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Preface

With an emphasis on applications of computational models for solving modern
challenging problems in biomedical and life sciences, this book aims to bring collec-
tions of articles from biologists, medical/biomedical and health science researchers
together with computational scientists to focus on problems at the frontier of
biomedical and life sciences. The goals of this book are to build interactions of
scientists across several disciplines and to help industrial users apply advanced com-
putational techniques for solving practical biomedical and life science problems.

This book is for users in the fields of biomedical and life sciences who wish
to keep abreast with the latest techniques in signal and image analysis. The book
presents a detailed description to each of the applications. It can be used by those
both at graduate and specialist levels.

We have included 14 chapters in this book. Some of the chapters are extensively
revised versions of papers that were presented at the International Symposium on
Computational Models for Life Sciences held on 27–29 November 2013 in Sydney,
Australia. There are two main parts in the book: signal and image analysis issues
within the subjects of the book.

In the first part of the book, Chap. 1 presents a novel visualisation strategy
tailored for proteomics data. A dataset is visualised showing phosphorylation events
in response to insulin that leads to new insights into the insulin response pathway.
A strategy for web-based presentation of data is also described. Chapter 2 proposes
a new approach for the modelling of testosterone regulation to identify all model
parameters from the hormone concentrations of testosterone and luteinizing hor-
mone. Simulation results are described to reveal behaviour similar to clinical data.
Chapter 3 proposes two distinct hybrid algorithms that combine efficient sequential
change-point detection procedures with the Cross-Entropy method. Results show
effectiveness of the described method. In Chap. 4, two methods for distinguishing
between healthy controls and patients diagnosed with Parkinson’s disease by means
of recorded smooth pursuit eye movements are presented and evaluated. The results
are indicative of the potential of the presented methods as diagnosing or staging
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vi Preface

tools for Parkinson’s disease. Chapter 5 presents an approach for the identification
of the Reichardt elementary motion detector model. A pool of spatially distributed
elementary motion detectors is considered, and a way of designing the visual stimuli
for a certain order of spatial resolution is suggested. Chapter 6 discusses on the
complexity ensemble measures for gait time series analysis that could have a signifi-
cantly wider application scope ranging from diagnostics and early detection of phys-
iological regime change to gait-based biometrics. Chapter 7 presents the develop-
ment of a motion capturing and load analyzing system for caregivers aiding a patient
to sit up in bed. The difference between the performances of the two types of care-
givers were found: the professional adopted a posture that was safe and did not stress
the lumbar vertebrae, whereas the layperson tended to adopt an unsafe posture.
Chapter 8 proposes an unsupervised multi-scale K-means algorithm to distinguish
epileptic EEG signals and identify epileptic zones. The experimental results demon-
strate that identifying seizure with multi-scale K-means algorithm and delay per-
mutation entropy achieves higher accuracy than that of K-means and support vector
machine. Chapter 9 presents a method for the tracking of EEG activity using motion
estimation in brain topomaps to understand the mechanism of brain wiring. Authors
demonstrate that it is possible to track the path of a signal across various lobes.

In the second part of the book, Chap. 10 presents an approach to processing ultra
high-resolution, large-size biomedical imaging data for the purposes of detecting
and quantifying vasculature and microvasculature. The results on cerebral and liver
vasculatures of a mouse captured at the Shanghai Synchrotron Radiation Facility
are presented. Chapter 11 describes a novel way of carrying out image analysis,
reconstruction and processing tasks using cloud based service provided on the
Australian National eResearch Collaboration Tools and Resources infrastructure.
The toolbox is available on the web. Chapter 12 presents an investigation into how
Massey University’s Pollen Classifynder can accelerate the understanding of pollen
and its role in nature. Chapter 13 presents a digital image processing and analysis
approach for activated sludge wastewater treatment. Chapter 14 presents a complete
system for 3D reconstruction of roots grown in a transparent gel medium or washed
and suspended in water.

