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Chapter 1
Introduction

Nowadays, the expression Variational Inequalities and Contact Problems can be
considered as a syntagm since the variational methods have provided one of the
most powerful techniques in the study of contact problems and, on the other hand,
the variational formulations of the contact problems are, in most cases, variational
inequalities.

We therefore considered a book on this subject as necessary, a book where the
reader will find many results on variational inequalities and, at the same time, a
detailed study of certain contact problems with non local Coulomb friction.

In the last 50 years, variational inequalities became a strong tool in the mathemat-
ical study of many nonlinear problems of physics and mechanics, as the complexity
of the boundary conditions and the diversity of the constitutive equations lead to
variational formulations of inequality type.

The theory of variational inequalities find its roots in the works of Signorini
[38] and Fichera [14] concerning unilateral problems and, also, in the work of
Ting [44] for the elasto-plastic torsion problem. The mathematical foundation of
the theory was widened by the invaluable contributions of Stampacchia [41] and
Lions and Stampacchia [26] and then developed by the French and the Italian
school: Brézis [3, 4], Stampacchia [42], Lions [25], Mosco [28], Kinderlehrer and
Stampacchia [22]. Concerning the approximation of the variational inequalities, we
refer to the important contributions brought by Mosco [27], Glowinski et al. [17], or
Glowinski [16].

We do not claim that this book covers all the aspects in the study of the variational
inequalities. However, we intent to give the reader an overview on this huge subject
in a unified form, containing a detailed and justified description of the results on
existence, uniqueness, regularity or approximation of solutions of variational and
quasi-variational inequalities, in the linear and nonlinear cases, for the static and
quasistatic cases.

We also deal in this book with the study of certain static and quasistatic
problems with friction whose weak formulations are variational or quasi-variational

© Springer International Publishing Switzerland 2014
A. Capatina, Variational Inequalities and Frictional Contact Problems,
Advances in Mechanics and Mathematics 31, DOI 10.1007/978-3-319-10163-7__1
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2 1 Introduction

inequalities. More precisely, we address here frictional contact problems for a
linearly elastic body which, under the influence of volume and surface forces, is in
contact with a rigid foundation. The contact is modeled by Signorini’s law, except
for the last section where bilateral contact is considered. We also use a nonlocal
version of Coulomb’s friction law. Most of the results presented here are obtained
by applying abstract results on variational inequalities.

The first results concerning the mathematical study of this kind of problems, in
the case of Tresca’s friction (i.e., with given friction), are due to Duvaut and Lions
[12]. In the static case, important results concerning the study of contact problems
of Signorini type with local or nonlocal friction have been obtained by Duvaut [11],
Nec̆as et al. [29], Oden and Pires [31,32], Demkowicz and Oden [10], and Cocu [7].
In the quasistatic case, the first existence results were given by Andersson [1], Han
and Sofonea [18], and Klarbring et al. [23] for problems with normal compliance.
Their approach is based on incremental formulations obtained from the quasi-
variational inequality by an implicit time discretization scheme. The same technique
was used by Cocu et al. [9], Rocca [36], Andersson [2], and Cocu and Rocca
[8] in their existence proofs for quasistatic problems of Signorini type with local
or nonlocal friction or with friction and adhesion. The works of Panagiotopoulos
[33,34], Glowinski et al. [17], Glowinski [16], Campos et al. [5], Kikuchi and Oden
[21], Haslinger et al. [19], Hlavác̆ek et al. [20], Shillor et al. [37], Eck et al. [13], and
Sofonea and Matei [39] enriched, theoretically and numerically, the study of contact
problems. Among those who developed algorithms of resolution of the unilateral
contact problems with friction, let us quote Raous et al. [35], Sofonea et al. [40],
and Lebon and Raous [24].

The book is divided into III parts and 9 chapters.
Part I reviews, in a general way, the fundamental definitions, notation and

theorems of the functional analysis which will be essential to understand the
following parts. So, Chap. 2 is a potpourri of standard topics on functional spaces,
while Chap. 3 refers to spaces of vector-valued functions. The material we present in
these two chapters is a classical one and can be found in many monographs. Also,
throughout this book, when necessary, further basic results on functional analysis
will be recalled.

