VIRGIN GALACTICThe First Ten Years

iran

Erik Seedhouse

Virgin Galactic

The First Ten Years

Other Springer-Praxis books of related interest by Erik Seedhouse

Tourists in Space: A Practical Guide 2008 ISBN: 978-0-387-74643-2

Lunar Outpost: The Challenges of Establishing a Human Settlement on the Moon 2008 ISBN: 978-0-387-09746-6

Martian Outpost: The Challenges of Establishing a Human Settlement on Mars 2009 ISBN: 978-0-387-98190-1

The New Space Race: China vs. the United States 2009 ISBN: 978-1-4419-0879-7

Prepare for Launch: The Astronaut Training Process 2010 ISBN: 978-1-4419-1349-4

Ocean Outpost: The Future of Humans Living Underwater 2010 ISBN: 978-1-4419-6356-7

Trailblazing Medicine: Sustaining Explorers During Interplanetary Missions 2011 ISBN: 978-1-4419-7828-8

Interplanetary Outpost: The Human and Technological Challenges of Exploring the Outer Planets 2012 ISBN: 978-1-4419-9747-0

Astronauts for Hire: The Emergence of a Commercial Astronaut Corps 2012 ISBN: 978-1-4614-0519-1

Pulling G: Human Responses to High and Low Gravity 2013 ISBN: 978-1-4614-3029-2

SpaceX: Making Commercial Spaceflight a Reality 2013 ISBN: 978-1-4614-5513-4

Suborbital: Industry at the Edge of Space 2014 ISBN: 978-3-319-03484-3

Tourists in Space: A Practical Guide, Second Edition 2014 ISBN: 978-3-319-05037-9

Virgin Galactic

The First Ten Years

Published in association with **Praxis Publishing** Chichester, UK

Erik Seedhouse Astronaut Instructor Sandefjord, Vestfold, Norway

SPRINGER-PRAXIS BOOKS IN SPACE EXPLORATION

ISBN 978-3-319-09261-4 ISBN 978-3-319-09262-1 (eBook) DOI 10.1007/978-3-319-09262-1 Springer Cham Heidelberg New York Dordrecht London

Library of Congress Control Number: 2014957708

© Springer International Publishing Switzerland 2015

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed. Exempted from this legal reservation are brief excerpts in connection with reviews or scholarly analysis or material supplied specifically for the purpose of being entered and executed on a computer system, for exclusive use by the purchaser of the work. Duplication of this publication or parts thereof is permitted only under the provisions of the Copyright Law of the Publisher's location, in its current version, and permission for use must always be obtained from Springer. Permissions for use may be obtained through RightsLink at the Copyright Clearance Center. Violations are liable to prosecution under the respective Copyright Law.

The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use.

While the advice and information in this book are believed to be true and accurate at the date of publication, neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or omissions that may be made. The publisher makes no warranty, express or implied, with respect to the material contained herein.

Cover design: Jim Wilkie Project copy editor: Christine Cressy

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

Contents

Acknowledgments Dedication About the Author Acronyms Preface		
1	Suborbital Flight: A Primer	1
	Early Suborbital Flights	2
	Russian Suborbital Flights	3
	Ham and the Astrocats	3
	Mercury Program: Manned Suborbital Flights 1 and 2	7
	X-15: Manned Suborbital Flights 3 and 4	10
	The April 5 Anomaly: Manned Suborbital Flight #5	16
	The Legacy of SpaceShipOne: Manned Suborbital Flights 6, 7, and 8	16
2	Revolution through Competition	21
	The Orteig Prize	21
	Peter Diamandis	23
	Richard Branson	25
	Ansari X-Prize: Building a Suborbital Spirit of St. Louis	29
	Da Vinci	29
	Advent	30
	Orizont	30
	Thunderbird	30
	Cosmopolis	30
	Condor-X	30
	Scaled composites	31
	Paul Allen	31

