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Preface

In recent years, plant breeding has experienced a revolution. Because of a reduction
in genotyping costs and single-nucleotide polymorphisms, it is possible to obtain a
large amount of genotypic data in a short time. This flood of genomic information
has triggered the development of new strategies for the integration of molecular
information in breeding programs. However, there is still a need for quality phe-
notypic data. This will not only foster efforts in mapping initiatives, but also in
genomic selection and direct phenotypic selection. Tuberosa (2012) addressed this
issue by saying that “phenotyping is now king, and has taken heritability as queen.”

The objective now is phenomics—that is, phenotyping a large number of indi-
viduals for a great amount of traits throughout the development of the plants, in a
nondestructive manner and with good accuracy. However, the development of high-
throughput phenotyping platforms is still a bottleneck. Thus, several initiatives
involving many species and several traits are underway to develop automation and
robotics for the next generation of phenotyping in the field, greenhouses, and
laboratories. Many of those technologies have shown promising results for practical
applications in breeding programs.

This book aims to describe the new technologies for high-throughput pheno-
typing as applied to plant breeding. Written in an easy-to-understand style, this
book can serve as a reference for students, educators, and researchers who are
interested in innovative technologies in plant breeding. Enjoy it!

Roberto Fritsche-Neto
Aluízio Borém
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Chapter 1
New Technologies for Phenotyping

José Luis Araus, Abdelhalim Elazab, Omar Vergara,
Llorenç Cabrera-Bosquet, Maria Dolors Serret,
Mainassara Zaman-Allah and Jill E. Cairns

Abstract Improvements in agronomical practices and crop breeding are paramount
responses to the present and future challenges imposed by water stress and heat
(Lobell et al. 2011a, b; Cairns et al. 2013; Hawkins et al. 2013). On what concerns
breeding, constraints in field phenotyping capability currently limit our ability to
dissect the genetics of quantitative traits, especially those related to yield and water
stress tolerance. Progress in sensors, aeronautics and high-performance computing is
paving the way. Field high throughput platforms will combine non-invasive remote-
sensingmethods, together with automated environmental data collection. In addition,
laboratory analyses of key plant parts may complement direct phenotyping under
field conditions (Araus and Cairns 2014). Moreover, these phenotyping techniques
may also help to cope with spatial variability inherent to phenotyping in the field.

Water stress is the main factor limiting agricultural productivity worldwide. Global
change scenarios for the coming decades suggest an increase in water stress in many
regions of the world, either directly due to a lower precipitation or as a response to
increases in air temperature. As a consequence, crop yields will be affected, even for
crops such as maize (Lobell et al. 2011a, b; Cairns et al. 2013; Hawkins et al. 2013).
Improvements in agronomical practices and crop breeding are paramount responses
to the present and future challenges imposed by water stress. Constraints in
field phenotyping capability currently limit our ability to dissect the genetics of
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quantitative traits, especially those related to yield and water stress tolerance. Pro-
gress in sensors, aeronautics and high-performance computing are paving the way.
Field high throughput platforms will combine non-invasive remote-sensing meth-
ods, together with automated environmental data collection. In addition laboratory
analyses of key plant parts may complement direct phenotyping under field condi-
tions (Araus and Cairns 2014). Moreover these phenotyping techniques may also
help to cope spatial variability inherent to phenotyping in the field.

1.1 Field Phenotyping

Crop management has benefited strongly from the adoption of techniques to
monitor crop water status and growth, as well as to predict yield through the fast
development of fields, such as precision agriculture or deficit irrigation schedule.
These agronomical approaches are helping to reduce the gap between the actual
(farmer’s) yield and the yield potential. In the case of crop breeding, genetic
advances in yield and stress resistance have decreased in recent decades despite the
increased adoption of molecular approaches (e.g. marker-assisted selection, trans-
formation). Increased evidence shows that phenotyping, particularly at the field
level, is actually limiting the efficiency of conventional breeding as well as pre-
venting molecular breeding from delivering all its potential (Araus et al. 2008;
Cabrera-Bosquet et al. 2012; Cairns et al. 2012; Cobb et al. 2013). Constraints in
field phenotyping capability limit our ability to dissect the genetics of quantitative
traits, particularly those related to stress tolerance. The development of effective
field-based high-throughput phenotyping platforms (HTPPs) remains a bottleneck
for future breeding advances (Araus and Cairns 2014). However, progress in sen-
sors, aeronautics, and high-performance computing are paving the way. Some of
these technologies have been successfully implemented in precision agriculture, but
their use for breeding requires more accuracy and high throughput because the
range of genotypic variability is usually far smaller than that caused by changing
environmental conditions, and the target is to assess a large number of genotypes.

