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Foreword

It is our pleasure to present this volume as part of the book series of the Proceedings of the
XII International IAEG Congress, Torino 2014.

For the 50th Anniversary, the Congress collected contributions relevant to all themes
where the IAEG members have been involved, both in the research field and in professional
activities.

Each volume is related to a specific topic, including:

1. Climate Change and Engineering Geology;
2. Landslide Processes;
3. River Basins, Reservoir Sedimentation, and Water Resources;
4. Marine and Coastal Processes;
5. Urban Geology, Sustainable Planning, and Landscape Exploitation;
6. Applied Geology for Major Engineering Projects;
7. Education, Professional Ethics, and Public Recognition of Engineering Geology;
8. Preservation of Cultural Heritage.

The book series aims at constituting a milestone for our association, and a bridge for the
development and challenges of Engineering Geology toward the future.

This ambition stimulated numerous conveners, who committed themselves to collect a
large number of contributions from all parts of the world, and to select the best papers
through two review stages. To highlight the work done by the conveners, the table of contents
of the volumes maintains the structure of the sessions of the Congress.

The lectures delivered by prominent scientists, as well as the contributions of authors,
have explored several questions ranging from scientific to economic aspects, from profes-
sional applications to ethical issues, which all have a possible impact on society and territory.
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This volume testifies the evolution of engineering geology during the last 50 years and
summarizes the recent results. We hope that you will be able to find stimulating contributions
which will support your research or professional activities.

Giorgio Lollino Carlos Delgado
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Preface

In the age of human activities, Engineering Geology plays a key role in the sustainable
development of our societies: scientists, regulators, and practitioners of Engineering Geology
are called to confront themselves with the purposes, methods, limitations, and findings of
their works.

In this perspective, topic seven of the XII Congress of IAEG in Torino on 2014 was an
opportunity to illustrate a wide-angle vision on several inter-related issues: the role of
Engineering Geologists within the geoengineering profession; the best practice in profes-
sional ethics and communication in a changing world; the education and modern develop-
ment of Engineering Geology profession and its professionals; resource use and reuse in
managing risk prevention and impaction a complex framework; engineering our geological
responsibility in an uncertain environment; Engineering Geology at tertiary level.

Five part topics were activated, presenting a total of 54 chapters, contributing to:
• stimulating the debate on professional responsibilities of engineering geologists,
• analyzing the interactions of engineering geologists with other professionals,
• evaluating the recognition of the engineering geological profession and its peculiar con-

tribution to society, culture, and economy, and
• reporting examples of the empowerment of research groups and management activities by

using web 2.0/3.0 technologies, thus enabling cooperation, knowledge sharing, and col-
laboration at all levels.

They highlighted implications for the use of the education of engineering geologists at
tertiary level and in further education schemes. They also highlighted the importance of
having the professionals organized into national groups which stimulate advances in Engi-
neering Geology in their countries.

‘‘Engineering Geological Models’’ (Part I) discussed the use of engineering geological
models within the framework of the total geological approach (Fookes et al. 2000; Baynes
et al. 2005; IAEG Commission 25). Such models allow the understanding and prediction of
engineering geological conditions and processes, aiming at reducing uncertainties and their
impact on our societies. The authors presented examples on innovative use of engineering
geological models for different engineering projects, and for different geological and geo-
morphological environments, envisaging new perspectives and operational outcomes.

‘‘Fifty-Year-Long History of IAEG in Events and Personalities’’ (Part V) focused on
relevant facts and events (congresses, conferences, symposia) of the 50-year-long IAEG
history, where many outstanding personalities played a fundamental role as founders of our
association. Amongst those who participated in the IAEG work, since its early beginning,
some gave great and acknowledged contribution to the development of engineering geology
on a world scale. Many witnesses of the events that took place during 50 years, and there are
still colleagues and disciples of the remarkable founders of IAEG, keep their historical
memory. This part highlighted our duty to share this heritage, passing up the baton to the new
young generation of geoscientists. In the 50th Anniversary Book which will be distributed to
all participants in the Congress, parts are devoted to the birth of the IAEG and the relevant
role of its founders, to the main events organized along the 50 years, to its outstanding
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activity all over the world, and to the awards that have been established to pay a tribute to
those who most contributed to the development of our discipline. The book also includes a
History of Engineering Geology which starts with its heritage and reports its evolution and
the main achievements until today.