3	SpaceShipOne	33
	Burt Rutan	33
	The space bug	35
	SpaceShipOne Construction	37
	Propulsion	39
	Inside SpaceShipOne	41
	WhiteKnight	42
	SpaceShipOne Test Flights	45
	Launch to landing	45
	Mission Control	46
	Test Flights	46
	WhiteKnight/SpaceShipOne flight tests	46
	Flight 24C/01C: first captive carry	49
	Flight 29C/02C: first manned captive carry flight of SpaceShipOne	49
	Flight 30L/03G: first glide flight of SpaceShipOne	49
	Flight 31LC/04GC: second glide flight of SpaceShipOne I (aborted)	50
	Flight 32L/05G: second glide flight of SpaceShipOne (second attempt)	50
	Flight 37L/06G: third glide flight of SpaceShipOne	51
	Flight 38L/07G: fourth glide flight of SpaceShipOne	51
	Flight 40L/08G: fifth glide flight of SpaceShipOne	52
	Flight 41L/09G: abort contingency assessment	52
	Flight 42L/10G: seventh glide flight and propulsion system check	52
	Flight 43L/11P: supersonic flight/first powered flight	53
	Flight 49L/12G: twelfth flight of SpaceShipOne/unpowered glide test	54
	Show-stopping tortoises	55
	Flight 53L/13P: second powered flight/transonic–supersonic handling	55
	Flight 56L/14P: third powered flight/supersonic feather stability	
	and control	56
	Flight 60L/15P: first Fédération Aéronautique Internationale (FAI)	
	commercial astronaut flight	56
	Flight 65L/16P: first X-Prize flight (X1)	58
	Flight 66L/17P: second X-Prize flight (X2)	60
	Spaceflight for the Masses: The SpaceShipOne Legacy	63
4	SpaceShipTwo: VSS Enterprise	65
	The Final Flight of SpaceShipOne	65
	Virgin Galactic	67
	Developing Second-Generation Spacecraft	68
	Subsonic Glide Test Flights: 14 June 2010–September 2012	73
	Powered Flights Phase: 29 April 2012–31 October 2014	75
	XCOR	81
	The Lynx	82
	Lynx step by step	83
	Payload mission capabilities	84
	SpaceShipTwo versus Lynx	84
	SpaceSmp1w0 versus Lynx	04

5	Spaceport America	87
	What Is a Spaceport?	88
	Other Spaceports	93
	Abu Dhabi	93
	Spaceport Sweden	94
_		
6	Medical Screening and Training for Package-Tour Astronauts	99
	Medical Screening	101
	Mission Profile	102
	Medical Risks	102
	Decompression	103
	Acceleration	106
	Microgravity effects	114
	Cardiovascular effects	114
	Neurovestibular effects	115
	X-15 neurovestibular experience	115
	Space motion sickness	116
	Bail-out	117
	Radiation	118
	Noise	118
	Vibration	118
	Medical Qualification	119
	Training	120
	NASTAR	121
	Seating and reseating	123
7	Pilot-Astronauts, Passengers, and Personnel	125
	Pilot-Astronauts	125
	David Mackay	126
	Keith Colmer	126
	Frederick Sturckow	127
	Mike Masucci	127
	Pilot-astronaut duties	128
	Passengers: The Rich and Famous	128
	Who might be flying into space?	120
	Virgin Galactic's Promises and Broken Dreams	135
	1999	135
	2004	135
		130
	2005	130
	2006	
	2007	136
	2008	136
	2009	137
	2010	137
	2011	137

	2012	137	
	2013	137	
	2014	137	
	Personnel	140	
	Passengers: The Scientists	140	
	Dr. Alan Stern	141	
	Dan Durda	142	
	Cathy Olkin	142	
	SwRI suborbital payload specialist team	142	
	Space Race	143	
	The Flight	144	
	Launch day	147	
	Boarding	147	
	Safety demonstration	147	
	Take-off/ascent	148	
	Descent/final	152	
	Astronaut wings	152	
	ristionaut wings	102	
8	Science and Payload Missions	155	
Ŭ	NASA's Role	156	
	Science Flights	158	
	Suborbital Applications Researchers Group	160	
	Flights for the Advancement of Science and Technology	160	
	Payload Flights	160	
	Game-Changing Missions	164	
	Anatomy of a SpaceShipTwo Science Mission	166	
	Four Ridiculously Expensive Minutes	168	
	Future of Science Flights	169	
		10)	
9	Beyond Suborbital	171	
,	LauncherOne	173	
	Point-to-Point	174	
	Orbital	177	
		177	
10	Epilogue	181	
10	Statement from Virgin Galactic following the crash of SpaceShipTwo	181	
	Does Virgin Galactic Still Matter?	185	
		105	
An	pendix I	187	
	pendix I	189	
	pendix III	195	
	Appendix IV		
••P	Penuna I T	199	
Ind	ex	201	
		-01	

Acknowledgments

In writing this book, the author has been fortunate to have had five reviewers who made such positive comments concerning the content of this publication. He is also grateful to Maury Solomon at Springer and to Clive Horwood and his team at Praxis for guiding this book through the publication process. The author also gratefully acknowledges all those who gave permission to use many of the images in this book.

