NanoScience and Technology

Enrico Gnecco Ernst Meyer *Editors*

Fundamentals of Friction and Wear on the Nanoscale

Second Edition

NanoScience and Technology

Series editors

Phaedon Avouris, Yorktown Heights, USA Bharat Bhushan, Columbus, USA Dieter Bimberg, Berlin, Germany Klaus von Klitzing, Stuttgart, Germany Hiroyuki Sakaki, Tokyo, Japan Roland Wiesendanger, Hamburg, Germany The series NanoScience and Technology is focused on the fascinating nano-world, mesoscopic physics, analysis with atomic resolution, nano and quantum-effect devices, nanomechanics and atomic-scale processes. All the basic aspects and technology-oriented developments in this emerging discipline are covered by comprehensive and timely books. The series constitutes a survey of the relevant special topics, which are presented by leading experts in the field. These books will appeal to researchers, engineers, and advanced students.

More information about this series at http://www.springer.com/series/3705

Enrico Gnecco · Ernst Meyer Editors

Fundamentals of Friction and Wear on the Nanoscale

Second Edition

Editors Enrico Gnecco Instituto Madrileño de Estudios Avanzados en Nanociencia Madrid Spain

Ernst Meyer Department of Physics University of Basel Basel Switzerland

This is a second edition. ISBN 1st ed.: 978-3-540-36806-9

 ISSN 1434-4904
 ISSN 2197-7127 (electronic)

 ISBN 978-3-319-10559-8
 ISBN 978-3-319-10560-4 (eBook)

 DOI 10.1007/978-3-319-10560-4

Library of Congress Control Number: 2014952447

Springer Cham Heidelberg New York Dordrecht London

© Springer International Publishing Switzerland 2015

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed. Exempted from this legal reservation are brief excerpts in connection with reviews or scholarly analysis or material supplied specifically for the purpose of being entered and executed on a computer system, for exclusive use by the purchaser of the work. Duplication of this publication or parts thereof is permitted only under the provisions of the Copyright Law of the Publisher's location, in its current version, and permission for use must always be obtained from Springer. Permissions for use may be obtained through RightsLink at the Copyright Clearance Center. Violations are liable to prosecution under the respective Copyright Law.

The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use.

While the advice and information in this book are believed to be true and accurate at the date of publication, neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or omissions that may be made. The publisher makes no warranty, express or implied, with respect to the material contained herein.

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

Preface

The second edition of "Fundamentals of Friction and Wear on the Nanoscale" has been motivated by the significant progress made by nano tribology in the last seven years. New chapters on triboluminescence, friction in liquids, nonlinear mechanisms of friction, fractal surfaces, multiscale modeling of contacts, capillary condensation, nano manipulation in SEM, colloidal systems, graphene, nanowear of polymers, Casimir forces, and cell motility have been added. Other key chapters, such as those on atomic-scale friction in ultra-high vacuum and nano manipulation have been completely revised. On the other side, we have omitted some chapters dealing with side aspects of nano tribology which did not undergo significant changes in the last few years. We hope that this new edition will attract the interest of a broad readership of scientists and engineers, and stimulate new experiments and theoretical models in this exciting multidisciplinary research field.

Madrid Basel Enrico Gnecco Ernst Meyer

Contents

Part I Experimental Techniques

1	Frict	ion Force Microscopy	. 3
	Rola	nd Bennewitz	
	1.1	Introduction	. 3
	1.2	Instrumentation	. 4
		1.2.1 Force Sensors	. 4
		1.2.2 Control Over the Contact	. 7
	1.3	Measurement Procedures	. 9
		1.3.1 Friction as a Function of Load	. 9
		1.3.2 Friction as a Function of Material	. 11
		1.3.3 Friction Effects in Normal Force Measurements	. 11
		1.3.4 Fluctuations in Friction Force Microscopy	. 11
		1.3.5 Friction as a Function of Temperature	. 12
		1.3.6 Dynamic Lateral Force Measurements	. 12
	1.4	Outlook	. 14
	Refe	ences	. 14
2	Surf	ace Forces Apparatus in Nanotribology	. 17
	Carlo	s Drummond and Philippe Richetti	
	2.1	Introduction	. 17
	2.2	Surface Forces Apparatus Technique: Generalities	. 18
	2.3	Surface Forces Apparatus Nanotribometer	. 20
		2.3.1 Experimental Setup	. 21
		2.3.2 Local Structural Information: Combination	
		of the SFA with Other Techniques	. 25
		2.3.3 Beyond Mica: Alternative Substrates	. 27
	2.4	Case Study: Weakly Adhesive Surfaces Under Shear	. 29
	Refe	ences	. 32

3	Nano	oscale Friction and Ultrasonics	35
	Mari	ia Teresa Cuberes	
	3.1	Introduction	35
	3.2	Normal Ultrasonic Vibration at Nanocontacts	37
	3.3	Shear Ultrasonic Vibration at Nanocontacts	43
	3.4	Reduction of Friction by Ultrasonic Vibration	44
	3.5	Adhesion Hysteresis at Ultrasonic Frequencies	48
	Refe	prences	53
4	Trib	poluminescence	57
	Rom	nan Nevshupa and Kenichi Hiratsuka	
	4.1	Introduction and Brief Historical Survey	57
	4.2	Basic Processes and Activation Mechanisms	59
	4.3	Experimental Techniques for Studying Triboluminescence	62
	4.4	Characteristics of the TL	65
		4.4.1 Spatial Distribution of the TL at a Tribological	
		Contact	65
		4.4.2 Effect of the Ambient Gas and the Material	
		of the Counterbodies on Spectral Characteristics	
		and Intensity Distribution of the TL	67
		4.4.3 Effect of Friction Type and Humidity	
		on the TL and Triboelectrification of Polymers	70
		4.4.4 Behaviour of the TL on Different Time Scales	72
	4.5	Modelling Approach	73
	Refe	prences	75
5	The	Quartz Crystal Microbalance as a Nanotribology	
	Tech	hnique	79
	Lore	enzo Bruschi and Giampaolo Mistura	
	5.1	Introduction	79
	5.2	The Acoustics of Quartz Crystal	80
	5.3	QCM Driving Circuits	83
	5.4	Quality of the Surface Electrodes	86
	5.5	UHV Apparatus	88
	Refe	erences	90

Part II Atomic-Scale Friction

6	Atomic-Scale Friction Measurements in Ultra-High Vacuum					
	Sabir	ne Maier, Enrico Gnecco and Ernst Meyer				
	6.1	Introduction	95			
	6.2	The Prandtl-Tomlinson Model	97			