Field conditions are notoriously heterogeneous, and the inability to control
environmental factors makes results difficult to interpret. However, results from
controlled environments are far removed from the situation plants will experience in
the field; therefore, they are difficult to extrapolate to the field (Fig. 1.1). For
example, the volume of soil available to roots within a pot is considerably smaller
than in the field, thereby reducing the amount of water and nutrients available to
plants (Passioura 2006; Porter 2012). The soil environment plays a crucial role in
plant growth and development and is difficult to simulate under controlled condi-
tions (Whitmore and Whalley 2009). Drought stress phenotyping is particularly
challenging because declining soil moisture content is associated with increased
mechanical impedance in the field, which is an effect that is hard to replicate within
pots (Cairns et al. 2011).

2 J.L. Araus et al.



The most successful traits for field phenotyping integrate in time (throughout the
crop cycle) and space (at the canopy level) the performance of the crop in terms of
capturing resources (e.g. radiation, water, nutrients) and how efficiently these
resources are used (Araus et al. 2002, 2008). Different methodological approaches
have been proposed to evaluate these traits in the field (Fig. 1.2). They can be
summarized into three categories: (i) proximal (remote) sensing and imaging, (ii)
laboratory analyses of samples, and (iii) near-infrared reflectance spectroscopy
(NIRS) analysis in the harvestable part of the crop (White et al. 2012). In practical
terms, the second and third categories of traits may be considered within the same
group of traits because NIRS may be eventually applicable to many of the traits
usually analyzed in the laboratory.

1.2 Phenotypic Traits: Remote Sensing

Ground-based HTPPs allow data to be captured at the plot level, thus requiring little
postprocessing. Moreover, this approach allows the implementation of closed
multispectral imaging systems, which shut out wind and sunlight to ensure the
highest possible precision and accuracy (Svensgaard et al. 2014). However, this
also limits the scale at which ground-based HTTPs can be used. Furthermore,
ground-based platforms do not allow simultaneous measurements of all plots within
a trial (Busemeyer et al. 2013). Also, in the case of maize, its use is not very
feasible, except for early stages of the crop (Montes et al. 2011).

Fig. 1.1 Continuum of environments for drought resistance screening. The control over
environmental factors decreases from the use of growth chambers to the target population
environment (TPE) while the correlation of performance with the target commercial environments
increases. Figure redrawn from Passioura (2006)
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Field HTPPs should combine, at an affordable cost, a high capacity for data
recording or scoring and processing and noninvasive remote-sensing methods,
together with automated environmental data collection. Laboratory analyses of key
plant parts may complement direct phenotyping under field conditions.

For almost any of the remote techniques, the use of imaging allows upscaling of
the measurements—for example, from a single plot basis to dissecting an entire trial
composed of different plots—provided that the image has enough resolution (pix-
els). There are different categories of sensors. RGB/CIR cameras combine color
infrared (CIR) and red, green and blue light (called visible or RGB) imagery
(Fig. 1.3A). It allows the estimation of green biomass, through a vegetation indices
such as the normalized difference vegetation index (NDVI). Estimating the green
leaf area index (GLAI, the ratio of green photosynthetic leaf area per ground area) is
the proper way to assess the effect of drought (or any other stress that accelerates
senescence) on potential canopy photosynthesis and thus grain yield (Lopes et al.
2011; Nguy-Robertson et al. 2012). For example, the ADC Lite (http://www.
tetracam.com/adc_lite.html) and the ADC Micro (http://fieldofviewllc.com/
tetracam-adc-micro) have spectral range bands in red, green, and near infrared
(NIR), with the latter model having a weight of 100 g. Multispectral cameras are
widely used for crop monitoring via remote sensing (Fig. 1.3B). They can acquire a
limited number of spectral bands at once in the visible (VIS)–NIR regions.