We thank all the authors for their contributions to this edited book. We also thank
Dan Hills and Susan McMaster from CSIRO Contracts and Legal for their help with
the Publishing Agreement between Springer and CSIRO. We are grateful to Dr.
Thijs van Vlijmen, Sara Germans-Huisman, Magesh Kaarthick Sundaramoorthy,
and other editors at Springer and S. Madhuriba at SPi Technologies India Private
Ltd. for their help and great support from the beginning to the production of this
book. Materials from the American Institute of Physics (AIP) Publishing that are
used by some authors are acknowledged and credits are given in the respective
chapters within this book.

Sydney, Australia Changming Sun
Tomasz Bednarz

Aizu, Japan Tuan D. Pham
Sydney, Australia Pascal Vallotton

Dadong Wang
July 2014
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Chapter 1
Visual Analytics of Signalling Pathways
Using Time Profiles

David K.G. Ma, Christian Stolte, Sandeep Kaur, Michael Bain,
and Seán I. O’Donoghue

Abstract Data visualisation is usually a crucial first step in analysing and exploring
large-scale complex data. The visualisation of proteomics time-course data on post-
translational modifications presents a particular challenge that is largely unmet by
existing tools and methods. To this end, we present Minardo, a novel visualisation
strategy tailored for such proteomics data, in which data layout is driven by
both cellular topology and temporal order. In this work, we utilised the Minardo
strategy to visualise a dataset showing phosphorylation events in response to insulin.
We evaluated the visualisation together with experts in diabetes and obesity, which
led to new insights into the insulin response pathway. Based on this success, we
outline how this layout strategy could be automated into a web-based tool for
visualising a broad range of proteomics time-course data. We also discuss how the
approach could be extended to include protein 3D structure information, as well
as higher dimensional data, such as a range of experimental conditions. We also
discuss our entry of Minardo in the international DREAM8 competition.

Keywords Visual analytics • Signalling pathways • Proteomics
• Temporal data • Graph layout • Phosphorylation • Insulin response
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4 D.K.G. Ma et al.

1.1 Introduction

Computationally aided data visualisation is helpful for analysing and exploring
large-scale complex data as it allows computational abilities, such as large memory
capacities and fast calculations, to be combined with human abilities, such as high-
bandwidth visual perception and creativity, to address the task of understanding
such data [19]. With the emergence of large-scale and high-dimensional datasets in
molecular systems biology, the task of data visualisation has become increasingly
important [28].

Current high-throughput technologies typically enable thousands of molecules to
be tracked simultaneously. One such high-throughput method uses mass spectrom-
etry to enable the quantification of the phosphorylation state of each protein in a
cell’s proteome. In typical experiments of this type, cells are initially stimulated
with an agent (e.g., insulin, glucose, or a range of inhibitor molecules) and the
response is measured at discrete points in time. The temporal order of such time-
series experiments offers great potential to prioritise paths in the resulting dense
protein interaction graphs [11].

In order to understand biomolecular systems it is essential to understand how
the interactions of their component molecules result in the overall changes in cell
physiology – for example, how a fat cell initially starved of glucose switches to
active uptake and processing of glucose upon stimulation by insulin. The most
common approach used to gain an understanding of such events is to draw graphs
of signalling pathways [14]. These pathway maps definitely have their limitations:
for example, as explained by Kitano [20], they could be thought of as analogous to
static road maps, when what we really wish to know are the traffic patterns, why
such patterns emerge and how we can control them. Nonetheless, visualisations of
pathway maps are an important first step.

There are several initiatives worldwide aimed at consolidating all human knowl-
edge about biological systems into a single, searchable database and with the results
presented in the form of interactive pathways graphs. Currently however there is
no consensus about a single ‘best’ approach – instead, there are a large number
of different databases, each with a tailored visualisation system. Some of the more
widely used resources of this kind include Pathway Commons [6], KEGG [18],
PANTHER [25], BIOCARTA [27], and Reactome [24].

When considering new data from high-throughput experiments, a common
strategy is to visually overlay these data onto existing pathway graphs extracted
from one of the above resources. A wide variety of methods and tools have
been developed to facilitate overlaying experimental data onto pathways, including
Pajek [3], BiologicalNetworks [1], Medusa [31], as well as many plug-ins to the
Cytoscape framework [36]. A recent review of such methods for ‘omics’ data is
provided by Gehlenborg et al. [14]. However, as noted in [14], the major challenge
for visualisation methods is how to benefit from the explosion in dataset scale
and complexity without overwhelming the user. This is a difficult problem which
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currently has no obvious general solution, but we suggest the answer should lie
in how context may be used in visualisation. The contribution of this paper lies in
the adoption of a novel visual metaphor that can illustrate significant temporal and
potentially causal relationships in high-throughput data on cell signalling pathways.

