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Preface

This text covers the fundamentals of thermodynamics required to understand elec-
trical power generation systems. It then covers the application of these principles
to nuclear reactor power systems. It is not a general thermodynamics text, but is a
thermodynamics text aimed at explaining the fundamentals and applying them to
the challenges facing actual nuclear power systems. It is written at an undergraduate
level, but should also be useful to practicing engineers.

It starts with the fundamental definitions of thermodynamic variables such as
temperature, pressure and specific volume. It defines the Zeroth Law of Thermo-
dynamics. It then explains open and closed systems. The Ideal Gas law is intro-
duced along with some of its limitations for real gases. Gas kinetic theory is then
introduced to provide a background for the Ideal Gas Law and a foundation for
understanding for the theory of specific heats. Then it moves on to the First Law of
Thermodynamics and its realization in the internal energy and enthalpy potentials.
After addressing several applications, it moves on to the Second Law of Thermody-
namics and the concept of entropy. It then approaches entropy from the statistical
mechanics viewpoint to validate that it truly is a measurable physical quantity. It
concludes the fundamental theory portion of the book by discussing irreversibil-
ity, availability, and the Maxwell relations, touching slightly on the Third Law of
Thermodynamics.

The second portion of the book is devoted to specific applications of the funda-
mentals to Brayton and Rankine cycles for power generation. Brayton cycle com-
pressors, turbines, and recuperators are covered, along with the fundamentals of
heat exchanger design. Rankine steam generators, turbines, condensers, and pumps
are discussed. Reheaters and feed water heaters are also covered. Ultimate heat
rejections by circulating water systems are also discussed.

The third part of the book covers current and projected reactor systems and how
the thermodynamic principles are applied to their design, operation and safety anal-
yses.

Detailed appendices cover metric and English system units and conversions, de-
tailed steam and gas tables, heat transfer properties, and nuclear reactor system
descriptions.
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Chapter 1
Definitions and Basic Principles

Nuclear power plants currently generate better than 20 % of the central station elec-
tricity produced in the United States. The United States currently has 104 operating
power producing reactors, with 9 more planned. France has 58 with 1 more planned.
China has 13 with 43 planned. Japan has 54 with 3 more planned. In addition, Rus-
sia has 32 with 12 more planned. Nuclear generated electricity has certainly come
into its own existent and is the safest, cleanest and greenest form of electricity cur-
rently is in produced on this planet. However, many current thermodynamics texts
ignore nuclear energy and use few examples of nuclear power systems. Nuclear en-
ergy presents some interesting thermodynamic challenges and it helps to introduce
them at the fundamental level. Our goal here will be to introduce thermodynamics
as the energy conversion science that it is and apply it to nuclear systems. Certainly,
there will be many aspects of thermodynamics that are given little or no cover-
age. However, that is true for any textual introduction to this science; however by
considering concrete systems, it is easier to give insight into the fundamental laws
of the science and to provide an intuitive feeling for further study. Although brief
summary of definition and basic principles of thermodynamic are touched up in this
chapter for the purpose of this book, we encourage the readers to refer themselves
to references [1-6] provided at the end of this chapter.

1.1 Typical Pressurized Water Reactor

By far the most widely built nuclear system is the Pressurized Water Reactor (PWR).
There are a number of reasons for this. Steam turbines have for many decades been
the dominant means of generating mechanical energy to turn electrical generators.
The temperatures reached in the thermodynamic cycle of a PWR are within the
range of fairly, common engineering materials. They were the first system built
and operated reliably to produce electricity. A typical PWR system is described in
Fig. 1.1.

© Springer International Publishing Switzerland 2015 1
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Fig. 1.1 Pressurized water reactor schematic

The basic PWR consists of five major components, the reactor core, steam
generator(s), steam turbine, condenser, and electrical generator and three water/
steam loops. Each loop requires a pump that is not shown to keep the diagram
cleaner. The nuclear energy is converted to thermal energy in the reactor core. This
thermal energy is then transported via the first loop to the steam generator where it
is passed to the water in the second loop. The water in the second loop enters as a
liquid and is turned to steam. The steam then passes to the turbine where the thermal
energy is converted to mechanical energy to rotate the electrical generator. After the
thermal energy has been converted to mechanical energy in the steam turbine, the
low-pressure steam passes to the condenser to be cooled by the water in the third
loop. The second law of thermodynamics tells us that we cannot simply expand
the steam to a low enough energy state that it can return to the steam generator in
its original liquid state. Therefore, we must extract more thermal energy from the
low-pressure steam to return it to its liquid state where it can be pumped back into
the steam generator. The third loop is called the circulating water system and it is
open to the environment. There are multiple ways of providing this cooling water
including intake and return to a river, or the ocean, intake and return to a cooling
pond, or intake from a river and exhaust through a cooling tower. However, we are
getting ahead of ourselves.