The author also expresses his deep appreciation to Christine Cressy, whose attention to detail and patience greatly facilitated the publication of this book. The author also expresses his appreciation to Bill Deaver for permission to use his great shot of SpaceShipTwo, to Jim Wilkie for creating yet another striking cover, and to D. Raja and Rekha Udaiyar for their meticulous attention in bringing this book to publication.

To All those preparing the way for the suborbital flight industry

About the Author

Erik Seedhouse is a Norwegian-Canadian suborbital astronaut whose life-long ambition is to work in space. After completing his first degree in Sports Science at Northumbria University, the author joined the 2nd Battalion the Parachute Regiment, the world's most elite airborne regiment. During his time in the "Para's", Erik spent six months in Belize, where he was trained in the art of jungle warfare. Later, he spent several months learning the intricacies of desert warfare in Cyprus. He made more than 30 jumps from a C130, performed more than 200 helicopter abseils, and fired more anti-tank weapons than he cares to remember!

Upon returning to the comparatively mundane world of academia, the author embarked upon a master's degree in Medical Science, supporting his studies by winning prize money in 100-kilometer running races. After placing third in the World 100km Championships in 1992, the author turned to ultra-distance triathlon, winning the World Endurance Triathlon Championships in 1995 and 1996. For good measure, he also won the inaugural World Double Ironman Championships and the Decatriathlon – a diabolical event requiring competitors to swim 38 kilometers, cycle 1,800 kilometers, and run 422 kilometers. Non-stop!

Returning to academia, Erik pursued his PhD at the German Space Agency's Institute for Space Medicine. While studying, he won Ultraman Hawai'i and the European Ultraman Championships, and completed Race Across America. As the world's leading ultradistance triathlete, Erik was featured in dozens of magazines and television interviews. In 1997, *GQ* magazine nominated him as the "Fittest Man in the World".

In 1999, Erik retired from being a professional triathlete and started post-doctoral studies at Simon Fraser University. In 2005, he worked as an astronaut training consultant for Bigelow Aerospace and wrote *Tourists in Space*, a manual for spaceflight participants. He is a Fellow of the British Interplanetary Society and a member of the Space Medical Association. In 2009, he was one of the final 30 candidates in the Canadian Space Agency's Astronaut Recruitment Campaign. Erik works as a spaceflight instructor for the American Astronautics Institute, professional speaker, triathlon coach, author, and Editor-in-Chief for the *Handbook of Life Support Systems for Spacecraft and Extraterrestrial Habitats*. He is the Training Director for Astronauts for Hire and, between 2008 and 2013, he served as director of Canada's manned centrifuge operations.

xiv About the Author

In addition to being a suborbital astronaut, triathlete, centrifuge operator, pilot, and author, Erik is an avid mountaineer and is pursuing his goal of climbing the Seven Summits. *Virgin Galactic* is his fifteenth book. When not writing, he spends as much time as possible in Kona on the Big Island of Hawai'i and at his real home in Sandefjord, Norway. Erik and his wife, Doina, are owned by three rambunctious cats – Jasper, Mini-Mach, and Lava.

The author stands in front of the Fram in Oslo, October 2014

Acronyms

A LOC	Almost I and of Consciences
A-LOC	Almost Loss of Consciousness
AGSM	Anti-G Straining Maneuver
ADS	Aid Data System
ATV	Atmospheric Test Vehicle
BEAM	Bigelow Expandable Activity Module
CG	Center of Gravity
CSLAA	Commercial Space Launch Amendments Act
DCS	Decompression Sickness
EDS	Emergency Detection System
EPT	Effective Performance Time
ESA	European Space Agency
ETC	Environmental Tectonics Corporation
FAA	Federal Aviation Administration
FAI	Fédération Aéronautique Internationale
FAST	Flights for the Advancement of Science and Technology
FDD	Flight Data Display
FTE	Flight-Test Engineer
G-LOC	Gradual Loss of Consciousness
GOR	Gradual Onset Rate
GPS	Global Positioning System
HTPB	Hydroxyl-terminated polybutadiene
INS	Inertial Navigation System
ISS	International Space Station
ITAR	International Trade on Arms Regulations
KEAS	Knots Equivalent Airspeed
LAPCAT	Long-Term Advanced Propulsion Concepts and Technologies
LEO	Low Earth Orbit
MIT	Massachusetts Institute of Technology
NASTAR	National Aerospace Training and Research
1,1,1,0,11,110	reaction recording and research

