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Preface

This text covers the fundamentals of thermodynamics required to understand elec-
trical power generation systems. It then covers the application of these principles 
to nuclear reactor power systems. It is not a general thermodynamics text, but is a 
thermodynamics text aimed at explaining the fundamentals and applying them to 
the challenges facing actual nuclear power systems. It is written at an undergraduate 
level, but should also be useful to practicing engineers.

It starts with the fundamental definitions of thermodynamic variables such as 
temperature, pressure and specific volume. It defines the Zeroth Law of Thermo-
dynamics. It then explains open and closed systems. The Ideal Gas law is intro-
duced along with some of its limitations for real gases. Gas kinetic theory is then 
introduced to provide a background for the Ideal Gas Law and a foundation for 
understanding for the theory of specific heats. Then it moves on to the First Law of 
Thermodynamics and its realization in the internal energy and enthalpy potentials. 
After addressing several applications, it moves on to the Second Law of Thermody-
namics and the concept of entropy. It then approaches entropy from the statistical 
mechanics viewpoint to validate that it truly is a measurable physical quantity. It 
concludes the fundamental theory portion of the book by discussing irreversibil-
ity, availability, and the Maxwell relations, touching slightly on the Third Law of 
Thermodynamics.

The second portion of the book is devoted to specific applications of the funda-
mentals to Brayton and Rankine cycles for power generation. Brayton cycle com-
pressors, turbines, and recuperators are covered, along with the fundamentals of 
heat exchanger design. Rankine steam generators, turbines, condensers, and pumps 
are discussed. Reheaters and feed water heaters are also covered. Ultimate heat 
rejections by circulating water systems are also discussed.

The third part of the book covers current and projected reactor systems and how 
the thermodynamic principles are applied to their design, operation and safety anal-
yses.

Detailed appendices cover metric and English system units and conversions, de-
tailed steam and gas tables, heat transfer properties, and nuclear reactor system 
descriptions.
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Nuclear power plants currently generate better than 20 % of the central station elec-
tricity produced in the United States. The United States currently has 104 operating 
power producing reactors, with 9 more planned. France has 58 with 1 more planned. 
China has 13 with 43 planned. Japan has 54 with 3 more planned. In addition, Rus-
sia has 32 with 12 more planned. Nuclear generated electricity has certainly come 
into its own existent and is the safest, cleanest and greenest form of electricity cur-
rently is in produced on this planet. However, many current thermodynamics texts 
ignore nuclear energy and use few examples of nuclear power systems. Nuclear en-
ergy presents some interesting thermodynamic challenges and it helps to introduce 
them at the fundamental level. Our goal here will be to introduce thermodynamics 
as the energy conversion science that it is and apply it to nuclear systems. Certainly, 
there will be many aspects of thermodynamics that are given little or no cover-
age. However, that is true for any textual introduction to this science; however by 
considering concrete systems, it is easier to give insight into the fundamental laws 
of the science and to provide an intuitive feeling for further study. Although brief 
summary of definition and basic principles of thermodynamic are touched up in this 
chapter for the purpose of this book, we encourage the readers to refer themselves 
to references [1–6] provided at the end of this chapter.

1.1  Typical Pressurized Water Reactor

By far the most widely built nuclear system is the Pressurized Water Reactor (PWR). 
There are a number of reasons for this. Steam turbines have for many decades been 
the dominant means of generating mechanical energy to turn electrical generators. 
The temperatures reached in the thermodynamic cycle of a PWR are within the 
range of fairly, common engineering materials. They were the first system built 
and operated reliably to produce electricity. A typical PWR system is described in 
Fig. 1.1.
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The basic PWR consists of five major components, the reactor core, steam 
generator(s), steam turbine, condenser, and electrical generator and three water/
steam loops. Each loop requires a pump that is not shown to keep the diagram 
cleaner. The nuclear energy is converted to thermal energy in the reactor core. This 
thermal energy is then transported via the first loop to the steam generator where it 
is passed to the water in the second loop. The water in the second loop enters as a 
liquid and is turned to steam. The steam then passes to the turbine where the thermal 
energy is converted to mechanical energy to rotate the electrical generator. After the 
thermal energy has been converted to mechanical energy in the steam turbine, the 
low-pressure steam passes to the condenser to be cooled by the water in the third 
loop. The second law of thermodynamics tells us that we cannot simply expand 
the steam to a low enough energy state that it can return to the steam generator in 
its original liquid state. Therefore, we must extract more thermal energy from the 
low-pressure steam to return it to its liquid state where it can be pumped back into 
the steam generator. The third loop is called the circulating water system and it is 
open to the environment. There are multiple ways of providing this cooling water 
including intake and return to a river, or the ocean, intake and return to a cooling 
pond, or intake from a river and exhaust through a cooling tower. However, we are 
getting ahead of ourselves.