‘‘Geoethics and Natural Hazards: Communication, Education and the Science-Policy-
Practice Interface’’ (Part II) analyzed the critical ethical issues faced by Geoscientists and
Engineers in relation to natural hazards (e.g., earthquake, volcano, landslide, and flood
events) and risks, and their increasing death toll and social costs owing to population growth,
occupation of marginal/unsafe land, and abandon or misuse of land. Sharing and commu-
nicating our knowledge more effectively, involving private and public stakeholders, could
contribute to a sustainable development of human society and economic activities. In the
Anthropocene, Geosciences represent the ‘‘connective tissue’’ of a wider multidisciplinary
approach, to build a shared responsibility on the effects of human actions, and to better cope
with uncertainties. This part highlighted many natural disasters could be prevented and/or
their impact reduced, raising awareness and fostering a true interdisciplinary collaboration
that could fulfill ethical obligations of the scientific community as a whole. This shows the
growing importance of environment in the practice of engineering geology and also the need
for its cooperation with other engineering and social subjects and professionals.

‘‘Resilience Two Citizens and Citizens Four Resilience’’ (Part III) focused on how
engineering geology could benefit from knowledge sharing of natural hazards and collabo-
rative risk management. As natural risks are part of our reality, the authors highlighted how
preparedness, as an interdisciplinary issue, could envisage a more effective disaster resil-
ience. The ‘‘common and shared knowledge’’ approach empowered by web 2.0/3.0 tech-
nologies, embodies the idea of citizen sciences and the purpose to build a new people-centred
resilience: Crowdsourcing and VGI, citizens engagement and participatory practices are a
new frontier and a matter of fact. Despite any critics, they have the merit to arouse a debate
on cooperation, knowledge sharing, and collaboration at all levels. This part faces, out from
the crowd, applicability, opportunity, and constraints of these new approaches, procedures,
and technologies for preparedness actions: (A) The ‘‘web 2.0 wave’’: threat or opportunity for
disaster resilience? (B) Two-way emergency communications: empower or menace for
governmental organizations. (C) ICT laws and regulations: dinosaurs in a glass store? (D) Is
research ready for Open Data and Open Knowledge (E) Cultural vs. technological challenges
in disaster resilience (E) Web and mobile technologies: experiences and tools.

‘‘Standards, Guidelines and Best Practices for Engineering Geology’’ (Part IV) offered to
professionals an overview of specialized documentation on Engineering Geology: the best
practice case studies and compilations, recommended technical procedures in more formal
guidelines, rigid regulatory, or prescriptive standards that are legally binding. Such docu-
mentation resulted appropriate for a variety of topics relevant to the engineering geology
community, and for a suite of topics, including construction materials studies, landslide risk
management and land planning, subsurface mining, infrastructure construction, and
groundwater extraction. An international open exchange of ideas and knowledge was gained
by this part, where authors illustrated their personal, national, or specialized experiences,
lessons learned, successes, and failures with fellow professionals. The authors provided much
needed guidance and structure to practicing engineering geologists and they underlay our
professional obligations to ensure the health, safety, and well-being of society. In the IAEG,
this has been best achieved through publication in the Bulletin which was created in 1970 and
is today a reference journal in the area, as well as the work produced by the IAEG
Commissions.

Interesting points emerged from the IAEG 2014-Topic 7 on ‘‘Education, Professional
Ethics and Public Recognition of Engineering Geology.’’ A comprehensive view of the
proposed contributions fosters the idea of engineering geologists playing the role of
acknowledged ‘‘interface’’ between man and nature. They are not only scientists and pro-
fessionals able to ‘‘interpret’’ both the environmental and the territorial processes, but they

viii Preface



also have attitudes and capabilities to communicate information to the general public and to
develop guidelines for the correct and safe use of land, namely for the social welfare and
economic development of society. The issues proposed by the Topic’s sessions, and the way
they were discussed within the proposed contributions also highlighted the important role
Engineering Geologists can play in disaster resilience. As a conclusion, interesting discus-
sions have been stimulated on the relationships between ethic, science, politics, and
citizenship.