		6.2.1	One-dimensional Prandtl-Tomlinson Model	97
		6.2.2	Extensions of the Prandtl-Tomlinson Model	100
	6.3	Experi	mental Observations of Atomic Stick-slip	101
		6.3.1	Load Dependence: From Smooth Sliding	
			and Stick-slip to Wear	102
		6.3.2	The Slip	104
		6.3.3	Thermal Effects and Velocity Dependence	104
		6.3.4	Maximal Lateral Force	106
		6.3.5	Multiple Slips.	106
	6.4	Atomi	c-Scale Friction Beyond Flat Terraces	107
		6.4.1	Atomic-Scale Friction at Step Edges	107
		6.4.2	Atomic-Scale Friction on Ordered Superstructures	
			and Reconstructions	108
	6.5	Anisot	ropy Effects	109
	6.6	Mecha	nical Properties of Molecular Chains	110
	6.7	Conclu		112
	Refe	rences		112
7	Stoc	hastic M	lodeling and Rate Theory of Atomic Friction	115
	Myk	haylo Ev	stigneev, Juan J. Mazo and Peter Reimann	
	7.1	Introdu	action	115
	7.2	Lange	vin Modeling	117
		7.2.1	Langevin Equation	117
		7.2.2	Parameter Values	120
		7.2.3	Regimes of Motion	121
		7.2.4	Some Generalizations of the Standard PT Model	123
		7.2.5	Friction Force-velocity Relations.	124
	7.3	Rate T	`heory	126
		7.3.1	Rate Equation	126
		7.3.2	Validity Conditions	128
		7.3.3	Parameterization	128
		7.3.4	Types of the Stick-slip Motion	130
		7.3.5	Force-velocity Relations	131
		7.3.6	Force Probability Distribution	133
	7.4	Conclu	Iding Remarks	134
	Refe	rences		135
8	Exn	erimenta	l Observations of Superlubricity	
5	and	Thermo	hibricity	139
	Mart	in Dienw	viebel and Joost W.M. Frenken	157
	8 1	Introdu	iction	130
	0.1	811	The Transition to Frictionless Sliding	159
		0.1.1	in the One-Dimensional Case	140
				140

		8.1.2	Superlubricity	141		
		8.1.3	In Search for Superlubricity	141		
	8.2	Atomic	c-Scale Observation of Superlubricity	142		
		8.2.1	Commensurability-Dependent Superlubricity			
			Between Finite Graphite Surfaces	142		
		8.2.2	The Role of the Normal Force	147		
	8.3	The Ro	ole of Temperature	149		
		8.3.1	Weak Thermal Effects	149		
		8.3.2	Strong Thermal Effects: Thermolubricity	150		
	8.4	Other 1	Manifestations of Superlubricity and Thermolubricity	152		
		8.4.1	Lubrication by Graphite and Other Lamellar Solids	152		
		8.4.2	Lubrication by Diamond-Like Carbon			
			and Related Coatings	153		
		8.4.3	Lubrication by Fullerenes and Carbon Nanotubes	153		
	8.5	Conclu	Iding Remarks	154		
	Refer	ences		155		
9	Friction and Wear of Mineral Surfaces in Liquid					
	Envi	ronment		157		
	Carlo	s M. Pir	ha, Carlos Pimentel and E. Gnecco	157		
	9.1	Introdu	ICTION	157		
	9.2	Structu	Iral Studies of Mineral Surfaces Using Lateral	150		
	0.2	Force I	Microscopy	159		
	9.5	Dotain	ing Chemical Information of Surfaces from Frictional	160		
	0.4	Wear of	and Nanomanipulation of Mineral Surfaces	102		
	9.4	and Or	and Nationalipulation of Milleral Surfaces	164		
	0.5	Organi	a Malagulas on Mineral Surfages	169		
	9.5	Conclu	usions and Outlook	100		
	9.0 Dofor	ences		171		
	Kelei	ences		172		
10	Nano	tribolog	ev: Nonlinear Mechanisms of Friction	175		
	N. M	anini, O	leg M. Braun and A. Vanossi			
	10.1	Introdu	uction	175		
	10.2	The Pr	andtl-Tomlinson Model	177		
	10.3	The Fr	enkel-Kontorova Model	181		
		10.3.1	Extensions of the Frenkel-Kontorova Model	187		
	10.4	Molecu	ular Dynamics Simulations	191		
		10.4.1	Thermostats and Joule Heat	193		
		10.4.2	Size- and Time-scale Issues	193		
		10.4.3	Multiscale Models.	195		
		10.4.4	Selected Results of MD Simulations	195		

10.5	Earthqu	ake-Like Models	198
10.6	Conclus	sions	201
Refer	ences		203
Theo	retical S	tudies of Superlubricity	209
Marti	n H. Mü	ser	
11.1	Introdu	ction	209
11.2	Theory		211
	11.2.1	Definition of Superlubricity	211
	11.2.2	Cancellation of Lateral Forces. Symmetry	
		Considerations	212
	11.2.3	Role of Instabilities in Simple Models	219
	11.2.4	Effect of Temperature	220
	11.2.5	Damping in the Superlubric Regime	221
	11.2.6	Long-Range Elastic Deformations	221
	11.2.7	Self-affine Rough Surfaces	224
11.3	Simulat	ions	225
	11.3.1	Generic Models	225
	11.3.2	Layered Materials	227
	11.3.3	Metal on Metal Contacts	228
	11.3.4	Hydrogen-Terminated Surfaces	229
11.4	Conclus	sions	230
Refer	ences		231
	10.5 10.6 Refer Theo Marti 11.1 11.2 11.3	10.5 Earthqu 10.6 Conclus References. Theoretical S Martin H. Mü 11.1 Introduct 11.2 Theory 11.2.1 11.2.1 11.2.2 11.2.3 11.2.4 11.2.5 11.2.5 11.2.6 11.2.7 11.3 Simulat 11.3.1 11.3.2 11.3.3 11.3.4 11.4 Conclus References.	10.5 Earthquake-Like Models 10.6 Conclusions References. References. Theoretical Studies of Superlubricity Martin H. Müser 11.1 Introduction 11.2 Theory 11.2.1 Definition of Superlubricity 11.2.2 Cancellation of Lateral Forces. Symmetry Considerations 11.2.3 11.2.4 Effect of Temperature 11.2.5 Damping in the Superlubric Regime 11.2.6 Long-Range Elastic Deformations 11.2.7 Self-affine Rough Surfaces. 11.3 Simulations 11.3.1 Generic Models 11.3.3 Metal on Metal Contacts 11.3.4 Hydrogen-Terminated Surfaces. 11.4 Conclusions References. References.