Part II is concerned with the study of variational inequalities.
Chapter 4 presents some generally known existence and uniqueness results. More

precisely, in Sect. 4.1 one considers elliptic variational inequalities of the first and
second kind involving linear and continuous operators in Hilbert spaces (Sect. 4.1.1)
or monotone and hemicontinuous operators in Banach spaces (Sect. 4.1.2). The
results are established using projection or proximity operators, Weierstrass or
Lax–Milgram theorems, Schauder or Banach fixed point theorems.

Section 4.2 deals with elliptic quasi-variational inequalities. In Sect. 4.2.1, we
refer to the case of monotonous and hemicontinuous operators: the existence is
obtained by using Kakutani fixed point theorem, while the uniqueness, only for
strongly monotone operators, is obtained using Banach fixed point theorem. In
Sect. 4.2.2 we consider the case of potential operators and we introduce and justify
the concept of generalized solution of a quasi-variational inequality. We then
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apply, in Sect. 4.2.3, these results to prove the existence and the uniqueness of the
generalized solution of a contact problem with friction for the operator of Hencky–
Nadai theory.

Section 4.3 presents a strategy, rather new, for the study of a class of abstract
implicit evolutionary quasi-variational inequalities which covers the variational
formulation of many quasistatic contact problems. The method used rests, as in the
typical cases, on incremental formulations.

In Chap. 5 we give two remarkable properties satisfied by the solutions of certain
variational inequalities. In Sect. 5.1 one highlights a maximum principle which is
then applied to a problem which models the flow of fluids through a porous medium
and also to an obstacle problem. In Sect. 5.2, using the method of the translations
due to Nirenberg [30] (as Brezis [4] did in his thesis for a scalar second order elliptic
operator), local and global regularity results of the solutions of a class of variational
inequalities of the second kind are established.

In Chap. 6 we present first a brief background on convex analysis, and we then
recall some classical results of the Mosco et al. [6] (M-CD-M) duality theory in its
form adapted by Telega [43] for the so-called implicit variational inequalities.

In Chap. 7 one can find details results on the discrete approximation of two
general classes of variational inequalities. For the quasi-variational inequalities
considered in Sect. 4.2.1, the convergence of an internal approximation is obtained
in Sect. 7.1 and an abstract error estimate is given in Sect. 7.2. A convergence result
for an internal approximation in space and a back difference scheme in time of
implicit evolutionary quasi-variational inequalities introduced in Sect. 4.3 is proved
in Sect. 7.3.

In Part III we study, in an almost exhaustive way, the problem of Signorini with
nonlocal Coulomb friction in elasticity.

Chapter 8 deals with the static problem. The mechanical problem is described in
Sect. 8.1 and its variational formulation is obtained in Sect. 8.2. The existence and,
under certain assumptions on the data, the uniqueness of the solution are obtained
in Sect. 8.3 by applying the theorems established in Sect. 4.2.1. Using the regularity
results given in Sect. 5.2.2 and an argument due to Fichera [15], we get, in Sect. 8.4,
a local regularity result for the solutions of the static problem. In Sect. 8.5 we derive
two dual formulations, dual and dual condensed, which involve as unknown the
stress field instead of the displacement field like in the case of the primal problem,
i.e. the variational formulation considered in Sect. 8.2. The first dual formulation is
obtained, by using Green’s formula, from the mechanical problem in the same way
as for the primal formulation. The second dual formulation, i.e. the dual condensed
one, is a problem posed on the surface of possible contact only, obtained by applying
the M-CD-M duality theory developed in Sect. 6.2. This condensed dual formulation
could be useful in numerical calculations since one computes directly the stresses
on the contact boundary and usually these are the quantities of interest. In Sect. 8.6
we consider a finite element approximation of the primal problem. We first obtain
an error estimate, either directly or by applying the estimate given in Sect. 7.3. We
then prove that a higher order of the approximation can be obtained for a suitable
choice of the regularization which describes the nonlocal character of Coulomb law.
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In Sect. 8.7 we consider the discretization by the equilibrium finite element method
of the two stress formulations, i.e. the dual formulation and the dual condensed one.
We prove the convergence of our approximations and we derive error estimates of
these discretized problems in different cases of the data. Section 8.8 is devoted to the
study of an optimal control problem related to the Signorini problem with nonlocal
Coulomb friction. More precisely, one characterizes the coefficient of friction which
leads to a given profile of displacements on the contact surface.