Reference

Fookes PG, Baynes FJ, Hutchinson JN (2000) Total geological history: A model approach to the anticipation,
observation and understanding of site conditions, Invited Paper, Geoeng 2000 Conference, Melbourne
Australia, published in Ground Engineering 34(3): 42–47
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1Optimization of Large Civil Engineering
Projects from an Environmental Point of View

Ricardo Oliveira

Abstract

Without exception, the construction and operation of civil engineering projects have resultant
environmental impacts. However, in most cases the projects are essential to the economic and
social development of the regions where they are located and for some, their sole purpose is
to protect people and goods from natural hazards such as floods and landslides. In general, the
media and environmentalists tend to enhance the negative impacts of the projects and very
seldom make reference to their positive impacts. In this context, the need for high quality
studies and designs is assuming increasing relevance for engineering projects, to ensure
solutions with the least negative impacts are selected and subsequently constructed and
operated by suitably qualified staff. The role of geotechnics in the optimization of civil
engineering projects is therefore as important as is the efficient and early intervention of
specialists, and their decisions, on the technical, economic, social, environmental and
operational aspects of the works. To illustrate that it is often possible to optimize projects
from an environmental point of view, several examples are presented in relation to
construction materials, hydraulic developments, linear works (roads, railways, airways, and
waterways), underground works, maritime works, bridges and viaducts, and natural and
excavation slopes. In each case, emphasis is placed on the environmental concerns that
require optimization of the design in order to minimise the negative impacts without
diminishing the economic and social benefits of the works.

Keywords

Design improvement � Engineering projects � Environment

1.1 Introduction

Until the 70s/80s the design of large engineering projects
had to be satisfactory from both technical and economic
points of view. This meant that, until that time, the best
design solutions were selected by only taking into

consideration those points of view. However, quite often
those responsible for the design did study different alter-
natives, some of which had less interference with the
environment, but generally only selected them if they were
the least cost alternative.

Large engineering projects were constructed all over the
world; however people in more developed countries tended
to be more sensitive to their environmental impacts.

The primary environmental impacts were related to the
archeological, biological, paleontological and physical aspects
of the affected region and concerned communities started to
contest the projects. In spite of the negative impacts, the
construction of those projects was considered essential to the

R. Oliveira (&)
COBA, S.A., Engineering and Environmental Consultants
and New University of Lisbon, Lisbon, Portugal
e-mail: ricardo.oliveira@coba.pt

G. Lollino et al. (eds.), Engineering Geology for Society and Territory – Volume 7,
DOI: 10.1007/978-3-319-09303-1_1, � Springer International Publishing Switzerland 2014

1



economic and social development of the population affected.
Examples include the construction of infrastructure like dams
(for water supply, irrigation, clean and renewable hydroelec-
tric energy, leisure, and flood control), canals, motorways,
railroads, bridges, tunnels and other underground works, air-
ports and ports. Moreover, some of these works had the
objective of protecting people and goods from natural hazards
such as landslides, floods and earthquakes.

The media and environmentalist organizations tended to
enhance the negative impacts of the projects and very sel-
dom made reference to their positive effects.

Taking into consideration the fact that the implementa-
tion of all large engineering projects will generate some
negative impacts, it is fundamentally important to develop,
both at the feasibility and design stages, solutions that
minimize negative environmental impacts and to propose
compensatory measures.

In the past, studies and designs conducted by qualified
professionals have taken those aspects into consideration,
trying to balance the technical and economic feasibility of
projects with environmental preservation.

However, we must acknowledge that, in the past, when
faced with more than one feasible alternative engineering
solution, most project owners selected the least expensive
solution, even where this would imply greater environ-
mental impacts on the affected area.

These facts outlined above explain the origin of legis-
lation that has been created in the most developed countries
and regions, to mandate that environmental impact assess-
ments are conducted for all large engineering projects and
that the results are considered in balance with the social and
economic aspects of their implementation, to determine the
best design solution Oliveira (1997).