Part III Multiscale Friction

12	On the	ne Fractal Dimension of Rough Surfaces	235			
	Bo Persson					
	12.1	Introduction	235			
	12.2	Power Spectrum: Definition	236			
	12.3	Power Spectra: Some Examples	237			
	12.4	Simulation of Rough Surfaces: A Simple Erosion Process	241			
	12.5	Discussion and Summary.	243			
	Refer	ences	247			
13	Cont	act Mechanics, Friction and Adhesion with Application				
	to Quasicrystals					
	Bo Persson, Giuseppe Carbone, Vladimir N. Samoilov,					
	Ion M	I. Sivebaek, Ugo Tartaglino, Aleksandr I. Volokitin				
	and C	Chunyan Yang				
	13.1	Introduction	249			
	13.2	Sliding Friction—Role of Elasticity	251			

	13.3	Application to Quasicrystals	252
	13.4	Surface Roughness	254
		13.4.1 Surface Roughness Power Spectra: Definition	
		and General Properties.	256
		13.4.2 Surface Roughness Power Spectra:	
		Experimental Results	260
	13.5	Contact Mechanics	264
	13.6	Adhesion	271
		13.6.1 Adhesion Between Rough Surfaces	272
		13.6.2 The Adhesion Paradox	280
		13.6.3 The Role of Liquids on Adhesion Between	
		Rough Solid Surfaces	281
	13.7	Summary and Outlook	285
	Refer	ences	286
14	MD/I	FE Multiscale Modeling of Contact	289
	Sriniv	vasa Babu Ramisetti, Guillaume Anciaux	
	and J	ean-Francois Molinari	
	14.1	Introduction	289
	14.2	Modeling Techniques of Contact at Nanoscale	290
	14.3	Multiscale Coupling Applied to Contact	292
		14.3.1 State of the Art of Multiscale Methods	293
		14.3.2 Sliding Friction and Heat Generation.	297
	14.4	Finite Temperature Coupling	299
		14.4.1 Scale Transfer Operator	299
		14.4.2 Selective Thermostat	300
		14.4.3 Heat Balance Equation	301
	14.5	Validation and Application.	302
		14.5.1 Mechanical Wave Propagation at Finite	
		Temperature	303
		14.5.2 Thermo-Mechanical Wave Propagation	304
		14.5.3 Application to Dynamic Contact	306
	14.6	Conclusion	308
	Refer	ences	309
15	E .e.	t of Constituent Constituent for an New could Fritzford	212
15	Doco	t of Capitary Condensation on Nanoscale Friction	515
	15 1	Introduction	212
	15.1	Model	215
	15.2	Tomparature and Valagity Departdencies of Emistion	216
	15.5	Effect of Implane Oscillations	210
	15.4	Effect of Inplane Oscillations	322
	Def	13.4.1 Summary	328
	Kefer	ences	529

Part IV Nanomanipulation

16	Mech	nanical F	Properties of Metallic Nanocontacts	333				
	Gabir	10 Rubio	Bollinger, Juan J. Riquelme, Sebastian Vieira					
	and N	nd Nicolas Agraït						
	16.1	Introdu	ction	334				
	16.2	Experir	nental Tools	335				
		16.2.1	The Scanning Tunneling Microscope Supplemented					
			with a Force Sensor	337				
		16.2.2	The Mechanically Controllable Break-Junction					
			Technique	338				
	16.3	Electro	n Transport Through Metallic Nanocontacts	340				
	16.4	Mechar	nical Properties of Metallic Nanocontacts	342				
		16.4.1	Fabrication of Metallic Nanocontacts.	342				
		16.4.2	Elasticity and Fracture of Metallic Nanocontacts	344				
		16.4.3	The Shape of Metallic Nanocontacts	345				
		16.4.4	Inelastic Scattering by Phonons in Nanocontacts	347				
	16.5	Suspen	ded Chains of Single Gold Atoms	348				
		16.5.1	Fabrication of Chains of Atoms Using					
			Local Probes	348				
		16.5.2	Mechanical Processes During Formation					
			of Atomic Chains	350				
		16.5.3	Phonons in Atomic Chains.	353				
	16.6	Metalli	c Adhesion in Atomic-Sized Tunneling Junctions	357				
	Refer	ences		359				
17	Nano	Nanotribological Studies by Nanoparticle Manipulation						
	Dirk Dietzel, Udo D. Schwarz and André Schirmeisen							
	17.1	Nanoparticle Manipulation: An Alternative Route						
		to Nano	otribology	363				
	17.2	Friction	n Measurements by Nanoparticle Manipulation:					
		Experir	nental Approach	366				
		17.2.1	Dynamic AFM Techniques for Nanoparticle					
			Manipulation	366				
		17.2.2	Contact Mode AFM Techniques for Nanoparticle					
			Manipulation	368				
		17.2.3	Identifying Static Friction in Nanoparticle					
			Manipulation Experiments	375				
		17.2.4	Comparison of Manipulation Strategies	378				
	17.3	Nanopa	articles for Manipulation Experiments	378				
	17.4	Friction	n of Extended Nanocontacts: Theoretical Concepts	381				
	17.5	Friction	al Duality of Sliding Nanoparticles	385				