NCRP	National Council for Radiation Protection
NMSA	New Mexico Spaceport Authority
OSC	Orbital Sciences Corporation
PI	Principal Investigator
PLL	Peripheral Light Loss
PUG	Payload User Guide
RAF	Royal Air Force
RCS	Reaction Control System
REM	Research Education Missions
ROR	Rapid Onset Rate
SABRE	Synergistic Air-Breathing Rocket Engine
SARG	Suborbital Applications Research Group
SAS	Space Adaptation Syndrome
SFP	Spaceflight Participant
SMS	Space Motion Sickness
SNU	System Navigation Unit
SwRI	Southwest Research Institute
TONU	Tier One Navigation Unit
TPS	Thermal Protection System
TUC	Time of Useful Consciousness
USAF	United States Air Force
USMC	United States Marine Corps
USML	United States Munitions List
VMC	Visual Meteorological Conditions

Preface

"Today's flight was another resounding success. We focused on gathering more transonic and supersonic data, and our chief pilot, Dave, handled the vehicle beautifully. With each flight test, we are progressively closer to our target of starting commercial service in 2014."

Virgin Galactic CEO, George Whitesides

As the main engine ignites, the crew feels a deep rumble behind them and a sudden sensation of motion as the rocket ignites, trailing a 100-meter-long fountain of exhaust in an inferno of smoke, searing light, and earth-shaking noise. Amid the thunder of launch, the numbing noise, and the incredible acceleration, the crew is pushed forcefully back into their seats. The gut-wrenching journey to suborbital space – an event planned for many weeks and anticipated by the crew for several months – takes less than five minutes. Once in microgravity, the thrill of the ascent is replaced by the immediacy of the moment, as the spaceflight participants – now fully fledged Virgin Galactic astronauts – pull out cameras and float to the nearest window to take snapshots from the vantage point in space.

About

We are Virgin Galactic, the world's first commercial space-line. We are working hard to make access to space orders of magnitude more affordable, frequent, and safe than ever before. We are also having a lot of fun while doing so.

Mission

Make access to space orders of magnitude more affordable, frequent, and safe than ever before.

Description

Virgin Galactic, owned by Sir Richard Branson's Virgin Group and Aabar Investments PJS, is on track to be the world's first commercial spaceline. Our reusable, suborbital spaceship (SpaceshipTwo) and carrier craft (WhiteKnight-Two) have both been

developed by the legendary aerospace pioneers Scaled Composites. Founded by Burt Rutan, Scaled developed SpaceShipOne, which in 2004 claimed the \$10m Ansari X-PRIZE as the world's first privately developed manned spacecraft.

Our new vehicles share much of the same basic design, but are being built to carry six customers and two pilots on sub-orbital space flights. Each mission will give our future astronauts an out-of-the-seat, zero-gravity experience offering astounding views of the planet from the black sky of space.

The test flight programs for SpaceShipTwo and WhiteKnightTwo are well under way, leading to Virgin Galactic commercial operations, which will be based at Spaceport America in New Mexico.

In July 2012, we announced a new program called LauncherOne. LauncherOne will be launch small satellites into orbit for a wide variety of commercial and government customers.

www.virgingalactic.com

Welcome to Virgin Galactic's world of suborbital spaceflight

The above snapshot is taken from the Virgin Galactic website. Until recently, spaceflight had been the providence of a select corps of professional astronauts whose missions, in common with all remarkable exploits, were experienced vicariously by the rest of the world via television reports and internet feeds. These spacefarers risked their lives in the name of science, exploration, and adventure, thanks to government-funded manned spaceflight programs. All that is about to change thanks to Virgin Galactic, despite the tragic event on 31 October 2014, when VSS *Enterprise*, a Virgin Galactic test vehicle, suffered a catastrophic breakup and crashed in the Mojave Desert.

As George stated above, each SpaceShipTwo test flight is one step closer to Virgin Galactic's plans to launch daily flights into space. And when those first passenger flights begin, it will be the beginning of a new era in space travel. Passenger space travel has been a staple of sci-fi for almost as long as there have been commercial airlines. As far back as 1968, when Stanley Kubrick's *2001: A Space Odyssey* was released, Pan Am opened a waiting list for trips to the Moon. Part publicity stunt, the airline (it went bankrupt in 1991) estimated the service would begin no later than 2000. They even issued numbered membership cards for the first lunar flights! Inspired by the Moon landing the following year, 98,000 people signed up.