For example, European Commission Directive 85/337/CEE
was agreed in June 1985 and soon transposed to many countries
even outside the EU. In Portugal, the first decree was Law
186/90, which was first updated in 2000 (Law 69/2000), and its
most recent version is from 2013 (Law 151-B/2013). This last
version decrees that the environmental impact study of a given
project must be terminated at the same time as the completion
of its basic design and that the two studies include, wherever
possible, the analysis of alternative solutions. The authorities
take those studies into consideration and they only approve the
design when a favourable Declaration of Environmental
Impact (DEI) is issued, based upon them.

For a large number of such projects, the engineering
geological and geotechnical engineering roles are funda-
mental, depending on the degree of interference of the project
with the ground as well as, often, with the groundwater. These
roles are especially relevant when the studies are conducted
by experienced professionals who make decisions based on

the economics of the project as well as on its social, envi-
ronmental and operational consequences Oliveira (2008).

1.2 Examples of Geotechnical Project
Optimization that Takes Environmental
Issues into Consideration

In order to give some examples of how it is possible to
optimize civil engineering projects, taking environmental
issues into consideration, while still preserving their
economic and social value, a list of topics and works is
shown in Table 1.1.

Most of the examples were constructed years ago and
they show how it is possible for both sides of the problem to
be compatible.

The first example relates to the use of geological con-
struction materials, which is a subject transversal to most
engineering works. In general their extraction is only pos-
sible through the excavation of soils (borrow areas) or the
blasting of rock masses (quarries). These procedures always
interfere, although to different degrees, with the environ-
ment and the landscape, and at the end of extraction the
rehabilitation of the degraded areas should be mandatory.
Unfortunately, in many countries the legislation does not
yet mandate the rehabilitation of those areas, but that will
certainly change in the near future.

In order to avoid using large volumes of geological
materials for construction, research has been conducted
recently to find ways to replace the natural geological
materials with alternative products, such as recycled mate-
rials, quarry debris and geosynthetics.

Other important topics related to construction materials
and the optimization of their use, both from economic and
environmental points of view, are the management of the
materials during construction and the compensation of
volumes (excavations and fills) that have to be considered at
the design stage. Good volume compensation reduces the
amount of materials used and avoids unnecessary deposit of
non-used materials, which requires free areas and generally
interferes with the landscape.

Table 1.1 List of Engineering Works

Construction materials

Hydraulic undertakings

Linear surface works (highways, canals, pipes)

Underground works (tunnels, caverns)

Marine works (earth fills, breakwaters)

Bridges and viaducts

Natural and excavation slopes
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In order to support the concept of optimization of the use
of geological construction materials, Table 1.2 presents
examples of dams, linear works (motorways and canals),
bridges and coastal land reclamation.

With respect to hydraulic undertakings (i.e. dams and
hydraulic structures), environmental impacts may be expe-
rienced during the construction stage (e.g. the excavation of
large spillways) and/or during operations, upstream and
downstream (e.g. landslides of reservoir slopes and waves,
sedimentation of the reservoir, erosion of slopes).

An interesting example of an environmental impact
caused during construction was the excavation of the 90 m
high spillway of the Gargar dam in Algeria (Fig. 1.1). In
this case, the impact could be minimized as a result of the
sub-horizontal structure of the karstic limestone, that per-
mitted a very steep slope, and also by the use of controlled
blasting of the rock mass.

A very well-known example of environmental impact
during operations relates to the large sedimentation of the
reservoir in the Three Gorges dam, in China. To deal with
the erosion of soils from the hydraulic basin, which are
mainly transported to the reservoir by the tributaries,
additional dams have been constructed in several of the
water lines to retain sediments and thus to avoid them
reaching the reservoir. A program of forestation upstream
has also been implemented. Furthermore the design of the

main dam takes into consideration the detrimental aspect of
sedimentation by incorporating 22 vanes and 23 bottom
outlets in order to allow the sediments to be expelled
downstream when floods occur. Large discharges or floods,
if uncontrolled, may erode the base of the natural slopes of
valleys, downstream of dams, provoking instability of the
ground.

With regards to surface linear works, examples of
environmental optimization include the layout of alternative
routes, crossing karstic zones, open excavations versus
tunnels and landscaping, all of which must be considered
while also taking into account the social and economic
aspects of the land expropriation for each solution.

