neumann series

All the examples above are particular cases of the following general construc-
tion due to Mal’cev and Neumann (see Cohn [55, §2.4] or Lam [121, §14]):
let Γ be an arbitrary totally ordered abelian group and let D be an arbitrary
division ring. Let f : Γ × Γ → D× and ω : Γ → Aut(D) be maps satisfying
the following properties:

ωγ

(
f(δ, ε)

)
f(γ, δ + ε) = f(γ, δ)f(γ + δ, ε) for all γ, δ, ε ∈ Γ, (1.6)

ωγ ◦ ωδ(d) = f(γ, δ)ωγ+δ(d)f(γ, δ)
−1 for all γ, δ ∈ Γ and d ∈ D, (1.7)

and moreover

ω0 = idD, f(0, γ) = f(γ, 0) = 1 for all γ ∈ Γ. (1.8)

Define the support of a map ϕ : Γ→ D by

supp(ϕ) = {γ ∈ Γ | ϕ(γ) 
= 0}.

In the additive group F(Γ, D) of all maps Γ→ D, the set Fwo(Γ, D) of maps
with well-ordered support is a subgroup. The following modified convolution
product is well-defined for ϕ, ψ ∈ Fwo(Γ, D):

(ϕ ∗ ψ)(γ) =
∑

δ∈Γ

ϕ(δ)ωδ

(
ψ(γ − δ)

)
f(δ, γ − δ) for γ ∈ Γ,

because the sum on the right has only finitely many nonzero terms. For if the
set supp(ϕ)∩(γ−supp(ψ)) were infinite, it would contain a strictly increasing
infinite sequence δ1 < δ2 < . . ., as supp(ϕ) is well-ordered; but then supp(ψ)
would contain the strictly descending infinite sequence γ− δ1 > γ− δ2 > . . .,
contradicting the well-ordering of supp(ψ). Moreover, see Cohn [55, p. 75] or
Lam [121, p. 243], ϕ ∗ ψ ∈ Fwo(Γ, D), and the sum and convolution product
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define a ring structure on Fwo(Γ, D); we use the notation D((Γ;ω, f)) for this
ring to emphasize the dependence on the maps ω and f . Mapping each d ∈ D
to the map ϕd such that ϕd(0) = d and ϕd(γ) = 0 for γ 
= 0 yields an
identification of D with a subring of D((Γ;ω, f)).

To make the definition of the multiplication in D((Γ;ω, f)) more trans-
parent, it is useful to change notation. For each γ ∈ Γ we let zγ denote an
indeterminate. Each ϕ ∈ F(Γ, D) is identified with a formal series as follows:

ϕ =
∑

γ∈Γ

ϕ(γ)zγ (=
∑

γ∈supp(ϕ)

ϕ(γ)zγ).

The multiplication in D((Γ;ω, f)) is then
(∑

γ∈Γ

ϕ(γ)zγ
)
·
(∑

δ∈Γ

ψ(δ)zδ
)

=
∑

γ,δ∈Γ

ϕ(γ)ωγ

(
ψ(δ)

)
f(γ, δ)zγ+δ.

We have z0 = 1 in D((Γ;ω, f)), and each element d ∈ D is identified with
dz0 ∈ D((Γ;ω, f)). Thus, we have

zγ · d = ωγ(d) · zγ and zγ · zδ = f(γ, δ)zγ+δ for γ, δ ∈ Γ and d ∈ D.

Define a map v : D((Γ;ω, f))→ Γ ∪ {∞} by

v(ϕ) = min(supp ϕ) for ϕ ∈ D((Γ;ω, f))

(and v(0) = min(∅) = ∞). It is easy to see that this map satisfies all the
conditions that define a valuation, so D((Γ;ω, f)) has no zero divisors. If
ϕ ∈ D((Γ;ω, f)) satisfies v(ϕ) > 0, then with some effort one can prove that
the set

⋃
n∈N

supp(ϕn) is well-ordered (see Cohn [55, Lemma 2.4.3, Th. 2.4.4,
pp. 73–75] or Lam [121, Lemma 14.22(1), p. 244]); hence,

∑
n∈N

ϕn ∈
D((Γ;ω, f)), and it is easy to check that

∑∞
n=0 ϕ

n = (1 − ϕ)−1. Arguing as
for twisted Laurent series at the beginning of this subsection, one can then
see that D((Γ;ω, f)) is a division ring, and v is a valuation on D((Γ;ω, f)).
Its value group is Γ and the residue division algebra is D. The map θD((Γ;ω,f))

carries each γ ∈ Γ to ωγ |Z(D).