Consider for a minute why nuclear energy is so useful. A great deal of energy is 
produced by a very little mass.

Example Calculation: Calculate the U-235 consumed to produce 1 MW of ther-
mal energy for 1 day. Note that a Megawatt is a unit of power, or energy per unit 
time,

1 MW = 106 W = 106 joules/s   1 day = 24 h = 24 * 3600 s

The energy released in fission of a U-235 atom is ~200 Mev

1 ev = 1.6 × 10−19 J    1 Mev = 1.6 × 10−13 J    200 Mev = 32 pJ

Fig. 1.1  Pressurized water reactor schematic
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Fissioning 1 atom of U-235 produces 3.2 × 10− 11 J

To produce 106 J requires 106/3.2 × 10− 11 atoms = 3.125 × 1016 atoms

And for a duration of 8.64 × 104 s

The total number of atoms consumed will be 3.125 × 8.64 × 1020 atoms

Therefore 2.7 × 1021 atoms will be consumed

A gram mole of U-235 is 6.022 × 1023 atoms

So a gram is 6.022 × 1023/235 = 2.563 × 1021 atoms/gram

Therefore 1 Megawatt-Day of nuclear energy consumes 1.05 g of U-235

The fundamental thing to understand is that a PWR converts nuclear energy to elec-
trical energy and it does this by converting the nuclear energy first to thermal energy 
and then converting the thermal energy to mechanical energy, which is finally con-
verted to electrical energy. The science of thermodynamics deals with each of these 
conversion processes. To quantify how each of these processes takes place we must 
understand and apply the laws of thermodynamics.

1.2  Scope of Thermodynamics

Thermodynamics is the science that deals with energy production, storage, transfer 
and conversion. It is a very broad subject affects most fields of science including 
biology and microelectronics. The primary forms of energy considered in this text 
will be nuclear, thermal, chemical, mechanical and electrical. Each of these can 
be converted to a different form with widely varying efficiencies. Predominantly 
thermodynamics is most interested in the conversion of energy from one form to 
another via thermal means. However, before addressing the details of thermal en-
ergy conversion, consider a more familiar example. Newtonian mechanics defines 
work as force acting through a distance on an object. Performing work is a way 
of generating mechanical energy. Work itself is not a form of energy, but a way of 
transferring energy to a mass. So when one mass gains energy, another mass, or 
field, must lose that energy.

Consider a simple example. A 65-kg woman decides to go over Niagara Falls in 
a 25-kg wooden barrel. (The first person to go over the fall in a barrel was a woman, 
Annie Taylor.) Niagara Falls has a vertical drop of 50 m and has the highest flow 
rate of any waterfall in the world. The force acting on the woman and barrel is the 
force of gravity, which at the surface of the earth produces a force of 9.8 Newtons 
for every kilogram of matter that it acts on. So we have
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A Newton meter is a joule and 1000 J is a kilojoule. Therefore, when the woman 
and barrel went over the falls, by the time they had reached the bottom, the force of 
gravity had performed 44.1 kilojoules (kJ) of work on them. The gravitational field 
had 44.1 kJ of potential energy stored in it, when the woman and the barrel were 
at the top of the falls. This potential energy was converted to kinetic energy by the 
time the barrel reached the bottom of the falls. Kinetic energy is also measured in 
Joules, as with all other forms of energy. However, we are usually most interested 
in velocities when we talk about kinetic energies, so let us extract the velocity with 
which she hit the waters of the inlet to Lake Ontario.

Now it is a matter of converting units. A Joule is a Newton-meter. 1 Newton is de-
fined as 1 kg accelerated at the rate of 1 m/second/second. So

Needless to say she recommended that no one ever try that again. Of course, others 
have, some have made it, and some have drowned.