Consider for a minute why nuclear energy is so useful. A great deal of energy is
produced by a very little mass.

Example Calculation: Calculate the U-235 consumed to produce 1 MW of ther-
mal energy for 1 day. Note that a Megawatt is a unit of power, or energy per unit
time,

1 MW=10° W=10°joules/s 1 day=24h=24*3600s
The energy released in fission of a U-235 atom is ~200 Mev

lev=1.6x10""71J 1 Mev=1.6x10"3J 200 Mev=32pJ
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Fissioning 1 atom of U-235 produces 3.2x 107! J

To produce 10° J requires 106/3.2 x 10~ atoms=3.125 x 10'® atoms

And for a duration of 8.64 x 10* s

The total number of atoms consumed will be 3.125 x 8.64 x 10?° atoms

Therefore 2.7 x 10?! atoms will be consumed

A gram mole of U-235 is 6.022 x 10> atoms

So a gram is 6.022 x 10?3/235=2.563 x 10?!' atoms/gram

Therefore 1 Megawatt-Day of nuclear energy consumes 1.05 g of U-235

The fundamental thing to understand is that a PWR converts nuclear energy to elec-
trical energy and it does this by converting the nuclear energy first to thermal energy
and then converting the thermal energy to mechanical energy, which is finally con-
verted to electrical energy. The science of thermodynamics deals with each of these
conversion processes. To quantify how each of these processes takes place we must
understand and apply the laws of thermodynamics.

1.2 Scope of Thermodynamics

Thermodynamics is the science that deals with energy production, storage, transfer
and conversion. It is a very broad subject affects most fields of science including
biology and microelectronics. The primary forms of energy considered in this text
will be nuclear, thermal, chemical, mechanical and electrical. Each of these can
be converted to a different form with widely varying efficiencies. Predominantly
thermodynamics is most interested in the conversion of energy from one form to
another via thermal means. However, before addressing the details of thermal en-
ergy conversion, consider a more familiar example. Newtonian mechanics defines
work as force acting through a distance on an object. Performing work is a way
of generating mechanical energy. Work itself is not a form of energy, but a way of
transferring energy to a mass. So when one mass gains energy, another mass, or
field, must lose that energy.

Consider a simple example. A 65-kg woman decides to go over Niagara Falls in
a 25-kg wooden barrel. (The first person to go over the fall in a barrel was a woman,
Annie Taylor.) Niagara Falls has a vertical drop of 50 m and has the highest flow
rate of any waterfall in the world. The force acting on the woman and barrel is the
force of gravity, which at the surface of the earth produces a force of 9.8 Newtons
for every kilogram of matter that it acts on. So we have



4 1 Definitions and Basic Principles

W=FxD F=(65+25)x9.8=882.0N D=50m
W =882.0x50.0=44,100 Nm=44.1k J

A Newton meter is a joule and 1000 J is a kilojoule. Therefore, when the woman
and barrel went over the falls, by the time they had reached the bottom, the force of
gravity had performed 44.1 kilojoules (kJ) of work on them. The gravitational field
had 44.1 kJ of potential energy stored in it, when the woman and the barrel were
at the top of the falls. This potential energy was converted to kinetic energy by the
time the barrel reached the bottom of the falls. Kinetic energy is also measured in
Joules, as with all other forms of energy. However, we are usually most interested
in velocities when we talk about kinetic energies, so let us extract the velocity with
which she hit the waters of the inlet to Lake Ontario.

AKE = APE = 44.1k] = 12mV?* = (9012) kg x V> V?* = 44.1kJ/(90/2) kg

Now it is a matter of converting units. A Joule is a Newton-meter. 1 Newton is de-
fined as 1 kg accelerated at the rate of 1 m/second/second. So

44.1kJ =44,100Nm
=44,100 kg m/s/s m

= 44,100 kg (m/s)’

V? = 44,100 kg(m/s)*/(90/2) kg
=490/(1/2) =980 (m/s)’
V' =31.3 m/s (~70 mph)

Needless to say she recommended that no one ever try that again. Of course, others
have, some have made it, and some have drowned.