		17.5.1	Contact Area Dependence of Friction	
			Analyzed by Nanoparticle Manipulation	385
		17.5.2	The Role of Interface Contaminations:	
			Theoretical Calculations.	388
	17.6	Conclus	sion and Outlook	390
	Refer	ences		391
18	Tribo	logical A	Aspects of In Situ Manipulation of Nanostructures	
	Insid	e Scanni	ng Electron Microscope.	395
	Boris	Polyako	v, Leonid Dorogin, Sergei Vlassov,	
	Ilmar	Kink an	d Rünno Lõhmus	
	18.1	Introdu	ction	395
	18.2	Section	I: Instrumentation	397
		18.2.1	Nanomanipulators	397
		18.2.2	Force Measurements	398
	18.3	Section	II: Manipulation of Nanoparticles	401
	1010	18.3.1	Contact Area	402
		18.3.2	Manipulation of Polyhedron-Like Nanoparticles	402
		18.3.3	Manipulation of Silver Nanoballs	
			and Nanodumbbells.	404
	18.4	Section	III: Manipulation of Nanowires	406
		18.4.1	Elastic Beam Theory Employed for Tribomechanical	
		10.1.1	Studies of Nanowires	407
		1842	Nanowire Loaded at One End	411
		18.4.3	Nanowire Pushed in the Midpoint: Kinetic Friction	417
		18.4.4	Redistributed Static Friction of a Bent Nanowire	
		101111	Relaxed After Manipulation	419
		18.4.5	Specific Problems of Manipulations Inside SEM	423
	18 5	Outlool		423
	Refer	ences.		424
	iterer	ences		
19	Drive	en Colloi	dal Monolavers: Static and Dynamic Friction	427
	Andre	ea Vanos	si. Nicola Manini and Erio Tosatti	
	19.1	Introdu	ction	427
	19.2	Sliding	of a Colloid Monolayer on Laser-Created Periodic	
		Potentia	als	429
	19.3	Molecu	lar Dynamics Simulation Model	430
	19.4	The Sir	nulation Protocol	434
	19.5	Simulat	ion Results	436
		19.5.1	Force-Velocity Characteristics	436
		19.5.2	Aubry-Like Pinning-Unpinning Transition	437
		19.5.3	Soliton-Antisoliton Asymmetry	437
		19.5.4	The Sliding State	438
		19.5.5	Phase-Diagram Evolution with Sliding	440
		- /		

19.6	Friction of Colloid Sliding on the Optical Lattice	441
19.7	Summary and Discussion	443
Refere	ences	449

Part V Layered Materials, Polymers

20	Micr	o- and N	anotribology of Graphene	453
	Marti	n Dienw	iebel and Roland Bennewitz	
	20.1	Introdu	ction	453
	20.2	Friction	1 Force Microscopy of Graphene	454
	20.3	Graphe	ne Versus Graphite	455
	20.4	Atomic	-Scale Friction of Graphene	455
	20.5	Atomis	tic Simulations of Graphene Tribology	457
	20.6	Friction	and Wear of Graphene at the Microscale	458
	20.7	Summa	ury	460
	Refer	rences		460
21	Supe	rlubricit	y in Layered Nanostructures	463
	Seym	ur Cahar	ngirov and Salim Ciraci	
	21.1	Introdu	ction	463
		21.1.1	Dissipation Phenomena	464
		21.1.2	Adiabatic Versus Sudden Processes	464
		21.1.3	Prandtl-Tomlinson Model	465
		21.1.4	Motivation	468
	21.2	Superlu	bricity Between Two Layers of Graphene	
		Derivat	ives and Transition Metal Dichalcogenides	469
		21.2.1	Methods	470
		21.2.2	Critical Curvature	470
		21.2.3	Intrinsic Stiffness	474
		21.2.4	Frictional Figure of Merit	475
		21.2.5	Stick-slip in Silicane: A Counter Example	476
	21.3	Superlu	bricity Between Graphene Coated Metal Substrates	477
		21.3.1	Model and the Atomic Structure	478
		21.3.2	Adhesion Hysteresis	479
		21.3.3	Trends in Multilayers	481
		21.3.4	Analysis of Charge Density	483
	21.4	Discuss	sions and Conclusions	485
	Refer	ences		486
22	Nano	scale Fr	iction of Self-assembled Monolayers	489
	Karin	e Mougi	n and Haidara Hamidou	
	22.1	Homog	eneous Organic Molecular Films	490
		22.1.1	Influence of Chain Length and Structure	493

	22.1.2	Influence of Terminal Group	495		
	22.1.3	Effect of Humidity and Temperature	496		
	22.1.4	Influence of Sliding Velocity	498		
	22.1.5	Conclusion	499		
22.2	22.2 Molecular Heterogeneous Thin Films				
	22.2.1	Influence of Topology	500		
	22.2.2	Influence of Sliding Velocity	509		
22.3	Wear of	f SAMs	511		
22.4	Conclus	sion	512		
References					

Part VI Nanowear

23	Fron	1 Nano a	nd Microcontacts to Wear of Materials	517	
	Rogerio Colaço				
	23.1	Introduc	ction	517	
	23.2	The Na	ture of Solid Surfaces	519	
		23.2.1	Surface Constitution	519	
		23.2.2	Surface Topography	520	
		23.2.3	Topographic Mechanisms of Wear	522	
	23.3	Wear T	heories	524	
		23.3.1	Classical Wear Theories.	524	
		23.3.2	Atomic Wear Theories.	527	
	23.4	Wear E	xperiments at Submicrometric Scales		
		Using the	he AFM	530	
	23.5	Indentat	tion Size Effect	535	
	23.6	Conclus	sions	538	
	Refer	ences		539	
24	Nano	wear of	Polymers	545	
	Mario	D'Acun	to, Franco Dinelli and Pasqualantonio Pingue		
	24.1	Introduc	ction	546	
	24.2	2 Wear Tests at the Nanoscale in Polymer Films to Assess			
		Materia	1 Properties	553	
		24.2.1	Schallamach Waves and Ripples	554	
		24.2.2	Multiple Line Scratch Test.	555	
		24.2.3	Amorphousness and Crystallinity	557	
		24.2.4	Plasma Treatment	559	
		24.2.5	Presence of Solvent.	560	
		24.2.6	Temperature Dependence	561	
		24.2.7	Composites	562	
		24.2.8	Boundary Conditions	566	

24.3	Exploit	ing the Nanowear of Polymers for Lithographic		
	Applica	utions	567	
24.4	Characterization of Meso- and Nanoscale Wear			
	of Poly	mers in Biomedical Applications	579	
	24.4.1	Role of Wear Rates for Biodegradable Polymers	580	
	24.4.2	Severe Wear Regime in Biomaterials: Wear		
		of UHMWPE Used in Prostheses	581	
24.5	Conclu	sive Remarks and Future Perspectives	583	
References 5				