Nearly 50 years later, the bar is set a little lower. When testing is complete, SpaceShipTwo will fly to suborbital altitudes where passengers will enjoy four minutes of weightlessness. Slung beneath the WhiteKnightTwo mothership, SpaceShipTwo's ascent to the 15-kilometer launch altitude takes more than an hour. For passengers, who have paid US\$250,000 for the ride, there is nothing to do but wait for the moment of release. No drinks service on this ride. Once released, the diminutive spaceship drops away, the pilot ignites the rocket motor, and with a roar the spacecraft shudders to full thrust within a tenth of a second, its nose pointed straight up to the edge of space. Even if you've ridden the "fuge", as every passenger has, the acceleration is almost impossible to imagine, as 3 Gs pins them to the back of their seats. Twelve seconds later, the vehicle rockets through Mach 1. Mach 2 follows shortly after. Within 60 seconds, the vehicle is traveling at 4,800 kilometers per hour. Amid the diabolical noise (ear plugs are mandatory), the

vibration, and acceleration, the soon-to-be astronauts try to keep their composure as they watch the sky turn from blue to navy, indigo, and then – suddenly – black.

At around 80 seconds, the pilot cuts the engine and, shortly after, the spaceship enters zero gravity. The passengers are now Virgin Galactic astronauts. Releasing their seat belts, they float around the cabin, and gaze at the view: 1,600 kilometers from horizon to horizon, the curvature of Earth subtle but clear, the fine blue line of the atmosphere easily visible against the blackness of space. On-board cameras capture every second of the experience. At the top of its parabolic arc, the rocket plane spends just four minutes in space before it begins its fall back down to Earth. The pilot positions the "feather" for reentry, and the passenger seats recline to enable the newly minted astronauts to cope with up to 6 Gs of acceleration during their ride back to the desert runway.

If everything goes to plan, Branson hopes not only to give birth to a new industry, but to democratize the government-dominated spaceflight business by opening the space frontier to commercial astronauts, payload specialists, scientists, and, of course, tourists. But, as the tragic event of 31 October 2014 reminded us, the aerospace business is rarely one in which things go to plan. After the accident in which pilot Michael Alsbury was killed, Sir Richard Branson vowed that his Virgin Galactic space programme, saying millions of people "would one day love the chance to go to space". This book tells the story to date.

1

Suborbital Flight: A Primer

1.1 Courtesy: NASA

Those who have followed the media fanfare about the commercial suborbital flight industry over the past several years have cause to be a little disillusioned because it's been quite a waiting game. After the euphoria of the X-Prize in 2004, space fans and media alike discussed the possibility of flying into space the following year or if not the following year then *definitely* the year after that. Virgin Galactic, along with other operators that

E. Seedhouse, Virgin Galactic: The First Ten Years, Springer Praxis Books, DOI 10.1007/978-3-319-09262-1_1

2 Suborbital Flight: A Primer

1.2 SpaceShipOne. Mike Melvill waves from the cockpit on 21 June 2004. Courtesy: Wikimedia/The SpaceShip Company

comprised the nascent commercial spaceflight industry, fueled speculation that suborbital passenger flights were just around the corner by making promises they would soon be ready to fly you and your friends into space. Tickets were sold. Hundreds of them. Deadlines came and went. But nothing happened, except for the occasional test flight. One year stretched to two. Two became five. Five became 10. But, in 2014, more than 10 years following SpaceShipOne's iconic flight (Figure 1.2), Virgin Galactic was finally tantalizingly within reach of realizing the promise of the historic 2004 flight. Until the tragic event of 31 October 2014 that is.

EARLY SUBORBITAL FLIGHTS

Those lucky enough to fly on SpaceShipTwo, Mark II, SpaceShipOne's and the original SpaceShipTwo's successor, will experience a spaceflight that few have flown because manned suborbital spaceflights are something of a rarity: two Mercury–Redstone flights, two X-15 flights, one inadvertent Soyuz launch abort, and three SpaceShipOne flights. That's it. Eight flights. But, if you include animals, that list stretches a little, so when you buy your SpaceShipTwo ticket, spare a thought for the animals that made your flight possible. Many years ago, before astronauts risked their lives, it was thought humans might not survive the