Let D be any division ring and let Γ be a totally ordered abelian group.
Note that if we let ω : Γ → Aut(D) be the trivial homomorphism, and
define 1 : Z× Z→ D× by 1(γ, δ) = 1 for all γ, δ ∈ Γ, then ω and 1 satisfy
conditions (1.6)–(1.8). The resulting Mal’cev–Neumann ring D((Γ, ω,1)) has
value group Γ. Thus, every totally ordered group Γ is the value group of
some division algebra. If we take D = F , a field, and Γ = Z

n with right-
to-left lexicographic ordering, then F ((Zn, ω,1)) can be identified with the
n-fold iterated Laurent series field:

F ((Zn, ω,1)) = F ((x1)) . . . ((xn)).

If τ is an automorphism of D and Γ = Z, we define ω : Z → Aut(D) and
1 : Z× Z→ D× by ωγ = τγ and 1(γ, δ) = 1 for all γ, δ ∈ Z. With this choice,
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ω and 1 satisfy the conditions (1.6)–(1.8), and the Mal’cev–Neumann ring
D((Z;ω,1)) can be identified with a division ring of Laurent series:

D((Z;ω,1)) = D((z1; τ)).

Similarly, rings of n-fold iterated twisted Laurent series can be identified with
Mal’cev–Neumann rings with Γ = Z

n.

1.2 Valuations on finite-dimensional division algebras

After proving in §1.2.1 a fundamental inequality relating the dimension of
an extension of valued division rings to the product of the ramification in-
dex and residue degree, we focus in this section on division rings D that are
finite-dimensional algebras over a field F , viewed as a subfield of the cen-
ter Z(D). Any valuation w on D restricts to a valuation v on F , and we may
consider w as an extension of v. Thus, we may try to define valuations on D
by extending a given valuation on F . A necessary and sufficient condition
for the existence of such an extension is given in §1.2.2: see Th. 1.4. This
condition features one of the most striking differences between commutative
and noncommutative valuation theory: recall that for any extension field L
of F , the valuation v extends to a valuation on L; often there are many such
extensions. By contrast, Th. 1.4 below shows that a valuation on the cen-
ter of a division algebra D has at most one extension to D, but may have
none at all. Likewise, a composition of valuations cannot be defined without
an added condition, which is given in §1.2.3. We conclude this section with
various examples in §1.2.4–§1.2.9.

1.2.1 The fundamental inequality

Let D be a division ring with valuation v, and let E be any sub-division ring
of D. Then the restriction v|E of v to E is clearly a valuation on E, and we
have

ΓE ⊆ ΓD, OE = OD ∩ E, and mE = mD ∩ E;

hence, there is a canonical injection E ↪→ D, which we will treat as an
inclusion. We write [D :E]� (resp. [D :E]r) for the dimension of D as a left
(resp. right) E-vector space.

Proposition 1.3 (Fundamental Inequality).

[D :E]� |ΓD :ΓE | ≤ [D :E]� and [D :E]r |ΓD :ΓE | ≤ [D :E]r.

Proof. We prove only the left inequality. The proof of the right one is analo-

gous. Pick {di}i∈I ⊆ O×
D such that the images {di}i∈I ⊆ D

×
form a base of
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D as a left E-vector space. Also pick a set of coset representatives {δj}j∈J

of ΓE in ΓD, and for each j choose some cj ∈ D with v(cj) = δj . To verify
the inequality of the proposition, we show that {dicj}i∈I j∈J is left E-linearly
independent in D.

For this, suppose {i1, . . . , ir} ⊆ I and {j1, . . . , js} ⊆ J are finite subsets
and {ak� | 1 ≤ k ≤ r, 1 ≤ � ≤ s} is a set of elements in E. We want to show

r∑

k=1

s∑

�=1

ak�dikcj� = 0 implies ak� = 0 for all k, �.

For � = 1, . . . , s, let

b� =
r∑

k=1

ak�dik and γ� = min{v(ak�) | 1 ≤ k ≤ r} ∈ ΓE ∪ {∞}.

We claim that v(b�) = γ� for all �. Assuming this equation holds, we have

v(b�cj�) = γ� + δj� ≡ δj� (mod ΓE) if b� 
= 0.

Because the v(b�cj�) are thus distinct for those � with b� 
= 0, we have

v
(∑

k,�

ak�dikcj�
)
= v

(∑

�

b�cj�
)
= min

1≤�≤s
v(b�cj�) = min

1≤�≤s
(γ� + δ�).