Part VII Dissipation Mechanisms at Finite Separations

25	Casir	nir Forc	e and Frictional Drag Between Graphene Sheets	591
	Aleksandr I. Volokitin and Bo Persson			
	25.1	Introdu	ction	591
	25.2	Fluctua	tions Produce Forces	593
	25.3	Reflect	ion Produces Friction	600
	25.4	Using (Graphene to Detect Quantum Friction	601
	25.5	Conclu	sion	605
	Refer	ences		606
26	Dissipation at Large Separations			609
	Marcin Kisiel, Markus Langer, Urs Gysin, Simon Rast,			
	E. Meyer and Dong-Weon Lee			
	26.1 Introduction		ction	610
	26.2	Interna	l Friction of the Cantilever	613
		26.2.1	Thermo-elastic Damping	614
		26.2.2	Bulk and Surface Losses	615
	26.3	Dissipa	tion at Large Separations	616
		26.3.1	Dissipation due to Electromagnetic Interaction	617
		26.3.2	Suppression of Electronic Friction	
			in the Superconducting State	619
		26.3.3	The Noncontact Friction due to Phase Slips of the	
			Charge Density Wave (CDW) in NbSe ₂ Sample	622
	26.4	Summa	rry and Conclusions	626
	Refer	ences		626

Part VIII Applications

27	Nanotribology of MEMS/NEMS Satish Achanta and Jean-Pierre Celis		
	27.1	MEMS/NEMS Devices, Applications, and Their Reliability	
		Issues	632

	27.2	Tribolo	gical Problems in MEMS/NEMS	634
	27.3	Tribolo	gical Evaluation of Materials for MEMS/NEMS	636
		27.3.1	Background on Adhesion, Friction and Wear	
			at Nano-/Micro- Scales	636
		27.3.2	Techniques for Tribological Characterization	
			of Materials	637
		27.3.3	Tribological Evaluation of Materials	638
	27.4	Prospec	tive Materials.	648
	27.5	Conclus	sions	652
	Refer	ences		652
28	Nano	tribolog	y in Automotive Industry	657
	Marti	n Dienwi	iebel and Matthias Scherge	
	28.1	Introduc	ction	657
		28.1.1	Wear and Length Scales	658
	28.2	Energet	ic View of Friction and Wear	659
	28.3	The "Tl	hird Body"	660
	28.4	Nanowe	ear	662
		28.4.1	Composition of the Near-surface Material	663
		28.4.2	Friction- and Wear-Induced Changes	
			of the Surface.	664
		28.4.3	Structural Changes of the Mixed Zone	664
		28.4.4	Wear Debris.	666
		28.4.5	Atomic-Scale Wear Studies	666
	28.5	Conclus	sions	667
	Refer	ences		668
29	Adhe	sion and	I Friction Contributions to Cell Motility	669
	Mario	D'Acun	nto, Serena Danti and Ovidio Salvetti	
	29.1	Introdu	ction	670
	29.2	Cell Mo	otility: A General Overview	671
		29.2.1	Actin Based Motility	672
		29.2.2	Traction Force Microscopy	673
	29.3	Mechan	notaxis and Scaffold Surfaces	676
		29.3.1	Role of Roughness	680
	29.4	Adhesic	on and Friction Models for Cell Motility	684
		29.4.1	Actin-Based Motility Models	685
		29.4.2	Active Gels Model	691
		29.4.3	Polymerization of Viscoelastic Gel Confined	
			in a Channel	693
	29.5	Conclus	sions and Future Perspectives	695
	Refer	ences	·····	695
			······································	
Ind	ex			699

Contributors

Satish Achanta Department of MTM, Katholieke Universiteit Leuven, Leuven, Belgium

Nicolas Agraït Departamento de Física de la Materia Condensada C-III, Universidad Autónoma de Madrid, Madrid, Spain

Guillaume Anciaux Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland

Itay Barel Department of Chemistry and Biochemistry, University of California, Santa Barbara, USA

Roland Bennewitz INM—Leibniz-Institute for New Materials, Saarbrücken, Germany; Physics Department, Saarland University, Campus D2 2, Saarbrücken, Germany

Oleg M. Braun Institute of Physics, National Academy of Sciences of Ukraine, Kiev, Ukraine

Lorenzo Bruschi CNISM Unitá di Padova, Padova, Italy

Seymur Cahangirov Nano-Bio Spectroscopy Group, Departamento Fisica de Materiales, Centro de Fisica de Materiales CSIC-UPV/EHU-MPC and DIPC, Universidad Del Pais Vasco, San Sebastian, Spain

Rosario Capozza International School for Advanced Studies (SISSA), Via Bonomea 265, Trieste, Italy

Giuseppe Carbone CEMeC Politecnico di Bari, Bari, Italy

Jean-Pierre Celis Department of MTM, Katholieke Universiteit Leuven, Leuven, Belgium

Salim Ciraci Department of Physics, Bilkent University, Ankara, Turkey

Rogerio Colaço Department of BioEngineering and Centro de Química Estrutural, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal

Maria Teresa Cuberes Dpto. Mecánica Aplicada, Universidad de Castilla-La Mancha, Almadén, Spain

Mario D'Acunto Istituto di Struttura Della Materia, Consiglio Nazionale Delle Ricerche (ISM-CNR), Roma, Italy; Istituto di Scienza E Tecnologie Dell'Informazione, Consiglio Nazionale Delle Ricerche, ISTI-CNR, Pisa, Italy; NanoICT Laboratory, Area Della Ricerca CNR, Pisa, Italy

Serena Danti Department of Surgical, Medical, Molecular Pathology and Emergency Medicine, University of Pisa, Pisa, Italy

Martin Dienwiebel Karlsruhe Institute of Technology, Institute for Applied Materials—Reliability of Systems and Components, Microtribology Center μ TC, Karlsruhe, Germany

Dirk Dietzel Institute of Applied Physics (IAP), Justus-Liebig-Universität, Giessen, Germany

Franco Dinelli Istituto Nazionale di Ottica, INO-CNR, Pisa, Italy

Leonid Dorogin Institute of Physics, University of Tartu, Tartu, Estonia

Carlos Drummond Centre de Recherche Paul Pascal, CNRS-Université Bordeaux 1, Pessac, France

Mykhaylo Evstigneev Faculty of Physics, University of Bielefeld, Bielefeld, Germany

Joost W. M. Frenken Kamerlingh Onnes Laboratory, Leiden University, Leiden, The Netherlands

Enrico Gnecco Instituto Madrileño de Estudios Avanzados en Nanociencia, IMDEA Nanociencia, Campus Universitario de Cantoblanco, Madrid, Spain

Urs Gysin Institute of Physics, University of Basel, Basel, Switzerland

Haidara Hamidou Institut de Science des Matériaux de Mulhouse, Mulhouse, France

Kenichi Hiratsuka Chiba Institute of Technology, Narashino-shi, Chiba, Japan

Ilmar Kink Institute of Physics, University of Tartu, Tartu, Estonia

Marcin Kisiel Institute of Physics, University of Basel, Basel, Switzerland

Markus Langer Institute of Physics, University of Basel, Basel, Switzerland

Dong-Weon Lee MEMS and Nanotechnology Laboratory, Chonnam National University, Gwangju, South Korea