Before leaving this example, it is worth pointing out that when we went to cal-
culate the velocity, it was unaffected by the mass of the object that had dropped
the 50 m. So one-half the velocity squared represents what we will call a specific
energy, or energy per kilogram. In addition, the potential energy at the top of the
falls could be expressed as a specific potential energy relative to the waters below.
The potential energy per pound mass would just be the acceleration of gravity times
the height of the falls. Typically, we will use lower case letters to represent specific
quantities and upper case letters to represent extensive quantities. Extensive quan-
tities are dependent upon the amount of mass present. Specific quantities are also
referred to as intensive variables, though there are some intensive variables that
have no extensive counterpart, such as pressure or temperature.

p.e.=mgh/m=gh=9.8x50=0.49 kl/kg
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It is also worth pointing out that Newton’s law of gravity states that

F=gmMy (1.1)

RZ

where m | is the smaller mass and M, is the mass of the Earth. We can find the spe-
cific force on an object by dividing the gravitational force by the mass of the object.
For distances like 50 m on the surface of the Earth (R=6,378,140 m) we can treat R
as constant, but if the distance the gravitational force acts through is comparable to
the radius of the Earth, an integration would be required. Even on the top of Mount
Everest, the gravitational potential is within 0.25% of that at Sea Level, so gravity
is essentially constant for all systems operating on the face of the Earth.

1.3 Units

In this section, we will discuss the System International (SI) and English (E) Sys-
tems

1.3.1 Fundamental Units

The Before going further it will be a very good idea to discuss units for physical
quantities and the conversion of units from one system to another. Unfortunately,
the field of thermodynamics is beset with two popular systems of units. One is the
System International (SI) system consisting of the kilogram, meter, and second.
The other is the English (E) system consisting of the pound-mass, foot, and second.

Starting with the SI system, the unit of force is the Newton. The unit of work or
energy is the Joule and the unit of pressure is the Pascal. We have,

IN =1kg m/s’
1J=1Nm
1Pa=1N/m?

Now the acceleration of gravity at Sea Level on Earth is 9.8066 m/s?, so a 100 kg
mass will weight 980.66 Newton. Also when we want avoid spelling out very large
or small quantities we will usually use the standard abbreviations for powers of ten
in units of 1000. We have,

kilo=10’
mega=10°

giga=10’
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deci=10"
centi =107
milli=10""
micro=10"°

nano=10"

For the English system, we have

Ibm =>11bf (at Sea Level )
1 ft-Ibf =11bf x1 ft
1 British Thermal Unit (BTU) = 778 ft-Ibf

1 psi =1 Ibf/in*

Note that the fact that 1 Ibf=1 lbm at Sea Level on Earth, means that a mass of
100 Tbm will weigh 100 Ibf at Sea Level on Earth. The acceleration of gravity at
Sea Level on Earth is 32.174 ft/s?. Thus we have 1 Ibf/(1 Ibm-ft/s?)=32.174. If we
move to another planet where the acceleration of gravity is different, the statement
that 1 Ilbm=>1 1bf doesn’t hold.

Consider comparative weights on Mars. The acceleration of gravity on Mars is
38.5% of the acceleration of gravity on Earth. So in the SI system we have

W =0.385*9.8066 m/s* x100 kg =377.7 N
In the English system, we have,

W =0.385%100 lbm = 38.5 Ibf

1.3.2 Thermal Energy Units

The British thermal unit (Btu) is defined to be the amount of heat that must be
absorbed by a 1 Ib-mass to raise its temperature 1 °F. The calorie is the SI unit that
is defined in a similar way. It is the amount of heat that must be absorbed by 1 g
of water to raise its temperature 1°C. This raises the question as to how a calorie
compares with a joule since both appear to be measures of energy in the SI system.
James Prescott Joule spent a major part of his life proving that thermal energy was
simply another form of energy like mechanical kinetic or potential energy. Eventu-
ally his hypothesis was accepted and the conversion factor between the calorie and
joule has been defined by,

1 calorie=4.1868 J

The constant 4.1868 is called the mechanical equivalent of heat.
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1.3.3 Unit Conversion