1.1.1 Challenges in Visualising High-Throughput Time-Series
Post-translationally Modified Proteomic Datasets

The biology of the post-translational modification of proteins presents some impor-
tant issues for visualisation. Firstly, there are many different types of such modi-
fications that we may require to be visualised (e.g., phosphorylation, methylation,
sumoylation, etc.). Since different modifications are typically implicated in different
functional roles, indications of these differences could be critical for successful
visualisation.

Secondly, most of the current network-based visualisation tools for high-through-
put datasets have been designed for gene expression. However, it is not always
possible to simply reuse such tools for proteomics datasets that incorporate post-
translational modifications. For example, when viewing time-series transcriptomic
datasets, we are usually interested in the expression levels of whole RNA molecules
over time – for such data, time-profile information is often added to a network
view by adding colouring or a pattern to each node or edge [14, 35]. However
for proteomics datasets showing post-translational modifications a more detailed
representation is required, since we are typically interested in the abundance levels
of multiple residues within each protein.

As an example, we recently conducted a pilot user study [21] to evaluate the
reuse of the Cytoscape plug-in ‘Cerebral’ [2] to visualise the proteomic dataset of
Humphrey et al. [15]. Cerebral was initially designed for use with gene expression
data – we found that although several aspects of this tool were of benefit, overall
the layout and representation concepts of the tool were not well suited to visualising
post-translational modifications.

A general problem faced by omics visualisation tools is the challenge of facilitat-
ing simultaneous visualisation of multiple kinds of experimental data. For example,
how can high-throughput time-series data on post-translational modifications be
visualised in an coherent and integrated way with other data, such as abundance
level for transcripts or protein?

Evidence of the growing recognition of the need and importance of this type of
integrated omics visualisation comes in the form of the latest iteration of the inter-
national DREAM (Dialogue for Reverse Engineering Assessments and Methods)
competition. The DREAM8 Sub-challenge 3: “Visualisation of high-dimensional
time-course on breast cancer proteomics data” was designed to facilitate research
on novel tools for this purpose.
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1.1.2 Aims

In this paper we outline the elements of the Minardo visualisation concept (Fig. 1.1)
that we developed recently to address the above challenges – Minardo is based on
using cell topology combined with temporal ordering as the key layout contexts
used to organize how the data is depicted. In this study, we worked with an experi-
mental research group that is applying state-of-the-art methods in high-throughput
experimental proteomics to study the time course of protein phosphorylation events
in human cells in vitro following stimulation by insulin [15], as part of a broader
project on diabetes and obesity. The group had already applied a wide range of
existing analysis and visualisation tools to these data, although relatively few tools
were specifically tailored for time-course phosphophorylation data. The group’s
key unmet requirement was for a system that would enable visual exploration of
networks representing insulin response, which could be interactively overlaid firstly
with phosphophorylation time-course data, and that later could also include data on
RNA and protein abundance.

To address this need, we first tried several existing visual analytics approaches
with the goal of representing the data to gain new insight. From discussion of
the merits and weaknesses of these existing approaches with our experimental
collaborators we used this feedback, together with visual analytics principles,
to develop an improved general layout strategy specifically for time-series post-
translationally modified proteomic data.

We called our layout strategy “Minardo” as a play on words, as the layout was
partly inspired by the well-known information graphic published by Minard in
1869.1 A key innovation that comes from this inspiration is the ability to combine
aspects of network-based structure with temporally ordered event profiles.

As discussed in [21], the Minardo approach has proved helpful, having revealed
several inconsistencies with the previously published interpretation of this dataset,
and suggested several new insights into the timing and order of events underlying
the insulin response pathway.