Rünno Lõhmus Institute of Physics, University of Tartu, Tartu, Estonia

Sabine Maier Department of Physics, University of Erlangen-Nürnberg, Erlangen, Germany

Nicola Manini Dipartimento di Fisica, Università degli Studi di Milano, Milano, Italy

Juan J. Mazo Departamento de Física de la Materia Condensada, Instituto de Ciencia de Materiales de Aragón, CSIC-Universidad de Zaragoza, Zaragoza, Spain

Ernst Meyer Institute of Physics, University of Basel, Basel, Switzerland

Giampaolo Mistura CNISM and Dipartimento di Fisica e Astronomia G. Galilei, Universitá di Padova, Padova, Italy

Jean-Francois Molinari Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland

Karine Mougin Institut de Science des Matériaux de Mulhouse, Mulhouse, France

Martin H. Müser Jülich Supercomputing Centre, Forschungszentrum Jülich, Jülich, Germany; Universität des Saarlandes, Saarbrücken, Germany

Roman Nevshupa IETCC, CSIC, Madrid, Spain

Bo Persson Peter Grünberg Institut, Forschungszentrum Jülich, Jülich, Germany

Carlos Pimentel Departamento de Cristalografía y Mineralogía, Universidad Complutense de Madrid, Instituto de Geociencias (UCM-CSIC), Madrid, Spain

Carlos M. Pina Departamento de Cristalografía y Mineralogía, Universidad Complutense de Madrid, Instituto de Geociencias (UCM-CSIC), Madrid, Spain

Pasqualantonio Pingue NEST, Scuola Normale Superiore and Istituto Nanoscienze—CNR, Pisa, Italy

Boris Polyakov Institute of Solid State Physics, University of Latvia, Riga, Latvia

Srinivasa Babu Ramisetti University of Edinburgh, Edinburgh, UK

Simon Rast Institute of Physics, University of Basel, Basel, Switzerland

Peter Reimann Faculty of Physics, University of Bielefeld, Bielefeld, Germany

Philippe Richetti Centre de Recherche Paul Pascal, CNRS-Université Bordeaux 1, Pessac, France

Juan J. Riquelme Departamento de Física de la Materia Condensada C-III, Universidad Autónoma de Madrid, Madrid, Spain

Gabino Rubio-Bollinger Departamento de Física de la Materia Condensada C-III, Universidad Autónoma de Madrid, Madrid, Spain **Ovidio Salvetti** Istituto di Scienza E Tecnologie Dell'Informazione, Consiglio Nazionale Delle Ricerche, ISTI-CNR, Pisa, Italy

Vladimir N. Samoilov IFF, FZ-Jülich, Jülich, Germany

Matthias Scherge Fraunhofer IWM, Microtribology Center, Pfinztal, Germany

André Schirmeisen Institute of Applied Physics (IAP), Justus-Liebig-Universität, Giessen, Germany

Udo D. Schwarz Department of Mechanical Engineering and Materials Science and Center for Research on Structures and Phenomena (CRISP), Yale University, New Haven, CT, USA

Ion M. Sivebaek Department of Mechanical Engineering, Technical University of Denmark, Lyngby, Denmark

Ugo Tartaglino Pirelli Tires, Milan, Italy

Erio Tosatti CNR-IOM Democritos National Simulation Center, Trieste, Italy; International School for Advanced Studies (SISSA), Trieste, Italy; International Center for Theoretical Physics (ICTP), Trieste, Italy

Michael Urbakh School of Chemistry, Tel Aviv University, Tel Aviv, Israel

Andrea Vanossi CNR-IOM Democritos National Simulation Center, Trieste, Italy; International School for Advanced Studies (SISSA), Trieste, Italy

Sebastian Vieira Departamento de Física de la Materia Condensada C-III, Universidad Autónoma de Madrid, Madrid, Spain

Sergei Vlassov Institute of Physics, University of Tartu, Tartu, Estonia

Aleksandr I. Volokitin Samara State Technical University, Samara, Russia

Chunyan Yang IFF, FZ-Jülich, Jülich, Germany

Part I Experimental Techniques

Chapter 1 Friction Force Microscopy

Roland Bennewitz

Abstract This chapter introduces Friction Force Microscopy, which is possibly the most important experimental technique in nanotribology. In spite of the apparent simplicity of this technique, a special care is required in the calibration of the force sensors, as discussed in the chapter. We will also present a few key results on the load, material and temperature dependence of friction. The chapter ends with an overview on dynamic measurements of friction, in which the probing tip is oscillated laterally while sliding in contact with the sample surface or even while translating at very close distance from it.

1.1 Introduction

Friction Force Microscopy (FFM) is a sub-field of scanning force microscopy addressing the measurement of lateral forces in small sliding contacts. In line with all scanning probe methods, the basic idea is to exploit the local interactions with a very sharp probe for obtaining microscopic information on surfaces in lateral resolution. In FFM, the apex of a sharp tip is brought into contact with a sample surface, and the lateral forces are recorded while tip and sample slide relative to each other. There are several areas of motivation to study FFM. First, the understanding of friction between sliding surfaces in general is a very complex problem due to multiple points of contact between surfaces and the importance of lubricants and third bodies in the sliding process. By reducing one surface to a single asperity, preparing a well-defined structure of the sample surface, and controlling the normal load on the contact the complexity of friction studies is greatly reduced and basic insights into the relevant processes can be obtained. Furthermore, with the decrease of the size of mechanical devices (MEMS) the friction and adhesion of small contacts becomes a technological issue. Finally, the lateral resolution allows to reveal tribological contrasts caused by material differences on heterogenous surfaces.

R. Bennewitz (🖂)

INM-Leibniz Institute for New Materials, Saarbrücken, Germany e-mail: roland.bennewitz@inm-gmbh.de

[©] Springer International Publishing Switzerland 2015

E. Gnecco and E. Meyer (eds.), *Fundamentals of Friction and Wear on the Nanoscale*, NanoScience and Technology, DOI 10.1007/978-3-319-10560-4_1

Fig. 1.1 Critical issues in experimental friction force microscopy which are discussed in this chapter

The experimental field of FFM has been pioneered by Mate et al. [1]. The group built a scanning force microscope where the lateral deflection of a tungsten wire could be measured through optical interferometry. When the etched tip of the tungsten wire slid over a graphite surface, lateral forces exhibited a modulation with the atomic periodicity of the graphite lattice. Furthermore, a essentially linear load dependence of the lateral force could be established.