Therefore, if
∑

ak�dikcj� = 0 we must have γ� =∞ for all �, i.e., ak� = 0 for
all k, �, and the proof is complete.

To prove the claim, suppose γ� 
=∞. By reordering i1, . . . , ir, we may as-

sume v(a1�) = γ�. The E-independence of the di shows
∑r

k=1 a
−1
1� ak� dik 
= 0;

hence, v
(
a−1
1�

∑r
k=1 ak�dik

)
= 0 and therefore

v(b�) = v
( r∑

k=1

ak�dik
)
= v(a1�) = γ�,

proving the claim. ��

1.2.2 Extension of a valuation from the center

Our focus henceforward will be on division rings that are finite-dimensional
algebras over a field. Let v : F → Γ ∪ {∞} be a valuation on a field F . By
replacing Γ by its divisible hull Γ⊗Z Q (to which the ordering on Γ extends
uniquely compatibly with the group structure), we may assume at the outset
that Γ is divisible. Let D be a finite-dimensional division F -algebra. If v ex-
tends to a valuation w on D, then the fundamental inequality (Prop. 1.3)
shows that |w(D×):v(F×)| < ∞. Since Γ is divisible and torsion-free, the
inclusion ΓF = v(F×) ↪→ Γ therefore extends uniquely to a monomorphism
ι : w(D×) ↪→ Γ. Moreover, ι is order-preserving, since the ordering on w(D×)
is determined by the ordering on ΓF . Therefore, we may assume without loss



1.2 Valuations on finite-dimensional division algebras 11

of generality that all valuations extending v to a finite-dimensional division
algebra over F take their values in the divisible group Γ.

Throughout this section, we fix a valuation v : F → Γ ∪ {∞} where Γ is
a divisible totally ordered abelian group, and we refer to the pair (F, v) as a
valued field. The division algebras with center F are called central division
algebras over F ; they are always assumed to be finite-dimensional over F .

Theorem 1.4. Let (F, v) be a valued field and let D be a (finite-dimensional)
central division algebra over F . The valuation v extends to a valuation w on D
if and only if v has a unique extension to each field L with F ⊆ L ⊆ D. When
this condition holds, the valuation w is unique and is given in terms of the
reduced norm Nrd and the index ind(D) =

√
[D :F ] by the formula

w(x) = 1
ind(D) v

(
Nrd(x)

)
for x ∈ D×. (1.9)

Moreover, OD = {x ∈ D | x is integral over OF }.

The main technical tool for the proof is Wedderburn’s Factorization The-
orem on the minimal polynomial of elements in D. Before proving Th. 1.4 we
gather its main consequences in the following proposition:

Proposition 1.5. Let D be a central division F -algebra. Suppose w is a val-
uation on D extending v and let P ⊆ Z(D) be the purely inseparable closure
of F in Z(D).

(i) For all a ∈ D× we have v
(
Nrd(a)

)
= ind(D)w(a).

(ii) Every element in OD is integral over OF .
(iii) The field extension Z(D)/F is normal.
(iv) P = Z(D)θD(ΓD), the subfield fixed under θD(ΓD) (where θD is defined

in (1.1)).
(v) Z(D)/P is Galois with abelian Galois group θD(ΓD).

Proof. Let a ∈ D× and let f(X) = Xn + αn−1X
n−1 + . . . + α0 ∈ F [X]

be the minimal polynomial of a over F . Thus, n = [F (a):F ] and

Nrd(a) = (−1)ind(D)α
ind(D)/n
0 , so v

(
Nrd(a)

)
= ind(D)

n v(α0). By Wedderburn’s
Factorization Theorem (see Lam [121, Th. 16.9, p. 265]), we may find conju-
gates of a,

a1 = d1ad
−1
1 , . . . , an = dnad

−1
n

such that f(X) = (X − a1) . . . (X − an). In particular, α0 = (−1)na1 . . . an.
Since w(ai) = w(a) for all i, it follows that v(α0) = nw(a); hence,
v
(
Nrd(a)

)
= ind(D)w(a), proving (i).

If a ∈ OD, then ai ∈ OD for all i; hence, f(X) ∈ OD[X]∩F [X] = OF [X],
and (ii) follows.

Now, suppose a ∈ OD and a ∈ Z(D). By definition of θD we have

ai = θD
(
w(di)

)
(a) ∈ Z(D);
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hence, f(X) splits in Z(D)[X]. The minimal polynomial of a over F also
splits over Z(D) since it divides f , hence (iii) is proved.