Good examples that show how the optimization of
engineering solutions can improve the environmental con-
ditions of the area include: the motorway A1, in the region
of Fatima, the Lisbon Regional Outer Circular (CREL) and
the motorway 24 to the Douro valley, all in Portugal and the
Anilio tunnel part of the Egnatia highway in Greece.
Figure 1.2 shows two alternatives which were studied
25 years ago, for the crossing of motorway A1, near Fátima,
through a karstic limestone rock mass. The decision taken,
based on the relative costs, was for the surface excavation
of the rock mass with slopes of approximately 30 m high
(Fig. 1.3). Nowadays this solution would not have been
approved by the environmental authorities.

Table 1.2 Construction
materials

Dams Extraction of soils and rocks in the reservoir area

Linear works Excavations and embankments

Compensation of volumes and materials management

Bridges versus embankments Foundation conditions and the availability of embankment materials

Land reclamation Dredging, hydraulic fills, borrow areas

Fig. 1.1 Gargar dam (Algeria).
Spillway
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Fig. 1.2 Motorway A1. Alternative solutions

Fig. 1.3 Motorway A1. Solution
open excavation
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The excavation of tunnels, as part of engineering works,
can create significant environmental problems that have to
be anticipated at the design stage and solutions have to be
found to mitigate their impact. Examples include their
interference with the hydrogeological conditions of the
geologic formations they cross and the destination site for
any materials resulting from the excavations.

Those concerns also apply to the construction of under-
ground caverns, which are opened for several engineering
purposes, such as hydroelectric power plants, metro sta-
tions, fluid storage and dangerous waste disposal. Moreover,
reference should also be made to the problems of ground
pollution, subsidence and collapse that reflect at the surface
of the ground.

One important issue mentioned previously in this paper
is the final treatment given to excavation debris that is not
used as a construction material, and is therefore a waste

product; effective modelling during the design phase can
enable proper landscaping of the storage area that will be
affected. An interesting example is the study conducted by
Eletricidade de Portugal (EDP) for the power plant Venda
Nova II, located in the north of Portugal. The construction
of the tunnels and of the deep power plant required the
extraction of more than half a million cubic meters of rock
that were not appropriate for construction. The deposit
materials were modelled in such a way as to give the area a
pleasant landscape (Fig. 1.4).

Finally, the topic of natural and excavated slopes is
discussed. Firstly, some comments on the geological risks,
resultant from the instability of natural slopes, which often
affect people and property. In such cases, studies have to be
conducted for the design of support works which assure the
safety of the ground, while ensuring that the necessary
works have minimum interference with the environment

Fig. 1.4 EDP Venda Nova II
power plant. Modelling of
deposit materials
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and the landscape. An interesting example is shown in
Fig. 1.5, which presents stabilization works being con-
ducted on a natural slope, more than 100 m high, of the
Serra da Arrábida, south of Lisbon, as a result of large
limestone blocks having fallen on the road below, from time

to time, which imposed the closure of the road to all traffic
for 2 years.

As this area belongs to a natural reserve, the solution
chosen had to take into consideration that no significant
excavation works could be performed to improve the stability

Fig. 1.5 Serra da Arrábida.
Retaining works and false tunnel
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of the rock mass. For excavated slopes, the stability analysis
has to consider the geological, hydrogeological and geo-
technical conditions of the ground for the feasibility study of
possible solutions. The optimal solution will assure the sta-
bility of the slope, while requiring the least possible inter-
ference with the environment. Figure 1.6 shows an example
of a high and long retaining structure constructed on an
excavation slope of the Lisbon motorway CREL, supporting
a very fragmented limestone rock mass, which was selected
after taking into consideration the concern to choose a
solution that would be well-framed in the landscape.

1.3 Conclusions

The rapid growth in the world’s population (which has
increased four times in the 20th century) and its concen-
tration in urban areas (more than 50 % of the actual total
world population) with many people living in megacities,
continues to necessitate the construction of new infra-
structure of all types in order to create adequate conditions

for the economic and social development aspired to.
However, such construction must be done with a mind to
environmental preservation Oliveira (2000).