As long as one remains in either the SI system or the English system, calculations
and designs are simple. However, that is no longer possible as different organiza-
tions and different individuals usually think and work in their favorite system. In
order to communicate with an audience that uses both SI and English systems it is
important to be able to convert back and forth between the two systems. The basic
conversion factors are,

1 kg =2.20462 Ibm

11bm = 0.45359 kg

1m=3.2808 ft
1 ft=0.3048 m

1J=0.00094805 Btu
1 Btu=10551]

1 atm =14.696 psi
latm =101325 Pa

1 psi =6894.7 Pa

1 bar =100000.0 Pa
1 bar =14.504 psi

The bar unit is simply defined by rounding off Sea Level atmospheric pressure to
the nearest 100 kPa. There are many more conversion factors defined in the Appen-
dix, but they are all derived from this basic few.

1.4 Classical Thermodynamics

Classical thermodynamics was developed long before the atomic theory of matter
was accepted. Therefore, it treats all materials as continuous and all derivatives well
defined by a limiting process. Steam power and an ability to analyze it and optimize
it was one of the main drivers for the development of thermodynamic theory. The
fluids involved always looked continuous. A typical example would be the defini-
tion of the density of a substance at a point. We have,

p=lim —=~ (1.2)

As long as AV does not get down to the size of an atom, this works. Since classi-
cal thermodynamics was developed, however, we have come to understand that all
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gases and liquids are composed of very small atoms or molecules and a limiting
process that gets down to the atomic or molecular level will eventually become
discontinuous and chaotic. Nevertheless, the continuous model still works well for
the macroscopic systems that will be discussed in this text and Classical Thermo-
dynamics is based on it.

At times, we will refer to an atomistic description of materials in order to develop
a method of predicting specific thermodynamic variables that classical thermody-
namics cannot predict. A typical example is the derivative that is called the constant
volume specific heat. This variable is defined as the rate of change of the internal
energy stored in a substance as a function of changes in its temperature. Classical
thermodynamics demonstrates that this variable has to exist and makes great use of
it, but it has no theory for calculating it from first principles. An atomistic view will
allow us to make some theoretical estimates of its value. Therefore, at times we will
deviate from the classical model and adopt an atomistic view that will improve our
understanding of the subject.

Classical thermodynamics is also an equilibrium science. The laws of thermo-
dynamics apply to objects or systems in equilibrium with themselves and their sur-
roundings. By definition, a system in equilibrium is not likely to change. However,
we are generally interested in how systems change as thermal energy is converted
to and from other forms of energy. This presents a bit of a dilemma in that the
fundamental laws are only good for a system in equilibrium and the parameters we
want to predict are a result of thermal energy changes in the system. To get around
this dilemma, we define what is called a quasi-equilibrium process. A quasi-equi-
librium process is one that moves from one system state to another so slowly and
so incrementally, that it looks like a series of equilibrium states. This is a concept
that classical thermodynamics had a great deal of difficulty clarifying and quantify-
ing. Basically, a process was a quasi-equilibrium process if the laws of equilibrium
thermodynamics could characterize it. This is sort of a circular definition, but once
again, we will find that the atomistic view allows us to make some predictions
and quantifications that identify a quasi-equilibrium process. Quasi-equilibrium
processes can occur very rapidly on time scales typical of human observation. For
example, the expansion of the hot gases out the nozzle of a rocket engine can be
well described as a quasi-equilibrium process with classical thermodynamics.

1.5 Open and Closed Systems

In the transfer and conversion of thermal energy, we will be interested in separating
the entire universe into a system and its environment. We will mainly be interested
in the energy transfers and conversions that go on within the system, but in many
cases, we will need to consider its interactions with the rest of the world or its en-
vironment. Systems that consist of a fixed amount of mass that is contained within
fixed boundaries are called closed systems. Systems that pass the mass back and
forth to the environment will be called open systems. Both open and closed systems
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Fig. 1.2 A closed system

allow energy to flow across their borders, but the flow of mass determines whether
they are open or closed systems. Open systems will also carry energy across their
borders with the mass as it moves. Consider the simple compressed gas in the piston
below as a closed system (Fig. 1.2).

In analyzing the closed system, we will be concerned about the changes in the
internal energy of the compressed gas as it interacts with its environment and the
transfers of mechanical and thermal energies across its boundary.

