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Preface

A hydrological system is highly complex in nature with all processes within the
system constituting dynamic and nonlinear interaction of several variables. Data-
based soft computing techniques are emerging in the field of hydrology since the
last couple of decades. Various developments in the recent data-driven soft com-
puting models have shown their immense modelling capabilities amidst scarce and
erroneous input space, such as models that are tolerant to imprecise and uncertain
inputs. The notion and success of data-driven models depend on their learning
capability from the given data set and on their capability to translate to useful
information. Despite the growing advancements in data-driven approaches in
hydrology, there are concerns on points like multi-collinearity, input selection,
training data length selection, required data frequency for best modelling, model
complexity control and modelling extreme values.
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The aim of this book is a comparison of a number of state of art and traditional
input selection approaches and specific data-driven models in different case studies
considering the above-mentioned data-driven issues in hydrology. The structure of
the book is as follows: Chap. 1 introduces modelling concepts and provides a
review of data-driven modelling in modelling themes like rainfall-runoff dynamics,
solar radiation and evaporation modelling. Chapter 2 starts with a brief detail of
hydroinformatics and then addresses some of the data-based modelling issues in
hydrology. This chapter reminds the need to evaluate existing hypothetic
assumptions on various data-driven models including ANNs. Chapter 3 briefly
discusses various novel approaches in data selection methods. The novel approach
called the Gamma Test is described along with other mathematically sound tech-
niques like Entropy Theory, Cluster Analysis, PCA, BIC and AIC. Towards the end
of this chapter conventional data splitting and correlation approaches are described
for the totality of the chapter. Chapter 4 includes details of data-driven artificial
models and hybrid forms of these models that are intensively used in the field of
hydrology, environment and other earth sciences. The chapter also describes con-
ventional artificial intelligent techniques to investigate different aspects of the
hydrological cycle. Conventional linear data-based techniques like ARX and AR-
MAX are described in the early part of the chapter. Following that, traditional ANN
architecture is described along with different training algorithms adopted in this
book for modelling. This chapter also deals with three other major nonlinear
modelling techniques like Adaptive Neural Fuzzy Inference Systems (ANFIS,
Support Vector Machines (SVMs) and Local Linear Regression (LLR). Discrete
wavelet transforms (DWT) and its hybrid forms with ANNs, ANFIS and SVMs are
briefly described.

Chapters 5–7 are case studies which incorporate all concepts and approaches
described in Chaps. 2–4. Chapter 5 deals with a case study on data-based modelling
on solar radiation estimation. This chapter draws different comparisons of working in
data selection approaches (Gamma Test, Entropy theory, AIC (Akaike’s information
criterion) / BIC (Bayesian information criterion)) in solar radiation modelling. The
modelling outputs of the proposed models and conventional models are discussed in
detail after comparison with the observed measurements. The chapter deals with
operations and applications of Conjugate Gradient ANNs and Levenberg–Marquardt
ANNs along with other higher degree data-based models (ANFIS, SVM, wavelet
hybrid models). Similar investigation is carried out in Chap. 6 in which the case study
theme is rainfall-runoff modelling. This chapter also illustrates input redundancy
checking and identifies the best data interval for rainfall-runoff dynamics modelling
for the study region of the River Brue catchment. The next case study is evapo-
transpiration modelling; this is described in Chap. 7. In this theme we have tried to
incorporate an analysis of different standard models of reference evapotranspiration
along with data-based artificial intelligence models. The first few sections of this
chapter are devoted to the results obtained from different Penman Montienth models
in comparison with the newly proposed ‘Copais Approach’. In later sections the
results obtained from the data-based models are discussed in detail. We have also
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introduced a unique final chapter, Chap. 8, in which we introduce a novel Monte
Carlo (MC) technique called Statistical Blockade (SB), which focuses on signifi-
cantly rare events in the tail distributions of data space and modelling. A case study
modelling from a Himalayan river basin is introduced and compared with the results
from that of ANNs and SVM in this chapter.

Cranfield, UK Renji Remesan
Bristol, UK Jimson Mathew
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Chapter 1
Introduction

Abstract In addition to classical physical/conceptual hydrological models at
various complexity levels, data driven modelling tools are available in hydrological
literature for last two decades to solve various complex issues in water resources
and environmental science. “All models are wrong; some are useful.” This quo-
tation is meaningful in a data based hydrological modelling context due to the
presence of different unsolved queries and deliberate assumptions. In a rush to
develop interesting soft-driven models to solve differ processes issues, researchers
often neglected or avoided in-depth researches on multi-collinearity, input selec-
tion, training data length selection, assuming that soft computing models have an
intrinsic capability of managing extra errors caused by this negligence. Four case
studies are illustrated in this book. These illustrate different model selection
approaches and rigorously evaluate these approaches with state-of-art models
through detailed and comprehensive experimentation and comparative studies. This
chapter also aims to have a quick look into the critical points of current knowledge
and or methodological approaches on data based modelling in hydrology and Earth
sciences.