The purpose of the examples presented in this paper is to
show that it is possible to reconcile development with
environmental preservation, if and when qualified engi-
neering geologists and geotechnical engineers use their
knowledge to find the best possible solutions for the
required engineering works.
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Part I

Engineering Geological Models

Convener: Dr. Jan Novotny—Co-conveners: Steve Parry
The session will discuss the use of engineering geolog-

ical models within the framework of the total geological
approach (Fookes et. al. 2000; Baynes et al. 2005; IAEG
Commission 25). Such models allow the understanding and

prediction of engineering geological conditions and pro-
cesses, and allow uncertainties to be defined. Examples of
the use of engineering geological models for different
engineering projects and for different geological and geo-
morphological environments are expected.



2Engineering Geological Models: Some
Examples of Use for Landslide Assessments

Jan Novotný

Abstract

The Commission C25 of the International Association for Engineering Geology and the
Environment is currently working on ‘‘The use of engineering geological models’’. This
article presents examples of engineering geological models for landslides using both a
conceptual and an observational approach. Generally speaking, the conceptual model forms
the basis for the development of the observational model. However, there are cases where the
relationship between the conceptual model and the observational model is not so
unidirectional. The experience gained in developing the observational model in these cases
can facilitate considerably the development of future conceptual models in the same type of
engineering geological conditions.

Keywords

Landslides � Engineering geological model � Conceptual � Observational

2.1 Introduction

This paper constitutes a contribution to the discussion cur-
rently taking place within the Commission C25 of the
International Association for Engineering Geology and the
Environment, which is currently working on a paper entitled
‘‘The use of Engineering Geological Models’’ (Parry et al.
2014). The C25 considers two different methodologies for
developing the models:

The conceptual approach, according to Parry et al. (in
press), is based on understanding the relationships between
engineering geological units, their likely geometry and
anticipated distribution. This approach, and the models

formed, are based on concepts formulated from knowledge
and experience and are not related to real three-dimensional
(3D) space or time. Importantly, the model is largely based
on consideration of geological concepts such as age, stra-
tigraphy, rock type, unconformity and weathering.

The observational approach is based on the observed
and measured distribution of engineering geological units
and processes. These data are related to actual space or time
and are constrained by surface or sub-surface observations.

To illustrate these concepts, the article will present
several examples from Cretaceous sedimentary regions of
the Czech Republic.

2.2 Conceptual Models of a Slope Structure
Comprising a Rigid Layer Above
a Plastic Layer

In the Czech Republic, slope movements relatively often
occur in a rock structure characterized by an upper layer
(No. 1 on Fig. 2.1) consisting of rigid (competent) rock
broken into blocks by the Tertiary tectonics, and by a thick
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lower layer (No. 2 on Fig. 2.1) consisting of plastic
(incompetent) rock. Typically, the upper layer is composed
of massive sandstone and the lower layer of plastic
claystone.

Figure 2.1 represents a conceptual model of a long-term
evolution of a slope with this structure, as seen in various
stages of development (Rybář and Nemčok 1968). In
Fig. 2.1a erosion processes start to cut through the rigid
layer. Figure 2.1b demonstrates that a narrow valley is prone
to bulging (Varnes 1978). Further deepening and widening of
the valley (Fig. 2.1c) leads to cambering—block-type
movement on plastic underlying rock (Varnes 1978; Nemčok
et al. 1972) in the upper part of the valley and to landslides of
plastic rocks and derived soils in the lower part of the valley.
Figure 2.1d represents a denudated slope prone to landslides
triggered by river erosion at its base.

In Czech Cretaceous sediments, the most common slope
state corresponds to the model stage ‘‘c’’ (Fig. 2.1c), which
can be encountered also in Prague. Using archival research
data, the general conceptual model can be further developed
into a site-specific conceptual model for a particular loca-
tion. Common features of site-specific models for the stage
‘‘c’’ comprise: (1) upper slope consisting of sandstone, often
affected by block movements; (2) groundwater horizon
developed in the sandstone above the impermeable clay,
often drained ahead of the sandstone blocks on slopes
consisting of fine grained soils; (3) ahead of the sandstone
blocks, potential occurrence of landslides in the slope
composed of fine grained soils.