Assuming a ∈ Z(D)θD(ΓD), we have ai = a for all i, hence f(X) = (X−a)n
and a is purely inseparable over F . Thus, Z(D)θD(ΓD) ⊆ P . Statements
(iv) and (v) then readily follow by Galois theory. ��

For the proof of Th. 1.4, we also need the following lemma:

Lemma 1.6. Let L be a finite-degree field extension of F . If v has a unique
extension to a valuation w on L, then for each x ∈ L we have

v(NL/F (x)) = [L:F ]w(x),

where NL/F denotes the norm from L to F .

Proof. Let K be a normal closure of L over F , and let v′ be any extension
of v to K. We have NL/F (x) = x1 . . . xn where n = [L:F ] and each xi is a
conjugate of x in K. For each i, there is an F -automorphism σi of K with
σi(x) = xi. Since v

′◦σi|L is a valuation of L extending v, we have v′◦σi|L = w.
Hence, v′(xi) = v′(σi(x)) = w(x). Thus,

v(NL/F (x)) = v′(NL/F (x)) = v′(x1) . . . v
′(xn) = [L:F ]w(x). ��

Proof of Th. 1.4. Suppose v has a unique extension to each field L with
F ⊆ L ⊆ D. We show that the formula (1.9) defines a valuation onD. Clearly,
w(x) =∞ if and only if x = 0, and w(xy) = w(x) + w(y) for x, y ∈ D since
Nrd(xy) = Nrd(x)Nrd(y). To prove w(x+y) ≥ min

(
w(x), w(y)

)
for x, y ∈ D,

we may of course assume y 
= 0. Since w(x + y) = w(xy−1 + 1) + w(y) and
w(x) = w(xy−1) + w(y), it suffices to show

w(xy−1 + 1) ≥ min(w(xy−1), 0). (1.10)

Let L ⊆ D be any maximal subfield containing xy−1. Since NL/F = Nrd|L,
Lemma 1.6 shows that w|L is the unique valuation on L extending v. There-
fore, (1.10) holds and w is a valuation on D.

Now, suppose v extends to a valuation w on D. Proposition 1.5(i) yields
the formula (1.9), which shows that w is unique. If a ∈ D is integral over OF ,
then we have

an = αn−1a
n−1 + . . .+ α0 for some n ≥ 1 and some αn−1, . . . , α0 ∈ OF .

If w(a) < 0, then w(an) < w(αia
i) for i = 0, . . . , n − 1, and the equality

above is impossible. Therefore, a ∈ OD. By Prop. 1.5(ii), it follows that
OD consists of the elements in D that are integral over OF . Likewise, for any
field L with F ⊆ L ⊆ D the valuation ring OL of w|L is integral over OF .
But in any finite degree field extension of F the integral closure of OF is the
irredundant intersection of the valuation rings of all the extensions of v to L,
see Engler–Prestel [73, Cor. 3.1.4, p. 60; Lemma 3.2.8, p. 64]. The integrality
of OL over OF therefore implies that w|L is the only extension of v to L. ��
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Theorem 1.4 indicates the importance of Henselian valuations in the valua-
tion theory of division algebras. Recall that the valuation v on F is Henselian1

if and only if v has a unique extension to each field L algebraic over F ; the
extension of v to L is also clearly Henselian. Thus we have the following
corollary to Th. 1.4:

Corollary 1.7. Let D be a division algebra finite-dimensional over F . If v is
a Henselian valuation on F , then v has a unique extension to a valuation
on D.

Proof. Let L be the center of D. Since [L:F ] <∞, v has a unique extension
to a valuation vL of L, and vL is Henselian. Therefore, by Th. 1.4, vL has a
unique extension to a valuation vD on D. Then, vD is the unique extension
of v to D, since any valuation on D restricts to a valuation on L. ��

1.2.3 Composite valuations

When F is a field, we can “compose” a valuation v on F with any valuation
u on F

v
to obtain a valuation u∗v on F that is a refinement of v. This is the

valuation whose ring is π−1(OF
v
,u), where π : OF,v → F

v
is the canonical

surjection; see Engler–Prestel [73, p. 45]. For valuations on a division algebra,
such a composition is possible only with an added condition:

Proposition 1.8. Let D be a central division algebra over F and let w be a
valuation on D. Let u be a valuation on D

w
. Then, the composite valuation

u|Fw ∗ w|F on F extends to a valuation on D if and only if u has a unique

extension from F
w
to Z(D

w
). When this extension exists, its valuation ring

is π−1(OD
w
,u), where π : OD,w → D

w
is the canonical surjection.