Chapter 9 deals with the quasistatic problem. In Sect. 9.1, using an implicit time
discretization scheme and applying the results of Sect. 4.3, an existence result is
obtained. We then consider, in Sect. 9.2, a space finite element approximation and
an implicit time discretization scheme of this problem and, by using the results
of Sect. 8.3, we prove the convergence of the approximation. In the last section
we consider a mathematical model describing the quasistatic process of bilateral
contact with friction between an elastic body and a rigid foundation. Our goal is to
study a related optimal control problem which allows us to obtain a given profile
of displacements on the contact boundary, by acting with a control on another part
of the boundary of the body. Using penalization and regularization techniques, we
derive the necessary conditions of optimality.

This book was written in the framework of the author’s research activity within
the Institute of Mathematics of the Romanian Academy, and the results presented
here are partially based on the author’s own research.

The book is intended to be self-contained and it addresses mathematicians,
applied mathematicians, graduate students in mathematical and physical sciences
as well researchers in mechanics and engineering.
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Preliminaries



Chapter 2
Spaces of Real-Valued Functions

This chapter is a brief background on spaces of continuous functions and some
Sobolev spaces including basic properties, embedding theorems and trace theorems.
Hence, we recall some classical definitions and theorems of functional analysis
which will be used throughout this book. These results are standard and so they
are stated without proofs; for more details and proofs, we refer the readers to the
monographs [1, 3–7, 10, 11, 14].

In this book we only deal with real-valued functions. We assume that the reader
is familiar with the basic concepts of general topology and functional analysis.

For a point x D .x1; � � � ; xd / 2 R
d , we denote by Di the differential operator

@

@xi
.1 � i � d/.

If ˛ D .˛1; � � � ; ˛d / is a multi-index, then D˛ denotes the differential operator

of order ˛, with j˛j D
dX

iD1
˛i , defined by

D˛ D D
˛1
1 � � �D˛d

d D @j˛j

@x
˛1
1 � � � @x˛dd

:

Obviously, D0
i denotes the identity operator.

If A � R
d , we denote by C.A/ the space of real continuous functions on A.

Let � be an open set in R
d with its boundary � . We denote by � D � [ � the

closure of �.
For any nonnegative integer m, let Cm.�/, respectively Cm.�/, be the space

of real functions which, together with all their partial derivatives of orders ˛, with
j˛j � m, are continuous on �, respectively, on the closure � of � in R

d , i.e.

Cm.�/ D fv 2 C.�/ I D˛v 2 C.�/ for j˛j � mg : (2.1)
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When m D 0, we abbreviate C.�/ � C0.�/ and C.�/ � C0.�/. Any function
in C.�/ is bounded and uniformly continuous on �, thus it possesses a unique,
bounded, and continuous extension to �.

Let

C1.�/ D
1\

mD0
Cm.�/

be the space of infinitely differentiable functions on �.
If K is a subset of �, we shall write K �� � if K � � and K is a compact

(i.e., bounded and closed) subset of Rd .
The support of a function v W � ! R is defined as the closed subset

supp v D fx 2 � I v.x/ ¤ 0g : (2.2)

We shall say that a function v has compact support in � if there exists a compact
subset K of � such that v.x/ D 0 8x 2 �nK or, equivalently, supp v �� �.

We shall denote by Cm
0 .�/ the subspace of Cm.�/ consisting of all those

functions which have compact support in �.
If m < C1 and � is bounded, then Cm.�/ is a Banach space with the norm

given by

kvkCm.�/ D
X

j˛j�m
max
x2�

jD˛v.x/j : (2.3)

In the sequel, for .X; k � kX/, .Y; k � kY / two normed spaces with X � Y , we
shall write X ,! Y to designate the continuously embedding of X in Y provided
the identity operator I W X ! Y is continuous. This is equivalent, since I is linear,
to the existence of a constant C such that

kukY � CkukX 8u 2 X :

We also say that the normed space X is compactly embedded in the normed space
Y and write X ,!c Y if the identity operator I is compact, i.e. every bounded
sequence in X has a subsequence converging in Y , or, equivalently, if fukgk is a
sequence which converges weakly to u in X , and we write uk * u, then fukgk
converges strongly to u in Y , and we write uk ! u.