In analyzing open systems, the concept of a control volume comes into play. The
control volume is the boundary for the open system where the energy changes that
we are interested in takes place. The thing separates the open system from its envi-
ronment. Consider the following open system where we have now allowed mass to
flow in and out of the piston of our closed system above (Fig. 1.3).

- eSS

—
Compressed Gas ) Control
Volume

il E—

Heat

Fig. 1.3 An open system
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The control volume looks a lot like our system boundary from before, and it is.
The only difference is that we now allow mass to flow in and out of our control
volume. Thermal and mechanical energy can still flow across the boundary, or in
and out of the control volume. The mass flowing in and out can also carry energy
with it either way.

1.6 System Properties

In order to characterize a system we will have to identify its properties. Initial-
ly there are three main properties that we will be concerned with—density, pres-
sure and temperature all of which are intensive variables. We will use intensive
properties to characterize the equilibrium states of a system. Systems will be com-
posed of pure substances and mixtures of pure substances. A pure substance is
a material that consists of only one type of atom, or one type of molecule. A pure
substance can exist in multiple phases. Normally the phases of concern will be gas,
liquid, and solid, though for many pure substances there can be several solid phases.
Water is an example of a pure substance that can readily be observed in any of its
three phases.

A solid phase is typically characterized as having a fixed volume and fixed
shape. A solid is rigid and incompressible. A liquid has a fixed volume but no fixed
shape. It deforms to fit the shape of the container that is in it. It is not rigid but is
still relatively incompressible. A gas has no fixed shape and no fixed volume. It ex-
pands to fit the container that is in it. To characterize a system composed of one or
more pure components and one or more phases we will need to specify the correct
number of intensive variables required to define a state. Gibbs Phase Rule named
after J. Willard Gibbs who first derived it gives the correct number of intensive
variables required to completely define an equilibrium state in a mixture of pure
substances. It is

V=C-P+2 (1.3)

V = Number of variables required to define an equilibrium state.
C = The number of pure components (substances) present.
P = The number of phases present.

So for pure steam at Sea Level and above 100 °C, we have one component and one
phase so the number of variables required to specify an equilibrium state is 2, typi-
cally temperature and pressure. However, temperature and density would also work.
If we have a mixture of steam and liquid water in the system, we have one com-
ponent and two phases, so only one variable is required to specify the state, either
pressure or temperature would work. If we have a mixture like air that is composed
of oxygen, nitrogen, and argon, we have three components and three phases (the gas
phase for each component), we are back to requiring two variables. As we progress,
we will introduce additional intensive variables that can be used to characterize the
equilibrium states of a system in addition to density, pressure, and temperature.
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1.6.1 Density

Density is defined as the mass per unit volume. The standard SI unit is kilograms
per cubic meter (kg/m?). The Standard English unit is pounds mass per cubic foot
(Ibm/ft). If the mass per unit volume is not constant in a system, it can be defined
at a point by a suitable limiting process that converges for engineering purposes
long before we get to the atomistic level. The inverse of density is specific volume.
Specific volume is an intensive variable, whereas volume is an extensive variable.
The standard unit for specific volume in the SI system is cubic meters per kilo-
gram (m*/kg). The standard unit in the English system is cubic feet per pound mass
(ft3/lbm).

1.6.2 Pressure

Pressure is defined as force per unit area. The standard unit for pressure in the SI
system is the Newton per square meter or Pascal (Pa). This unit is fairly small for
most engineering problems so pressures are more commonly expressed in kilo-Pas-
cals (kPa) or mega-Pascals (MPa). The standard unit in the English system really
does not exist. The most common unit is pounds force per square inch (psi). How-
ever, many other units exist and the appropriate conversion factors are provided in
the Appendix.

Pressure as an intensive variable is constant in a closed system. It really is only
relevant in liquid or gaseous systems. The force per unit area acts equally in all
directions and on all surfaces for these phases. It acts normal to all surfaces that
contain or exclude the fluid. (The term fluid includes both gases and liquids). The
same pressure is transmitted throughout the entire volume of liquid or gas at equi-
librium (Pascal’s law). This allows the amplification of force by a hydraulic piston.
Consider the system in the following Figure. In the Fig. 1.4, the force on the piston
at B is greater than the force on the piston at A because the pressure on both is the
same and the area of piston B is much larger.

Moveable pistons

Liquid

Fig. 1.4 A hydraulic amplifier