An example of a site specific conceptual model is given
in Fig. 2.2. In the village of Hrubá Skála, located in the NE
of the Czech Republic, family houses were built on a
seemingly favourable flat terrain which in reality consisted
of unrecognized old landslides. A correct use of the prin-
ciple of engineering geological models would have easily
prevented damage to the houses (Novotný 2009).

A similar site specific conceptual model in Fig. 2.3
characterizes the Prosek district in the north of Prague
(Pašek 2000 in Novotný 2009), affected not only by slope
movements but also by historical undermining (Cílek 1999
in Novotný 2009), which should be taken into account when
determining the scope of site investigation works needed for
the correct development of the observational model. Houses
constructed near the slope edge with disregard of the model
were damaged by fissures and one of them had to be
demolished (Lešner 2004 in Novotný 2009).

Generally speaking, all site investigation works should
aim to answer questions raised by the conceptual model, and
thus to elaborate the observational model. At the same time,
the conceptual model itself can be used to determine effi-
ciently the type and scope of site investigation works needed
(when compared to a ‘‘grid-like’’ site investigation planned
without knowledge of the site geology and processes).

2.3 Observational Model of the Březno
Rotational Landslide

Figure 2.4 presents an example of an observational model
of the central part of the Březno u Postoloprt landslide. The
model was constructed by the author using a cross section
from a site investigation report (in Pašek 1974), aerial view
by Google and field mapping carried out by the author.

By sliding along the rotational surface of rupture (‘‘rock
slump’’ according to Varnes 1978, rotational landslide
according to Nemčok et al. 1972), the Cretaceous marlstone
block was pushed into the river bed, substantially narrowing

Fig. 2.1 Development stages of a slope comprising a rigid upper
layer and a plastic lower layer (according to Rybář and Nemčok 1968)
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it in this area. The main cause of the landslide, besides
lithology prone to sliding, is primarily the erosive action of
the Ohře river which to this day maintains the whole
landslide in an unstabilized state. A layer of baked clays
located in shallow depth below surface also plays an
important role, preventing the area from being denuded into
a gentle slope less prone to sliding.

Unlike the simple structure of the rotational landslide,
the morphology of the main scarp, resulting from various
slope processes, is considerably complex. The main scarp
above the rotated block is divided into a series of ridges
separated by areas with periodical occurrence of minor
landslides and notably earth flows. In long-term conditions,
the ridges themselves are also unstable, prone to rock fall
and opening of vertical tension cracks which can lead to
rock topples of large blocks. The material from minor
landslides, earth flows, rock falls and rock topples accu-
mulates in the head area, adding weight here and destabi-
lizing the entire landslide. In the upper part of the
accumulations, minor scarps are formed; above them, the

terrain locally dips towards the slope, creating undrained
basins that further destabilize the slope by the process of
water infiltration into the unstable masses.

2.4 Conceptual Model of the Head Area
of the Březno Landslide

During the development of the observational model of the
Březno landslide, a conceptual evolutionary model of pro-
cesses in the main scarp area was also established. Without
knowledge of the slope’s history and evolution, the model
would be much simpler in comparison with the following
concept (Fig. 2.5).

Figure 2.5(1): State after the development of the rota-
tional landslide. Figure 2.5(2): Irregularly, minor landslides
and rock falls occur in the main scarp area, creating partial
ridges in the scarp area and accumulations at the base of the
scarp. Fig. 2.5(3a): In long-term conditions, local rock falls
repeatedly occur in the ridges, heavily fractured by

Fig. 2.2 Conceptual model of a slope in Hrubá Skála. 1 Cretaceous sandstones, 2 Cretaceous claystones, 3 landslide

Fig. 2.3 Conceptual model of the edge of the Czech Cretaceous
Formation in Prosek (after Pašek 2000 and Lešner 2004 in Novotný
2009). 1 Quaternary loess soils, 2 Turonian marls and marlstones, 3

Cenomanian sandstones, 4 Cenomanian claystones, 5 Ordovician
shales, 6 mining cavities, 7 mounds
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Fig. 2.5 Conceptual model of processes in the head area of the Březno landslide

Fig. 2.4 Observational model of the Březno landslide in Cretaceous marlstones
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