Before leaving this example, it is worth pointing out that when we went to cal-
culate the velocity, it was unaffected by the mass of the object that had dropped 
the 50 m. So one-half the velocity squared represents what we will call a specific 
energy, or energy per kilogram. In addition, the potential energy at the top of the 
falls could be expressed as a specific potential energy relative to the waters below. 
The potential energy per pound mass would just be the acceleration of gravity times 
the height of the falls. Typically, we will use lower case letters to represent specific 
quantities and upper case letters to represent extensive quantities. Extensive quan-
tities are dependent upon the amount of mass present. Specific quantities are also 
referred to as intensive variables, though there are some intensive variables that 
have no extensive counterpart, such as pressure or temperature.
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It is also worth pointing out that Newton’s law of gravity states that

 
(1.1)

where m1 is the smaller mass and M2 is the mass of the Earth. We can find the spe-
cific force on an object by dividing the gravitational force by the mass of the object. 
For distances like 50 m on the surface of the Earth ( R = 6,378,140 m) we can treat R 
as constant, but if the distance the gravitational force acts through is comparable to 
the radius of the Earth, an integration would be required. Even on the top of Mount 
Everest, the gravitational potential is within 0.25 % of that at Sea Level, so gravity 
is essentially constant for all systems operating on the face of the Earth.

1.3  Units

In this section, we will discuss the System International (SI) and English (E) Sys-
tems

1.3.1  Fundamental Units

The Before going further it will be a very good idea to discuss units for physical 
quantities and the conversion of units from one system to another. Unfortunately, 
the field of thermodynamics is beset with two popular systems of units. One is the 
System International (SI) system consisting of the kilogram, meter, and second. 
The other is the English (E) system consisting of the pound-mass, foot, and second.

Starting with the SI system, the unit of force is the Newton. The unit of work or 
energy is the Joule and the unit of pressure is the Pascal. We have,

Now the acceleration of gravity at Sea Level on Earth is 9.8066 m/s2, so a 100 kg 
mass will weight 980.66 Newton. Also when we want avoid spelling out very large 
or small quantities we will usually use the standard abbreviations for powers of ten 
in units of 1000. We have,

F G m M
R

= 1 2
2

1 1N kg m/s2=

1 1� J N m=

1 1 2Pa N/m=

kilo=103

mega =106

giga =109
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For the English system, we have

Note that the fact that 1 lbf = 1 lbm at Sea Level on Earth, means that a mass of 
100 lbm will weigh 100 lbf at Sea Level on Earth. The acceleration of gravity at 
Sea Level on Earth is 32.174 ft/s2. Thus we have 1 lbf/(1 lbm-ft/s2) = 32.174. If we 
move to another planet where the acceleration of gravity is different, the statement 
that 1 lbm = > 1 lbf doesn’t hold.

Consider comparative weights on Mars. The acceleration of gravity on Mars is 
38.5 % of the acceleration of gravity on Earth. So in the SI system we have

In the English system, we have,

1.3.2  Thermal Energy Units

The British thermal unit (Btu) is defined to be the amount of heat that must be 
absorbed by a 1 lb-mass to raise its temperature 1 °F. The calorie is the SI unit that 
is defined in a similar way. It is the amount of heat that must be absorbed by 1 g 
of water to raise its temperature 1 °C. This raises the question as to how a calorie 
compares with a joule since both appear to be measures of energy in the SI system. 
James Prescott Joule spent a major part of his life proving that thermal energy was 
simply another form of energy like mechanical kinetic or potential energy. Eventu-
ally his hypothesis was accepted and the conversion factor between the calorie and 
joule has been defined by,

1 calorie = 4.1868 J

The constant 4.1868 is called the mechanical equivalent of heat.

deci = −10 1

centi =10−2

milli = −10 3

micro = −10 6

nano = −10 9

lbm => 1 lbf  at Sea Level
1 ft lbf = 1 lbf 1 ft
1 British Thermal Uni

( )
- ×

tt BTU = 778 ft-lbf

1 psi = 1 lbf /in2

( )

W = × =0 385 9 8066 100 377 72. * . / .m s kg N

W = =0 385 100 38 5. * .lbm lbf
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1.3.3  Unit Conversion

As long as one remains in either the SI system or the English system, calculations 
and designs are simple. However, that is no longer possible as different organiza-
tions and different individuals usually think and work in their favorite system. In 
order to communicate with an audience that uses both SI and English systems it is 
important to be able to convert back and forth between the two systems. The basic 
conversion factors are,

The bar unit is simply defined by rounding off Sea Level atmospheric pressure to 
the nearest 100 kPa. There are many more conversion factors defined in the Appen-
dix, but they are all derived from this basic few.