While the current layout has been constructed specifically for analysing phospho-
rylation data related to insulin response, aspects of the layout have clear potential
to be generalised to help with analysing a broader range of systems biology data.
Thus, we are doing ongoing work aimed at developing the Minardo layout strategy
into a general tool.

The remainder of this paper is structured as follows. In Sect. 1.2 we describe
how to create the Minardo layout and how to connect it interactively with a
heat map visualisation of the same data. Section 1.3 presents results from a
user study to evaluate Minardo, and our entry using Minardo into the DREAM8
visualisation challenge. In Sect. 1.4 we discuss implications of this approach and
outline directions for future work. Section “Conclusions” concludes the paper.

1This famous graphic shows Napoleon’s disastrous Russian campaign of 1812 – the graphic is
regarded as an exemplar by many data visualisation specialists [4].
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1.2 Methods

Our visualisation strategy consists of two main components – the Minardo layout,
and a heat map – both of which are connected to support interactive data exploration.
This is shown in Fig. 1.1, using the insulin response dataset of Humphrey et al. [15].

The Minardo layout depicts a cellular topology, divided into regions that repre-
sent the time points of the time course data. Note that although time points typically
denote discrete values fixed by the experimental protocol (e.g., 0, 15, 30 s, etc.), the
Minardo layout allows placement of events ordered along a continuous time scale
in cases where continuous data are available (e.g., either directly from experiments
that measure continuous time values, or perhaps estimated by interpolation from
discrete data). The tracks across time points indicate individual proteins or protein
complexes that are active (in terms of events in the dataset) over multiple time
points. Since screen real estate is limited, only a limited number of tracks can be
displayed at the same time. In many cases the number of tracks that can be shown
will be insufficient to show all proteins active across multiple time points – thus,
some criteria will need to be applied to select which proteins are to be displayed on
the available tracks. A natural criterion is the level of activity of a protein, as this
suggests its importance, although other criteria could also be applied.

Causal relationships between different proteins within a time point are depicted
using directed edges running perpendicular to the tracks; for the insulin response
dataset [15], these relationships link a kinase to its phosphorylation substrate. The
actual protein residue number of the phosphorylated amino acid – known as the
phosphosite – is shown colour-coded in Fig. 1.1.

In the rest of this section we describe in further detail the method and the
design decisions used to create the layout. We also describe the heat map, and the
procedures used to link the layout to the heat map, as well as the implementation
procedures used to make the visualisation interactive.

1.2.1 Phosphorylation Dataset for Insulin Response

We worked with members of the James laboratory2 at the Garvan Institute of
Medical Research, a world-leading laboratory in applying experimental systems
biology to study diabetes and obesity. They recently published a study of the
time course of protein phosphorylation events occurring in vitro in mouse 3T3-L1
adipocyte cells – cells derived from brown adipose (fat) tissue – after ‘feeding’ (i.e.,
stimulation by insulin and glucose) [15].

The cell used in the experiment was initially in a starved state, then stimulated
with insulin and glucose. The cells were lysed at 0, 15, 30 s and 1, 2, 5, 10, 20
and 60 min after stimulation. Mass spectrometry was then used to measure the

2http://www.jameslab.com.au

http://www.jameslab.com.au
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phosphorylation state of all detectable Serine (S), Threonine (T) and Tyrosine (Y)
amino acid residues [9], resulting in a final set of time profiles for 7,897 phospho-
sites that were judged to be of good quality – an average of about 6.5 phosphosites
per protein [15].

Humphrey et al. then used unsupervised fuzzy C-means clustering to organise
the time profiles for each phosphosite into groups [15]. They also conducted an
extensive literature survey to identify the kinases responsible for a subset consisting
of 104 of the phosphosites judged to be most significant, based on prior knowledge
of the response pathway. These data – presented in Fig. 5 of Humphrey et al. [15] –
were used as the starting point for our work, with the goal of re-analysing and
organising these data to provide greater insight into underlying biological processes.