Here is why the added condition is needed: While the ring V = π−1(OD
w
,u)

is always a total valuation ring of D, i.e., d or d−1 lies in V for all d ∈ D×,
this V need not have the further property of being stable under inner auto-
morphisms, which is required for V to be the valuation ring of a valuation
on D. The added condition in Prop. 1.8 is equivalent to: dV d−1 = V for
all d ∈ D×.

Proof of Prop. 1.8. We write D for D
w
and F for F

w
throughout the proof.

Let z be the valuation u|Fw ∗ w|F on F . Suppose z extends to a valuation v
on D. Take any element of D, and write it as d for some d ∈ OD,w. Let L be

the field F (d), and set L = L
w
. If u′ is any valuation on L with u′|F = u|F ,

then u′ ∗w|L and u|L ∗w|L are each valuations on L extending v|F = z. Since

1 Properties of Henselian valuations and Henselizations are reviewed in Appendix A.
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z on F extends to v on D, by Th. 1.4 z has a unique extension to L. Hence,
u′ ∗ w|L = v|L = u|L ∗ w|L; therefore, u′ must coincide with u|L, since they
each have the valuation ring π(OL,v). Thus, u|L is the unique extension of
the valuation u|F on F to L. Therefore, u|F extends uniquely to F (d) ⊆ L.
It follows that u|F must extend uniquely to Z(D), since different extensions
to Z(D) would restrict to different extensions to F (d) for some d ∈ Z(D).
The valuation ring OD,v is the union of its restrictions, OD,v =

⋃
L∈LOL,v,

where L = {fields F (d) | d ∈ D}. But we saw above that v|L = u|L ∗ w|L for
all L ∈ L; hence, OL,v = π−1(OL,u) ∩ L. Thus,

OD,v =
⋃

L∈L

(
π−1(OL,u) ∩ L

)
= π−1(OD,u).

Conversely, suppose u|Z(D) is the unique extension of u|F to Z(D). Let

K be any subfield of D. By Th. 1.4, u|KZ(D) is the unique extension of the

valuation u|Z(D) from Z(D) to the subfield KZ(D) of D. Hence, u|K must

be the unique extension of u|F from F to K. Now, let M be any field with
F ⊆ M ⊆ D, and let y be a valuation on M extending z (= u|F ∗ w|F )
on F . Since w|F is a coarsening of z, there is a prime ideal p of OM,y with
p∩OF,z = mF,w, which is a prime ideal of OF,z. Then, y = ũ ∗ w̃, where w̃ is
the valuation on M with valuation ring the localization (OM,y)p of OM,y at p

and ũ is the valuation on M
w̃

with ring OM,y/p. Since OM,w̃ ∩ F = OF,w,
this w̃ is an extension of w|F toM . Hence, as w|F extends toD, Th. 1.4 shows

that w̃ = w|M , so M
w̃
= M

w
. Thus, ũ is an extension of u|F from F to M

w
.

We saw above that the only such extension is u|Mw . Hence, y = u|M w ∗w|M ,
which shows that z has a unique extension from F to M . Since this is true for
each subfield M of D, Th. 1.4 shows that z extends to a valuation on D. ��

Remark 1.9. The composite valuation v of Prop. 1.8 is denoted by u ∗ w.
Note that D

u∗w
= D

w u

and we have a short exact sequence of ordered
abelian groups

0 −→ ΓD
w
,u −→ ΓD,u∗w −→ ΓD,w −→ 0. (1.11)

If there is an ordered group homomorphism ΓD,w → ΓD,u∗w that is a splitting
map for (1.11), then we have an ordered group isomorphism

ΓD,u∗w ∼= ΓD
w
,u × ΓD,w,

where the direct product is given the right-to-left lexicographic ordering (de-
fined by (γ, δ) ≤ (γ′, δ′) if and only if either δ < δ′, or δ = δ′ and γ ≤ γ′). We
saw a case of this when we discussed iterated Laurent series in §1.1.3. This
construction will also be used in Ex. 7.77.

If v is a valuation on D and w is any coarser valuation, i.e., OD,w ⊇ OD,v,

then there is a “residue valuation” on D
w

with associated valuation ring
OD,v/mD,w. This ring is invariant under inner automorphisms of D

w
since