Fig. 1.2 Diagram of the main categories of phenotyping techniques deployed over the lifecycle of
an annual seed crop, such as a cereal. Types of data acquisition include proximal sensing and
imaging at frequent intervals, laboratory analyses of samples taken at specific intervals, and near-
infrared spectroscopy (NIRS) on leaf matter or seeds to assess phenotypic traits potentially related
with cereal performance under water stress, such as mineral content, stable carbon and oxygen
isotope composition, or total nitrogen content (Cabrera-Bosquet et al. 2009a, b, 2011b). Redrawn
from White et al. (2012) and Araus and Cairns (2014)
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Besides vegetation indices for evaluating green biomass, multispectral imagers
can be formulated to other different spectral indices targeting senescence evalua-
tion, nutrient status, pigment degradation, photosynthetic efficiency, or water
content (Gutierrez et al. 2010). An example of a widely used camera is the Tet-
racam MCA (http://www.tetracam.com/Products-Mini_MCA.htm). Hyperspectral
VIS–visible near-infrared (VNIR) imagers (Fig. 1.3C) allow the acquisition of
hundreds of images at once, covering the entire electromagnetic spectrum between
the VIS and the NIR regions in a continuous mode (wavelengths ranging from 400
to 900 nm). Other configurations cover the range from 1,000 to 2,500 nm.
Therefore, it is possible to run empirical calibrations (like in a “NIRS-mode”)
against a wide and miscellaneous set of traits.

Figure 1.3C depicts the Micro-Hyperspec VNIR model (http://www.
headwallphotonics.com/Portals/) which measures up to 260 bands of 5–7 nm
full-width half-maximum in the 400–885 nm spectral region. This is a particularly
promising approach given the possibility for multispectral information to predict

Fig. 1.3 Different categories
of imaging systems for
remote-sensing evaluation of
vegetation. These include
RGB/CIR a multispectral;
b hyperspectral; c thermal;
d conventional RGB;
e cameras
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complex traits, such as grain yield (Weber et al. 2012). Longwave infrared cameras
or thermal imaging cameras render infrared radiation in the range of micrometers as
visible light (Fig. 1.3D). The potential use of thermal imaging in phenotyping
includes predicting water stress in crops. Thermal sensing has been used to assess
maize response to drought (Romano et al. 2011, Winterhalter et al. 2011; Zhia et al.
2013). Low resolution may represent a limitation to the use of such cameras from
aerial platforms. Examples of light thermal cameras are the FLIR Tau 640 LWIR
with a 640 × 512 resolution (http://www.flir.com/cvs/cores/view/?id=51374) and
the Thermoteknix Miricle camera with a 640 × 480 resolution (http://www.
thermoteknix.com/products/oem-thermal-imaging/miricle-thermal-imaging-
modules/). Due to their small size and weight, these cameras are not thermostabi-
lized. Conventional digital RGB cameras (Fig. 1.3E) are very low-cost instruments
that allow estimating plant cover (green biomass), senescence, and yield (Casadesús
et al. 2014). At the leaf level, it allows one to assess chlorophyll and nitrogen
content from digital images (Rorie et al. 2011). They can eventually replace por-
table chlorophyll meters, which cost several thousands of dollars. Moreover, the
software needed is usually freely available (Casadesús et al. 2007).

Other remote-sensing techniques are starting to be adopted for field phenotyping,
such as the use of laser imaging detection and ranging (Lidar). This is an active
remote sensing technique that uses Lidar sensors to directly measure the three-
dimensional distribution of plant canopies as well as subcanopy topography, thus
providing high-resolution topographic maps and highly accurate estimates of
vegetation height, cover, and canopy structure (Weiss and Biber 2011; Comar et al.
2012; Deery et al. 2014).

In the case of maize, its height prevents (or at least makes difficult) the use of
growth-based platforms, such as phenomobiles (Deery et al. 2014), except for in the
early phases of the crop. In these crops, the use of aerial HTPPs becomes a need.
Considering cost and versatility, the use of unmanned aerial vehicles (UAVs) is the
most promising alternative, compared with the use of cranes, tethered balloons, or
manned aircrafts, to install remote-sensing approaches (Fig. 1.4). On the other hand,
research on affordable technologies also should be a priority if the adoption of
quality field high-throughput phenotyping is pursued for small companies and
national agricultural systems from developing countries. These low-cost technol-
ogies include remote-sensing approaches, such as the use of RGB imaging and the
implementation of NIRS calibrations of key analytical components.