1.2.1.1 Data Representation

The phosphorylation time-series data from Humphrey et al. [15] were generated
by the MaxQuant software [10]. We obtained these data as a comma-separated
text file, which contained the ratios of the absolute values of observed levels of
phosphorylation for each phosphosite at each time-point to a basal level. The basal
level represented the phosphorylation levels in starved cells, and the time-points
represented the phosphorylation levels after that amount of time has elapsed since
stimulation with insulin and glucose. The dataset consisted of triplicate measure-
ments of phosphorylation levels for each of the nine time-points. Phosphorylation
levels at time zero were set to 1.0, and the phosphorylation level at each subsequent
time point was the ratio of that point’s abundance to its basal level (for more
information, see the Methods section of Humphrey et al. [15]).

1.2.2 Heat Map of the Time-Series Data

To display the complete time-course data, we used a traditional heat map. We
utilised three colour scales, red, green, and blue to represent Serine, Threonine
and Tyrosine residue phosphosites, respectively. The heat map depicted only those
profiles which were also present in the Minardo layout.

In order to create the heat map, we averaged the triplicate values at each time-
point, then we linearly rescaled the resulting time profile, setting the lowest level
of activation achieved across the time-series to 0 % and the highest level to 100 %.
Finally, we used the JavaScript library D3.js [5] to create an interactive heat map
visualisation of these data.

1.2.2.1 Selecting a Single Time Point for Each Phosphorylation

Using the re-scaled data, we devised a method for consistently selecting a single rep-
resentative time-point for each phosphosite. Based on an analogy to the Michaelis
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constant [26] in enzyme kinetics, we estimated the time at which each phosphosite
first transitions from either below its 50 % level to above, or vice versa in the case of
a dephosphorylation event. We took this to be the first activation time, and marked
it on the heat map using either an up or down arrow to indicate phosphorylation or
dephosphorylation, respectively.

This induces a linear (total) ordering on the data, where each phosphosite’s time
course is denoted by its estimated first activation time. Note also that the activation
times estimated by this method have continuous values, hence effectively increasing
the temporal resolution of the dataset, which is also useful for constructing the
Minardo layout.

1.2.3 The Minardo Layout

The Minardo layout was constructed using a number of graphic design principles,
combined with user feedback, and drawing from concepts used in existing tools,
such as the Cerebral plug-in [2]. The visual channels used – primarily position,
hue, and connection – were chosen to effectively convey key information with low
cognitive load [7, 38].

Position is usually the most powerful visual channel [22] hence in Minardo we
have used the X and Y axis to show time and sub-cellular topology, as they are key
features of the dataset. We created a schematic cell in Adobe Illustrator, mapping
time in an arc around the cell and adding intervals to represent the time points used to
derive the experimental data (Fig. 1.1). With a single first activation time identified
for each phosphosite, phosphorylation events could be placed unambiguously within
one specific time interval on the diagram. We also arranged the cell topology such
that the regions for each time interval contain extracellular space, cytoplasm, and
nuclear space, allowing for positioning proteins based on their subcellular location.

Rather than laying out the consecutive time intervals in one direction (e.g., along
the X or Y axes), we have taken inspiration from Charles Joseph Minard’s classic
flow map of Napoleon’s March [4] and wrapped the flow of time around the cell
topology, creating an overall aspect ratio that allows the entire diagram to more
easily fit the landscape orientation of most computer displays. Wrapping time in
this way also allow connections from later to earlier time points, providing clear
representation of feedback loops.

Lines with arrows were used to indicate kinases and their target phosphosites.
In the current dataset there are 104 such connections. To overcome the typical
‘hairball’ problem that occurs with networks of this size and larger, we reduced
clutter by using tracks to represent ‘promiscuous’ proteins or complexes, i.e., those
involved in multiple phosphorylation events at multiple time-points. This is similar
to the concept of hubs, or high-degree nodes of a network, but modified to account
for the time-series dataset.

Hue was used consistently in the network and heat map, with red, green, and
blue used to represent Serine, Threonine and Tyrosine residues. Yellow was used
to highlight items selected by the user. The default highlight was Yellow only,
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and it showed the relevant kinases and phosphorylation events on the track, or the
phosphates currently being brushed over. “Show Targets” is a toggle button, which
turns Teal when switched on, indicating to the user that phospho-targets are now
being shown with a Teal highlight.

The layout was saved in SVG format and imported in an HTML page with the
heat map. JavaScript was used to implement brushing and linking between the two
representations.