1.4  Classical Thermodynamics

Classical thermodynamics was developed long before the atomic theory of matter 
was accepted. Therefore, it treats all materials as continuous and all derivatives well 
defined by a limiting process. Steam power and an ability to analyze it and optimize 
it was one of the main drivers for the development of thermodynamic theory. The 
fluids involved always looked continuous. A typical example would be the defini-
tion of the density of a substance at a point. We have,

 (1.2)

As long as V∆  does not get down to the size of an atom, this works. Since classi-
cal thermodynamics was developed, however, we have come to understand that all 
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gases and liquids are composed of very small atoms or molecules and a limiting 
process that gets down to the atomic or molecular level will eventually become 
discontinuous and chaotic. Nevertheless, the continuous model still works well for 
the macroscopic systems that will be discussed in this text and Classical Thermo-
dynamics is based on it.

At times, we will refer to an atomistic description of materials in order to develop 
a method of predicting specific thermodynamic variables that classical thermody-
namics cannot predict. A typical example is the derivative that is called the constant 
volume specific heat. This variable is defined as the rate of change of the internal 
energy stored in a substance as a function of changes in its temperature. Classical 
thermodynamics demonstrates that this variable has to exist and makes great use of 
it, but it has no theory for calculating it from first principles. An atomistic view will 
allow us to make some theoretical estimates of its value. Therefore, at times we will 
deviate from the classical model and adopt an atomistic view that will improve our 
understanding of the subject.

Classical thermodynamics is also an equilibrium science. The laws of thermo-
dynamics apply to objects or systems in equilibrium with themselves and their sur-
roundings. By definition, a system in equilibrium is not likely to change. However, 
we are generally interested in how systems change as thermal energy is converted 
to and from other forms of energy. This presents a bit of a dilemma in that the 
fundamental laws are only good for a system in equilibrium and the parameters we 
want to predict are a result of thermal energy changes in the system. To get around 
this dilemma, we define what is called a quasi-equilibrium process. A quasi-equi-
librium process is one that moves from one system state to another so slowly and 
so incrementally, that it looks like a series of equilibrium states. This is a concept 
that classical thermodynamics had a great deal of difficulty clarifying and quantify-
ing. Basically, a process was a quasi-equilibrium process if the laws of equilibrium 
thermodynamics could characterize it. This is sort of a circular definition, but once 
again, we will find that the atomistic view allows us to make some predictions 
and quantifications that identify a quasi-equilibrium process. Quasi-equilibrium 
processes can occur very rapidly on time scales typical of human observation. For 
example, the expansion of the hot gases out the nozzle of a rocket engine can be 
well described as a quasi-equilibrium process with classical thermodynamics.

1.5  Open and Closed Systems

In the transfer and conversion of thermal energy, we will be interested in separating 
the entire universe into a system and its environment. We will mainly be interested 
in the energy transfers and conversions that go on within the system, but in many 
cases, we will need to consider its interactions with the rest of the world or its en-
vironment. Systems that consist of a fixed amount of mass that is contained within 
fixed boundaries are called closed systems. Systems that pass the mass back and 
forth to the environment will be called open systems. Both open and closed systems 
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allow energy to flow across their borders, but the flow of mass determines whether 
they are open or closed systems. Open systems will also carry energy across their 
borders with the mass as it moves. Consider the simple compressed gas in the piston 
below as a closed system (Fig. 1.2).

In analyzing the closed system, we will be concerned about the changes in the 
internal energy of the compressed gas as it interacts with its environment and the 
transfers of mechanical and thermal energies across its boundary.

In analyzing open systems, the concept of a control volume comes into play. The 
control volume is the boundary for the open system where the energy changes that 
we are interested in takes place. The thing separates the open system from its envi-
ronment. Consider the following open system where we have now allowed mass to 
flow in and out of the piston of our closed system above (Fig. 1.3).