We denote by Lp.�/, for 1 � p < C1, the space of (equivalence classes of)
real functions v defined on � with the p-power absolutely integrable, i.e.

Z

�

jv.x/jp dx < 1 ;
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where dx D dx1dx2 : : : dxd is the Lebesque measure. The elements of Lp.�/,
being equivalence classes of measurable functions, are identical if they are equal
almost everywhere (a.e.) on �. Thus, we write v D 0 in Lp.�/ if v.x/ D 0 a.e.
x 2 �.

We also denote by L1.�/ the space consisting of all (equivalence classes of)
measurable real functions v that are essentially bounded on �, i.e. there exists a
constant C such that jv.x/j � C a.e. on �.

The space Lp.�/ endowed with the norm

kvkLp.�/ D

8
ˆ̂̂
<

ˆ̂̂
:

0

@
Z

�

jv.x/jp dx

1

A
1=p

if 1 � p < C1

ess sup
x2�

jv.x/j D inffC I jv.x/j � C a.e. x 2 �g if p D C1
(2.4)

is a Banach space. In addition, the space Lp.�/ is separable if 1 � p < C1 and
reflexive if 1 < p < C1.

If p 2 Œ1;1�, then the exponent conjugate to p is the number denoted by p0
defined by the relation

1

p
C 1

p0 D 1

where we used the convention

p0 D
� 1 if p D 1 ;

1 if p D 1 :

From Riesz representation Theorem 4.1 for Hilbert spaces it follows that, for
p 2 Œ1;C1/, the dual space of Lp.�/ is the space .Lp.�//0 D Lp

0

.�/ where
p0 is the exponent conjugate to p. The dual space of L1.�/ is a space larger than
L1.�/ (for more details, see [14, p. 118]).

In the case p D 2, the space L2.�/ is a Hilbert space with respect to the inner
product

.u; v/L2.�/ D
Z

�

u.x/ v.x/ dx : (2.5)

Definition 2.1. We say that a measurable function v defined a.e. on � is locally
p-integrable on � if v 2 Lp.A/ for every measurable set A �� �.

We shall denote by Lploc.�/ the space of all locally p-integrable functions on �.

Theorem 2.1. Let � � R
d be an open set. The following assertions hold.

1) Let 1 < p; q < 1.

If u 2 Lp.�/ and v 2 Lq.�/, then uv 2 L pq
pCq .�/.
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If un ! u in Lp.�/ and vn ! v in Lq.�/, then unvn ! uv in L
pq
pCq .�/.

If u 2 Lp.�/ and v 2 Lp0

.�/ where p0 is the exponent conjugate to p, then
uv 2 L1.�/ and the H Rolder’s inequality holds:

Z

�

u.x/v.x/ dx � kukLp.�/kvkLp0

.�/ : (2.6)

When p D p0 D 2, we get the Cauchy–Schwartz inequality.
2) For 1 � p � 1, every Cauchy sequence in Lp.�/ has a subsequence

converging pointwise a.e. on �.
3) Lp.�/ � L1loc.�/ 8p with 1 � p � 1.

4) Let v 2 L1loc.�/ be such that
Z

�

v.x/'.x/ dx D 0 8' 2 D.�/. Then v.x/ D 0

a.e. on �.
5) C1

0 .�/ is dense in Lp.�/ 8p with 1 � p < 1.

The following theorem gives an embedding result for the spacesLp.�/ and some
of its consequences.

Theorem 2.2. Let � � R
d be an open set with vol .�/ D

Z

�

dx < 1. Then the

following statements are valid.