1.3 Results

Our implementation of the Minardo layout and heat map applied to the insulin
response phosphorylation time course data [15] resulted in a single HTML file,
which is included in the supplementary information (http://odonoghuelab.org/
Minardo.zip). A screen shot of this HTML file can be seen in Fig. 1.1. Two distinct
components are clearly seen in this figure, the heat map and the Minardo Layout.
The HTML files supports interactivity between these components via brushing and
linking. For example, hovering over a protein (in either the heat map or the Minardo
layout) automatically highlights all occurrences of the protein name in the HTML
document. Text searching of the HTML document can also be done, using standard
browser functionality, resulting in highlighting of all proteins with names that match
the search term.

In the Minardo layout, the insulin response network (taken from Fig. 5 of
Humphrey et al. [15]) has been overlaid on a typical cellular topology. This cellular
topology has been divided into a number of time-points as present in the dataset – in
this case, nine time points. It shows the temporal order of phosphorylation events,
with arrows identifying each kinase and, its substrate phosphosite. The proteins
Akt, Irs1, AS160, p70S6K, Erk1 and Erk2, and the complexes Gsk, mTORC1
and mTORC2, play roles across multiple times and so have been indicated with
white tracks running parallel to the cellular membrane. For each of the protein
phosphorylation sites featured in the Minardo layout, an entry has been created in
the interactive heat map, showing its normalised abundance levels detected across
each of the time points. The HTML allows sorting the heat map in multiple ways
including by residue type, by UniProt identifier [23], by identified time of first
regulation, and many more.

1.3.1 Evaluation of the Minardo Visualisation Strategy

We conducted an informal user study with experts in the field of diabetes and
obesity studying insulin response at the Garvan Institute [17]. During the study,
the interactive HTML file was disseminated to the users by making it available
within the organisation’s intranet. Users were asked to freely explore the use of
the visualisation strategy and provide feedback.

http://odonoghuelab.org/Minardo.zip
http://odonoghuelab.org/Minardo.zip
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To summarise the results of this study, the users judged the Minardo visualisation
favourably. They found the brushing and linking feature between the heat map and
the network to be very helpful for interpreting the data in detail. The most positive
feedback, however, was that the new layout helped them gain new insights into the
underlying bio-molecular processes. These new insights are detailed in our related
work in Ma et al. [21]. The validations of these insights are underway, with a joint
publication with the biologists in preparation.

1.3.1.1 Requested Features

In this study, the users requested a number of features not yet supported by our
current Minardo implementation.

First and foremost was the ability to easily select which phosphorylation sites are
used to construct the layout. The current dataset shows only 104 of the 7,897 high
quality phosphorylation sites that were present in the original dataset – these 104
sites were selected by Humphrey et al. [15] as they were believed to be the most
important. Nonetheless, the users would like the facility to examine other subsets of
phosphosites using the Minardo layout.

A second requested feature was the ability to interactively edit the network in
order to change the assignment of kinases to targets. A third requested feature
was the ability to add additional data (or datasets), such as multiple experimental
conditions or the presence of various chemical inhibitors. Finally, users requested
that the facility to search proteins by name be extended so as to match different
synonyms for the same protein – this would be very useful since many proteins
used in this study are known by multiple names (e.g., As160, Kiaa0603, Tbc1d4 all
refer to the same protein).

1.3.2 Minardo in the International DREAM8 Competition

The aim of the DREAM8 ‘visualisation of high-dimensional time-course on
breast cancer proteomics data’ sub-challenge was to propose novel strategies to
visualise high-dimensional molecular time-course data. The datasets provided for
the competition featured phosphorylation proteomics data, for approximately 45
phosphosites, at seven time points, under eight stimulus conditions. Data was also
given for a control, and under conditions in which the phosphorylation ability of 3
crucial kinases was inhibited.

We entered Minardo in this competition. All of its features as described above
were presented, however additional modifications were proposed to its workflow
to enable comparison between multiple different experimental conditions (stimuli,
inhibitor or control). Figures 1.2 and 1.3 show the main visualisations in the
proposed Minardo workflow when visualising a single set of conditions and when
comparing between two conditions.
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