The hydrological cycle describes the natural phenomenon of continuous movement
and changes of the state of water between the atmosphere and the earth. In mod-
elling aspect, the hydrological cycle can be considered as a closed system because
there are no external inputs or outputs of water to or from the system. The water
movement from the earth’s surface to the atmosphere is supported by solar radia-
tion, while the water movement at and below the surface of the earth is mainly
driven by gravity. The major processes in the hydrological cycle are illustrated in
Fig. 1.1. The natural phenomena that make up the hydrological cycle are: the
transfer of water, in its gaseous phase from land to the atmosphere (evapotrans-
piration), water transfer in its solid or liquid phases from the atmosphere to the land
surface in the form of precipitation and land based phenomenon runoff, storage,
infiltration and other processes shown in the Fig. 1.1. In short, solar radiation acts as
a driving force of atmospheric phenomenon and gravity controls processes occur-
ring at the land phase.
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The interdisciplinary science of hydrology is closely connected with human
society and life of living beings, as water is the vital resource for survival. All kinds
of personal, domestic, recreational, industrial, agricultural, luxurious needs of
human society are closely connected with water usage and management. On the
other hand, water poses serious threats to humanity in many forms, such as floods,
drought, climatic change. This situation points to the necessity of a strong rela-
tionship between human society and water resources, through effective and prac-
tical applications of development, planning and management of this precious
natural resource. Though, the process appears very simple from the outside, the
subject is very vast and complex, due to the huge variety of processes involved,
occurrence of these processes in different temporal and spatial scales and their
interactive response on and with other environmental components. For the purposes
of simplification and gaining a detailed insight into the hydrological details of the
processes, hydrological models were introduced in the early second half of the 20th
century with conceptual representations of the whole or a part of the hydrologic
cycle.

Fig. 1.1 Pictorial representation of hydrological cycle
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1.1 Modelling in Hydrology

The known history of hydrology began around 5,000–6,000 BC. Evidence of this
can be seen from the construction remains of canals, levees, dams, subsurface water
conduits, and wells found in the Nile region of Egypt and Indus region of India.
Nile river flow was monitored by the Egyptians as early as 3,800 years ago and one
famous Indian scholar Kautilya used rainfall measuring instruments approximately
2,400 years ago [32]. The Roman architect Marcus Vitruvius made the first attempt
to give a philosophical definition to the theory of the hydrologic cycle. More
scientific studies on the hydrologic cycle were initiated in the seventeenth century,
by the French scholars Pierre Perault and Edme Marriotte. By 1700, a British
scientist Edmund Halley contributed to the work of Perault and Marriotte by esti-
mating the quantity of water involved in the hydrologic cycle of the Mediterranean
Sea and surrounding lands. The term “hydrology” received acceptance among
scholars in its current meaning by around 1750 [68]. The eighteenth century wit-
nessed the application of mathematics in hydrology and development of new
dimensions of hydrology named fluid mechanics, and hydraulics by scientists like
Pitot, Bernoulli, Euler, Chezy, and many more. The understanding of hydrological
cycle and processes involved were solidified by the work of a British chemist John
Dalton by the year 1800 [24]. The ground breaking innovation in hydrology
occurred in the 18th century with the work of the Dutch-Swiss mathematician
Daniel Bernoulli, which included the Bernoulli piezometer and Bernoulli’s equa-
tion. The 19th century saw the development in groundwater hydrology, including
Darcy’s law, the Dupuit-Thiem well formula, and Hagen-Poiseuille’s capillary flow
equation. Hydrology had a close connection with civil engineering from the early
days of development. During the 19th century, researchers started examining
relationships between precipitation and stream flow. That information was used as a
guideline for designing bridges and other structures. Daniel Mead published the
first English-language text in hydrology in 1904 and Adolf Meyer followed with his
text in 1919. Both publications were written for civil engineers. Rational analyses in
hydrology began to replace empiricism in the 20th century and many organizations
like International Union of Geodesy and Geophysics (1922), Hydrology Section of
the American Geophysical Union (1930), which promotes researches in hydrology,
were set up in the first half of the 20th century [55]. The second half of the 20th
century witnessed the diversified application of techniques in the field of hydrology
which includes statistical applications and artificial intelligence. Even now, in the
21st century, hydrology is developing day by day adding new concepts and
approaches. The hydrological community is eagerly waiting for new breakthroughs
and eminent deviations in hydrological science.

Hydrological models are mathematical representations of part or whole of the
hydrological cycle in which processes involved in the transformation of climate
inputs, such as precipitation, evapotranspiration, solar radiation and wind, through
atmospheric, surface and subsurface transfers of water and energy into hydrological
outputs like runoff, water level, etc. Singh and Woolhiser [83] define hydrological
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modelling as the discipline that tries to quantitatively describe the land phase
processes of the hydrological cycle. In a general conceptualized form, a hydro-
logical model attempts to produce a desirable model response (e.g.: runoff) which
describe the physical features of the hydrological system considered on a given
forcing data (e.g.: rainfall, snow, temperature, solar radiation, evapotranspiration
and wind velocity). The model may have two types of parameters: (i) physical
parameters (which directly represent physical properties of the system and normally
these quantities are measurable e.g.: catchment area, gradient, drainage length); (ii)
process parameters (not directly measurable e.g.: depth of vadoze zone, soil depth,
water holding capacity). The outputs or model responses are dependent upon the
system defined by the modeller and the scope of the modelling. There are different
kinds of models available, depending on which section of the hydrological cycle is
taken as the subject of interest. Examples are, river runoff, and catchment overland
flow, in the case of rainfall-runoff (RR) models, or groundwater flow and
groundwater table elevation for groundwater (GW) models, extraterrestrial radiation
and surface radiations in the case of solar models and evaporation and evapo-
transpiration in case of process models.