1) For all p; q such that 1 � p � q � 1, we have Lq.�/ ,! Lp.�/ and

kvkLp.�/ � .vol �/
1
p� 1

q kvkLq.�/ 8 v 2 Lq.�/ :

2) lim
p!1 kvkLp.�/ D kvkL1.�/ 8v 2 L1.�/.

3) Suppose that v 2 Lp.�/ for any 1 � p < 1 and that there exists a constant C
such that kvkLp.�/ � C . Then v 2 L1.�/.

To better understand what is the meaning of the differential operator D˛v for
functions v whose derivatives do not exist in the classical sense, we briefly remind
the definition of distributions on �.

We denote by D.�/, called the space of test functions, the space C1
0 .�/

equipped with the inductive limit topology as in the Schwartz theory of distributions
[11].

Definition 2.2. A sequence f'kgk � C1
0 .�/ is said to converge to a function ' 2

C1
0 .�/ in (the sense of the space) D.�/, provided the following conditions are

satisfied:

i/ There exists a compact subset K of � such that supp .'k � '/ � K ; 8k
ii/ D˛'k ! D˛' uniformly on K ; 8˛ multi-index :
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The dual space D 0.�/ of D.�/ is called the space of (Schwartz) distributions
(or, generalized functions). Hence, any distribution T is a linear and continuous
functional on D.�/, i.e. T .'k/ ! T .'/ in R whenever 'k ! ' in D.�/. As dual
of D.�/, the space D 0.�/ is equipped with the weak-star topology: Tk ! T in
D 0.�/ if and only if Tk.'/ ! T .'/ in R, for every ' 2 D.�/.

Every distribution is infinitely differentiable in the following sense: if T 2 D 0.�/
then, for all multi-index ˛, the function D˛T defined on D.�/ by

D˛T .'/ D .�1/j˛jT .D˛'/ 8' 2 D.�/ : (2.7)

is a distribution. In addition, the operatorD˛ from D 0.�/ into D 0.�/ is continuous.
Any function u 2 L1loc.�/ generates a distribution Tu 2 D 0.�/ defined by

Tu.'/ D
Z

�

u.x/'.x/ dx 8' 2 D.�/ : (2.8)

Therefore, for any multi-index ˛, there exists the ˛-th derivative of Tu, namely
the distribution D˛Tu 2 D 0.�/ defined by (2.7), i.e.

D˛Tu.'/ D .�1/j˛jTu.D
˛'/ 8' 2 D.�/ :

But not any distribution is generated by a locally integrable function.

Definition 2.3. We shall say that the function u 2 L1loc.�/ possesses the distri-
butional (or generalized or weak) partial derivative of order ˛ on �, denoted by
D˛u, if there exists a function v˛ 2 L1loc.�/ which generates the distribution
D˛Tu 2 D 0.�/, i.e.

D˛Tu D Tv˛ :

Thus, from the last three relations, it follows that D˛u D v˛ is the distributional
partial derivative of u if v˛ 2 L1loc.�/ satisfies

Z

�

u.x/D˛'.x/ dx D .�1/j˛j
Z

�

v˛ '.x/ dx 8' 2 D.�/ : (2.9)

Obviously, the distributional derivative is uniquely defined up to a set of measure
zero.

In fact, this definition generalizes the classical partial derivative, obtained, for a
function u 2 C j˛j.�/, by integrating by parts j˛j times

Z

�

D˛u.x/ '.x/ dx D .�1/j˛j
Z

�

u.x/D˛'.x/ dx 8' 2 D.�/ : (2.10)
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Of course, in this case, D˛u is also a distributional partial derivative of u. However,
it should be noted that the derivative in the sense of distributions of a function, even
sufficiently smooth, may exist, even if it does not exist in the classical sense.