In any case, improvements in user-friendly data management, together with a
more powerful interpretation of results, should increase the use of field
HTPP. Overall field high-throughput precise phenotyping needs to be placed in its
right context as a one of the components that integrates advanced crop breeding,
together with molecular biology, quantitative genetics, and even modelling
(Cabrera-Bosquet et al. 2012; Araus and Cairns 2014; Cooper et al. 2014).
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1.3 Phenotypic Traits: Laboratory Analyses

In addition to proximal sensing approaches, the analysis of plant samples may
complement direct phenotyping under field conditions. This is the case, for
example, with stable isotopes (Yousfi et al. 2012). When breeding for yield
potential and adaption to abiotic stresses such as drought, carbon isotope compo-
sition (δ13C) in dry matter, frequently expressed as a discrimination (Δ13C) against
the source (i.e. atmospheric) CO2, is a very promising tool that frequently exhibits
high heritability and genetic correlation with yield (Condon et al. 2002, 2004;
Araus et al. 2013); it has already been applied to breeding programs for C3 cereals
such as wheat (Rebetzke et al. 2008). However, its use as a phenotypic trait for
crops such as maize (as well as sorghum, sugar cane, pearl millet, and others)
appears to be limited because the specific characteristics of their photosynthetic C4

metabolism makes the range of response of δ13C to varying water conditions far
smaller (and in the case of maize, in a opposite direction) than for crops with C3

metabolism (Farquhar 1983; Henderson et al. 1992). Even so, δ13C still allows one
to differentiate between growing water conditions in maize (Cabrera-Bosquet et al.
2009a), as well as between hybrids and inbred lines (Araus et al. 2010) and highly

Fig. 1.4 Example of an aerial platform developed by the University of Barcelona in collaboration
with Airelectronics and the Instituto de Agricultura Sostenible (Spain), sponsored by the Global
Maize Program of CIMMYT (International Maize and Wheat Improvement Center)
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heritable significant genetic variation for Δ13C has been detected under field and
greenhouse conditions (Gresset et al. 2014).

As for C3 species, in maize, δ13C (or Δ13C) is an indicator of water use efficiency
(Farquhar 1983; Henderson et al. 1992) but it also informs indirectly on water use
(Cabrera-Bosquet et al. 2009a) (Fig. 1.5). Oxygen isotope composition (δ18O) on
dry matter (sometimes expressed as enrichment from the source water, Δ18O) is an
indicator of transpiration and therefore water used by the plant (Barbour et al. 2000;
Farquhar et al. 2007; Cabrera et al. 2011a). Moreover, it is independent of the kind
of photosynthetic metabolism that makes at first its use in feasible for maize
(Cabrera-Bosquet et al. 2009b; Araus et al. 2010). However, to date, the use of δ18O
for breeding has been less promising than initially expected, probably due to a set of
miscellaneous factors that affects 18O isotopic signature, such as the plant’s source
(s) of water (irrigation, rainfall, water table may have different δ18O) or the kind of
tissue analyzed (18O fractionation in the assimilates moving from the photosyn-
thetic to the reproductive tissues probably exists). A relatively low-cost trait with
low technical demands to assess plant transpiration and thus water used in an
integrated manner is the total amount of minerals accumulated in transpiring
organs, which in its simplest approach consists of analyzing the ash content
(Cabrera-Bosquet et al. 2009a).

NIRS is regularly used to analyze in (intact) seeds the protein, nitrogen, starch,
and oil content, as well as grain texture and grain weight, among others (Montes
et al. 2007; Hacisalihoglu et al. 2010; Mir et al. 2012; White et al. 2012). In any case,
the NIR spectrum captures physical and chemical characteristics of the samples,
either of vegetative plant tissues or harvested seeds. By using calibration models,
several traits can be determined on the basis of a single spectrum. However, the same
spectrum may be used to develop prediction models for analyzing traits of potential

Fig. 1.5 Potential analytical traits to phenotype for crop performance under water-limited
environments. The physiological meaning of traits is placed in the context of the Passioura’s
identity (Passioura 1977). δ13C, carbon isotope composition or Δ13C, carbon isotope discrimi-
nation; δ18O, oxygen isotope composition; Δ18O, oxygen isotope enrichment with regard to water.
ASI is placed here as example of successful trait related with HI, in this case for maize. For this
and other crops phenological traits such as date of flowering may be also relevant
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