In this chapter we will describe aspects of instrumentation and measurement procedures. In the course of this description, a series of critical issues in FFM will bee discussed which are summarized in Fig. 1.1.

1.2 Instrumentation

1.2.1 Force Sensors

The force sensor in the original presentation of FFM by Mate et al. was a tungsten wire [1]. Its deflection was detected by an interferometric scheme where the wire constituted one mirror of the interferometer. A similar concept was later implemented by Hirano et al., who optically detected the deflection of the tungsten wire in a Scanning Tunneling Microscope when scanning the tip in close proximity to the surface [2]. Mate and Hirano report lateral spring constants from 1.5 to 2,500 N/m, depending on the wire thickness and length. Etching the wire to form a tip at its end,

mounting the wire, aligning of the light beam, and determination of the spring constant comprise some experimental difficulties. These difficulties are greatly reduced by the use of dedicated micro-fabricated force sensors. A very sophisticated instrumental approach to the solution of those problems has been realized by Dienwiebel et al. [3]. The group has attached a stiff tungsten wire to a micro-fabricated force sensor made of silicon. The central part of the sensor is a pyramid holding the tip. The position of the pyramid is detected in all three dimensions by means of four optical interferometers directed towards the faces of the pyramid. It is suspended in four symmetric high-aspect ratio legs which serve as springs with isotropic spring constant in both lateral directions and a higher spring constant in normal direction. The symmetric design of the instrument allows for determination of normal and lateral forces acting on the tip with minimal cross talk. An overview over different experimental realizations of FFM is given in Fig. 1.2.

Fig. 1.2 Four design options for Friction Force Microscopy. **a** Concept of the original instrument used by Mate et al. for their pioneering experiments [1] The deflection of a tungsten wire is detected by optical interferometry. The bent end of the wire is etched into a sharp tip. **b** Beam-deflection scheme as devised by Marti et al. [5]. Normal force F_N and friction force F_F cause bending and twisting of the cantilever. The deflection of a reflected light beam is recorded by comparing currents from four sections of a photodiode. **c** Cantilever device for the measurement of lateral forces with piezoresistive detection [8]. Lateral forces acting on the tip cause a difference in stress across the piezoresistors. **d** Micro-fabricated force detector for isotropic measurements of friction forces. The block in the center holds a tungsten tip, pointing upwards in this figure. The position of the block in all three dimensions is recorded by four interferometric distance sensors which are indicated by the four light beams below the devices [9]

The most widely used form of micro-fabricated force sensors for FFM is the micro-fabricated cantilever with integrated tip. The cantilever can be either a rectangular beam or a triangular design based on two beams. The lateral force acting on the tip is detected as torsional deflection of the cantilever. This scheme has been implemented in 1990 by Meyer et al. [4] and Marti et al. [5]. It is interesting to note that the triangular design is more susceptible to deflection by lateral forces than the rectangular beam, contrary to common belief and intuition [6]. However, triangular cantilevers are less prone to the highly unwanted in-plane bending [7].

The deflection of cantilever-type force sensors is usually detected by means of a light beam reflected from the back side of the cantilever at the position of the tip. The reflected light beam is directed towards a position-sensitive photodiode which detects normal and torsional bending of the cantilever as a shift in the position of the light beam in orthogonal directions. Realistically, there is always some cross-talk between the signals for normal and torsional bending. It can be detected by exciting the cantilever to oscillate at the fundamental normal and torsional resonance and measuring the oscillation amplitude in the orthogonal channels. The cross-talk can be minimized by rotation of the position-sensitive photodiode or accounted for in the detection electronics or software. Cross-talk can transfer topographic features into the lateral force signal and create topographic artifacts from friction contrast, the latter even amplified by the feedback circuit acting on the sample height.

Calibration of the beam-deflection scheme is not a simple task, however very important in order to compare FFM results from different sources. Many publications in the past have reported on relative changes in frictional properties, without providing any calibration at all. While such relative changes certainly represent important physical findings, it is nevertheless of utmost importance to provide all experimental information available, often allowing for a rough quantitative estimate of the lateral forces. Lateral forces in FFM can easily range from piconewton to micronewton, spanning a range of very different situations in contact mechanics, and knowing at least the order of magnitude of forces helps to sort the results qualitatively into different regimes.

The calibration comprises two steps. First, the spring constant has to be determined for the force sensor. Note that the beam-deflection scheme actually determines the angular deflection of the cantilever. Nevertheless it has become custom to quantify the force constant in N/m, where the length scale refers to the lateral displacement of the tip apex relative to the unbent cantilever. Second, a relation between the deflection of the cantilever and the voltage readout of the instrument has to be established.

For the determination of the spring constant, several methods have been suggested. The easiest to calculate it from the dimensions of the cantilever. While width and thickness are easily determined by optical or electron microscopy, thickness is better deduced from the cantilever's resonance frequency. Alternatively, the spring constant can be determined from changes in the resonances caused by the addition of masses to the free end of the cantilever. Also, the analysis of a cantilever's resonance structure in air can provide the required quantities. The latter two methods have recently be described and compared by Green et al. [10]. The relation between tip displacement

and voltage readout can be established by trapping the tip in a surface structure and displacing the sample laterally by small distances. For a rough estimate one can also assume that the sensitivity of the position-sensitive photodiode is the same for normal and torsional deflection. Taking into account the geometry of the beam-deflection scheme, the torsional deflection sensitivity can be deduced from the normal deflection sensitivity (See [11] and page 352 of [12]). Since the quantification of the thermal noise driven torsional resonance can be difficult, a combination of thermal noise and beam geometry methods can be useful for the calibration of FFM [13].

A method which provides a direct calibration of the lateral force with respect to the readout voltage is the comparison with a calibrated spring standard. Recent implementations of this approach suggest as calibrated standards optical fibers [14] or micro-fabricated spring-suspended stages with spring constants that can be traced to international standards [15]. Similarly, the lateral stiffness of a magnetically levitated graphite sheet can be used as [16]. A particularly elegant method to calibrate FFM experiments is the analysis of friction loops, i.e. lateral force curves from forward and backward scans, recorded across surfaces with well-defined wedges [11, 17, 18]. Dedicated micro-fabrication design in form of a hammer-shaped cantilever can also help to calibrate the torsional bending [19].