In particular, the relation (2.8) brings out a linear and continuous mapping u 7!
Tu from Lp.�/ into D 0.�/ and so, we may identify the distribution Tu with the
integrable function u. The same identification may be made for D.�/. Thus, we
have

D.�/ ,! Lp.�/ ,! D 0.�/ :

Using this result and the definition (2.9), Sobolev [12] expanded in a natural
way the space Lp.�/ by considering those functions which, for some nonnegative
integer m, possess distributional partial derivatives of all orders j˛j � m in Lp.�/.
This is the definition of the Sobolev space

W m;p.�/ D fv I D˛v 2 Lp.�/ ; for j˛j � mg :

The space W m;p.�/ is a Banach space with the norm

kvkW m;p.�/ D

8
ˆ̂̂
<

ˆ̂̂
:

0

@
X

j˛j�m
kD˛vkpLp.�/

1

A
1=p

if p 2 Œ1;1/ ;

max
j˛j�m

kD˛vkL1.�/ if p D 1 :

(2.11)

Obviously, W 0;p.�/ D Lp.�/ for p 2 Œ1;1/. The seminorm over W m;p.�/ is
defined by

jvjW m;p.�/ D

8
ˆ̂̂
<

ˆ̂̂
:

0

@
X

j˛jDm
kD˛vkpLp.�/

1

A
1=p

if p 2 Œ1;1/ ;

max
j˛jDm

kD˛vkL1.�/ if p D 1 :

(2.12)

We denote by W m;p
0 .�/ the closure of C1

0 .�/ in the space W m;p.�/ for the
norm k � kW m;p.�/. For p 2 Œ1;1/, we have the following chain of embeddings

W
m;p
0 .�/ ,! W m;p.�/ ,! Lp.�/

and, since C1
0 .�/ is dense in Lp.�/, it is clear that W 0;p

0 .�/ D Lp.�/.
It is easy to see that, if the open set � is bounded, the seminorm j � jW m;p.�/ is a

norm over W m;p
0 .�/ equivalent to the norm k � kW m;p.�/.

In the case p D 2, we use the notation

Hm.�/ D W m;2.�/ :
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Endowed with the scalar product

.u; v/Hm.�/ D
X

˛�m
.D˛u;D˛v/L2.�/ ; (2.13)

the Sobolev space Hm.�/ is a Hilbert space. Also we denote Hm
0 .�/ D W

m;2
0 .�/.

If � is bounded, then, without any hypothesis on the regularity of �, we have

H1
0 .�/ ,!c L

2.�/ :

Many different symbols are being used to denote these norms, when no confusion
may occur: k � km;p;� or k � km;p instead of k � kW m;p.�/, k � km;� or k � km instead of
k � kHm.�/ and k � k0;� or k � k0 instead of k � kL2.�/.

Ifm � 1 and 1 � p < 1, we denote byW �m;p0

.�/ the dual space ofW m;p
0 .�/,

p0 being the exponent conjugate to p (in fact,W �m;p0

.�/ is the notation for a space
of some distributions on � which is isometrically isomorphic to the dual space
.W

m;p
0 .�//0; for details, see [1]). Endowed with the norm

kf kW�m;p0
.�/ D sup

u2W m;p
0 .�/

u¤0

hf; ui
kukW m;p.�/

;

the space W �m;p0

.�/ is a Banach space which is separable and reflexive if
1 < p < 1. Here h�; �i is the duality pairing between W �m;p0

.�/ and W m;p
0 .�/.

We note that if X , Y are two Hilbert spaces such that X ,! Y dense, then (see,
for instance, [2, p. 51]) Y � ,! X� dense, where Y � and X� denote their dual
spaces.

If� is bounded, then D.�/ is dense inHm
0 .�/, and so, we can identify the dual

space H�m.�/ of Hm
0 .�/ with a subspace of D 0.�/:

D.�/ � Hm
0 .�/ � L2.�/ � H�m.�/ � D 0.�/ :

Now, we notice that most of the important results involving Sobolev spaces
are first obtained for regular functions and then extended to Sobolev spaces. The
density theorems and the embedding theorems show how and whether an element
of a Sobolev space can be approximated by smooth functions. Since these theorems
require additional regularity properties for the open set�, we recall some definitions
of them. Later, in Chaps. 5 and 8, we will use some of these assumptions on
� for getting regularity properties of the solutions of some concrete variational
inequalities.

Definition 2.4. We say that the open subset � of Rd has the cone property if there
exists a finite open bounded cover fOj gj2J of the boundary � of � and, for any j ,
there exists a cone Cj with the vertex at 0, such that, for all x 2 Oj \�, x C Cj
do not intersect Oj \ � .