Fig. 1.2  A closed system

 

Fig. 1.3  An open system
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The control volume looks a lot like our system boundary from before, and it is. 
The only difference is that we now allow mass to flow in and out of our control 
volume. Thermal and mechanical energy can still flow across the boundary, or in 
and out of the control volume. The mass flowing in and out can also carry energy 
with it either way.

1.6  System Properties

In order to characterize a system we will have to identify its properties. Initial-
ly there are three main properties that we will be concerned with—density, pres-
sure and temperature all of which are intensive variables. We will use intensive 
properties to characterize the equilibrium states of a system. Systems will be com-
posed of pure substances and mixtures of pure substances. A pure substance is 
a material that consists of only one type of atom, or one type of molecule. A pure 
substance can exist in multiple phases. Normally the phases of concern will be gas, 
liquid, and solid, though for many pure substances there can be several solid phases. 
Water is an example of a pure substance that can readily be observed in any of its 
three phases.

A solid phase is typically characterized as having a fixed volume and fixed 
shape. A solid is rigid and incompressible. A liquid has a fixed volume but no fixed 
shape. It deforms to fit the shape of the container that is in it. It is not rigid but is 
still relatively incompressible. A gas has no fixed shape and no fixed volume. It ex-
pands to fit the container that is in it. To characterize a system composed of one or 
more pure components and one or more phases we will need to specify the correct 
number of intensive variables required to define a state. Gibbs Phase Rule named 
after J. Willard Gibbs who first derived it gives the correct number of intensive 
variables required to completely define an equilibrium state in a mixture of pure 
substances. It is

 (1.3)

V  =  Number of variables required to define an equilibrium state.
C  =  The number of pure components (substances) present.
P   =  The number of phases present.

So for pure steam at Sea Level and above 100 °C, we have one component and one 
phase so the number of variables required to specify an equilibrium state is 2, typi-
cally temperature and pressure. However, temperature and density would also work. 
If we have a mixture of steam and liquid water in the system, we have one com-
ponent and two phases, so only one variable is required to specify the state, either 
pressure or temperature would work. If we have a mixture like air that is composed 
of oxygen, nitrogen, and argon, we have three components and three phases (the gas 
phase for each component), we are back to requiring two variables. As we progress, 
we will introduce additional intensive variables that can be used to characterize the 
equilibrium states of a system in addition to density, pressure, and temperature.

V C P= − + 2
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1.6.1  Density

Density is defined as the mass per unit volume. The standard SI unit is kilograms 
per cubic meter (kg/m3). The Standard English unit is pounds mass per cubic foot 
(lbm/ft3). If the mass per unit volume is not constant in a system, it can be defined 
at a point by a suitable limiting process that converges for engineering purposes 
long before we get to the atomistic level. The inverse of density is specific volume. 
Specific volume is an intensive variable, whereas volume is an extensive variable. 
The standard unit for specific volume in the SI system is cubic meters per kilo-
gram (m3/kg). The standard unit in the English system is cubic feet per pound mass 
(ft3/lbm).

1.6.2  Pressure

Pressure is defined as force per unit area. The standard unit for pressure in the SI 
system is the Newton per square meter or Pascal (Pa). This unit is fairly small for 
most engineering problems so pressures are more commonly expressed in kilo-Pas-
cals (kPa) or mega-Pascals (MPa). The standard unit in the English system really 
does not exist. The most common unit is pounds force per square inch (psi). How-
ever, many other units exist and the appropriate conversion factors are provided in 
the Appendix.

Pressure as an intensive variable is constant in a closed system. It really is only 
relevant in liquid or gaseous systems. The force per unit area acts equally in all 
directions and on all surfaces for these phases. It acts normal to all surfaces that 
contain or exclude the fluid. (The term fluid includes both gases and liquids). The 
same pressure is transmitted throughout the entire volume of liquid or gas at equi-
librium (Pascal’s law). This allows the amplification of force by a hydraulic piston. 
Consider the system in the following Figure. In the Fig. 1.4, the force on the piston 
at B is greater than the force on the piston at A because the pressure on both is the 
same and the area of piston B is much larger.

Fig. 1.4  A hydraulic amplifier

 