The torsional deflection of a cantilever can in principle be detected also by optical interferometry, provided that the beam diameter is smaller than the cantilever and the point of reflection is shifted off the torsional axis [20]. However, FFM results including normal and lateral force measurements require the differential reading of multiple interferometers [3, 21].

An alternative to the detection of the cantilever bending via the beam-deflection scheme is the implementation of piezoresistive strain sensors into the cantilever. In order to measure both lateral and normal forces acting on the tip in FFM, two such strain sensors need to be realized on one sensor. Chui et al. have created a piezoresistive sensor which decouples the two degrees of freedom by attaching a normal triangular cantilever to a series of vertical ribs sensing lateral forces [22]. Gotszalk et al. have constructed a U-shaped cantilever with one piezoresistive sensor in each arm, allowing for the detection of lateral forces at the tip [23]. While the publications presenting these novel instrumental approaches contain experimental proofs of concept, no further use of piezoresistive sensors in FFM experiments has been reported. This is certainly due to a lack of commercial availability. Furthermore, the signal-to-noise ratio in static force measurements using piezoresistive cantilevers seems not to reach that of optical detection schemes.

1.2.2 Control Over the Contact

The exact knowledge of the atomic configuration in the contact between tip apex and surface is prerequisite for a complete understanding of the results in Friction Force Microscopy. It is the most severe drawback in FFM that this knowledge is not available in most cases. While sample surfaces can often be prepared with atomic precision and cleanliness, the atomic constitution of the tip apex is usually less controlled. Friction signals vary with tip shape, as has been investigated for steps on graphite [24]. Furthermore, in the course of sliding atoms may be transferred from the tip to the surface or vice versa. Such transfer processes occur even for very gentle contact formation, as shown in experiments combining Scanning Probe Microscopy with a mass spectrometry analysis of the tip apex [25–27]. The transfer of atoms may quite often not only quantitatively but also qualitatively change the lateral forces encountered. Chemical reactions between surface and tip have been found to significantly increase friction between a Pt(111) surface for silicon but not for diamond tips [28]. The occurrence of atomic stick-slip motion can depend on the establishment of a certain degree of structural commensurability between tip and surface in the course of scanning [29, 30]. For atomic stick-slip measurements on graphite surfaces, the role of small graphite flakes attached to the tip has long been discussed and recently confirmed experimentally [1, 31].

The best control over the atomic structure of the tip apex has been achieved for metal tips in vacuum environments. By applying the established procedures of Field Ion Microscopy (FIM), the tip structure can not only be imaged but also conditioned on the atomic scale. Cross et al. have characterized the adhesion between a tungsten tip and a gold surface and proved the conservation of the atomic tip structure by means of FIM [32]. Even with instruments of lower resolution, FIM can at least be used for cleaning procedures and for a determination of the crystalline orientation of the apex cluster [2].

The integrated tips at the end of micro-fabricated silicon cantilevers have a welldefined crystalline orientation, usually pointing with the (100) direction along the tip. However, the tip surface and with it the whole tip apex are at least oxidized and possibly contaminated through packaging, transport, and handling. Furthermore, many tips are sharpened in a oxidation process which introduces large stresses at the apex. While etching in hydrofluoric acid can remove the oxide and for some time passivate silicon surface bonds by hydrogen, a stable formation and reproducible characterization comparable with FIM of metal tips has not yet been reported. Tips integrated into silicon nitride cantilevers are amorphous due to the chemical vapor deposition process and may exhibit an ever more complex structure and chemistry at the tip apex.

One way of overcoming the uncertainty of the tip constitution is to use methods of surface chemistry to functionalize the tip [33]. Specific interactions between molecules attached to the tip and molecules on the surface can be sensed by means of FFM [34]. At the same time, very strong adhesion has been reduced by covering the tip with a passivating layer to allow for lateral force imaging for example on silicon [35]. Numerous studies using this method have been published, mainly concentrating on organic monolayers on tip and surface. A review of the field has been given by Leggett et al. [36]. While most tip functionalization relies on thiol bonding to gold-coated tips, carbon bonding to nanocrystalline diamond tips has also been realized [37]. Schwarz et al. have prepared well-defined tips for FFM by deposition of carbon from residual gas molecules in a Transmission Electron Microscope, keeping control of the tip radius for a quantitative analysis of a contact mechanics study [38]. Force measurements explicitly aiming at interactions between colloidal particles and a surface have been performed by gluing micrometer-sized spheres of the desired size to the cantilever [39, 40]. As a final note, one should always be aware of the possible occurrence of major tip wear which has been observed to happen in a concerted action of mechanical and chemical polishing [41].

1.3 Measurement Procedures

The standard measurement in FFM is the so-called friction loop: The lateral force acting on the tip is recorded for a certain distance of scanning in the direction perpendicular to the long cantilever axis and for the reverse direction. The area in the loop represents the dissipated energy, and the area divided by twice the distance is the mean lateral force. It is always very instructive to record the topography signal of forward and backward scan at the same time, as differences will reveal cross-talk between normal and torsional bending of the cantilever.

Whenever lateral forces are measured as a function of some experimental parameter, the influence of that parameter on adhesion should be studied simultaneously. In order to interpret the experimental results in terms of contact sizes versus dissipation channels the knowledge of adhesion is essential. An excellent example is the jump in lateral forces observed on a C_{60} crystal when cooling to the orientational order-disorder phase transition, which was fully explained by a change in adhesion [42]. For experiments carried out in ambient environment, the dominant contribution to adhesion are usually capillary forces which dependent greatly on the humidity and on the hydrophobicity of the surface [43]. The humidity dependence of FFM results itself can depend again on the temperature [44–46]. Consequently, an enclosure of FFM experiments for humidity control greatly enhances the reproducibility of results.

1.3.1 Friction as a Function of Load

One of the central experiments in tribology is the quantification of friction, i.e. the change of lateral force with increasing normal load on the sliding contact. One of the questions to be addressed is whether the relation between lateral and normal force is linear for FFM experiments, i.e. whether Amontons' law extends to the nanometer scale [47]. The number of FFM studies reporting lateral force as a function of load is very large, and the overall physical picture is multifaceted, to express it in a positive way. A collection of results is shown in Fig. 1.3. From a procedural point of view it is extremely important to measure the lateral forces for the full range of small normal forces until the tip jumps out of contact, usually at a negative normal force. In this way the adhesion in the system can be categorized and even maps of adhesion can be produced from friction versus load experiments [48]. Furthermore,