1.1.1 Model Classification

One can find different types of model classifications in literature depending on the
different criteria of consideration. A comprehensive review of the existing and recent
hydrological models can be found in Singh and Woolhiser [83]. However, as per
degree of conceptualisation of the involving processes, models can be broadly
classified into deterministic and stochastic models. Another meaningful classifica-
tion is based on physically-based (white-box), conceptual (gray-box) and system
theoretic (black-box) models. White box models are deterministic in nature and are
made in a physically realistic manner, considering all internal sub processes and
physical mechanisms involved in the phenomenon of the hydrological cycle. But, in
most of the situations, practical reasons like data availability and calibration issues
force the researchers to go for simple physically based or conceptual models with
lumped representation of parameters or system [44]. This leads to another classifi-
cation based on the spatial resolution at which the processes are described as: dis-
tributed, semi-distributed and lumped. The lumping could be a “structural lumping”
of the study area or an “empirical lumping” of the dominant processes of interest
[62]. The Sacramento soil moisture accounting (SACSMA) model of the US
National Weather Service is the best example of a successful and widely used
lumped model. In distributed models the hydrological processes are represented with
a varying degree of high resolution in space and, in most cases, the model variables
and parameters are also defined as functions of the space and time dimensions. But in
the case of simple representation of lumped models, the hydrological system is
represented as a unit block in which the varying properties are spatially averaged.
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In semi-distributed models, the whole hydrological system is divided into different
blocks, each represented by a lumped model. Even now, serious debate is taking
place in the research community to establish the success rate of lumped models over
complex distributed models and vice versa. Though, the conceptual and physics
based models have given greater accuracy in terms of hydrograph modelling, there
were still many issues to be further addressed by many researchers. Those difficulties
include implementation and calibration difficulty, the vast amount of calibration data
and the need of sophisticated tools etc. [29, 30, 87, 103].

1.2 Stochastic Modelling Case Studies in This Book

This book focuses on four major components in the hydrological cycle: solar
radiation, precipitation (rainfall), evapotranspiration and runoff. These are illus-
trated as four case studies towards the end of this book. The following section gives
the current modelling status in rainfall-runoff modelling, solar radiation modelling
and evapotranspiration modelling.

1.2.1 Data Driven Rainfall-Runoff Modelling

Rainfall-runoff is a very complicated process due to its nonlinear and multidi-
mensional dynamics. Hence it is difficult to model. The ASCE Committee on
Surface-Water Hydrology (1965) introduced a new discipline incorporating statis-
tical consideration into hydrology named “Stochastic Hydrology”, defining “the
manipulation of statistical characteristics of hydrologic variables to solve hydro-
logic problems on the basis of stochastic properties of the variables”. This attempt
has made a drastic change in the conventional direction of research and has
encouraged many researchers to explore further the statistical and stochastic
properties of hydrologic time series which have definite physical causes. An
extensive review of the several types of stochastic models proposed for operational
hydrology can be found in Lawrance and Kottegoda [58], Franchini and Todini [34]
and Bras and Rodriguez-Iturbe [17]. Most of the black-box models include sto-
chastic components and just relate outputs to inputs through a set of empirical
functions, mathematical expressions or time series equations. The success rate of
these data based stochastic models always encouraged hydrologists to implement
simpler system theoretic models than the troublesome physics based or conceptual
model, which demand more implementation and calibration effort but with the
quality of the results comparable to the early mentioned stochastic models. In the
early days, research concentrated more on Autoregressive (AR) and mixed Auto-
regressive and Moving Average (ARMA) models [16]. Later, linear time series
models like ARX (auto-regressive with exogenous inputs) and ARMAX
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(auto-regressive moving average with exogenous inputs) models [16] have gained
more attention because of their satisfactory prediction performance and easy
implementation procedure. The research conducted by [17, 88] has demonstrated
the success of these linear models in different applications. Inability to represent the
nonlinear dynamics inherent in hydrological processes was considered as the
serious disadvantage of the above mentioned models [44]. The researchers quest for
models which incorporate nonlinearity of the system with relatively short imple-
mentation effort, led hydrology to nonlinear pattern recognition and system control
theory borrowed from electronics and communication engineering stream. In the
early 1990s, much research was carried out in hydrology utilising the capabilities of
advanced nonlinear system theoretical modelling approach called Artificial Neural
Networks (ANN) [35, 50].

The advent of artificial intelligent techniques in hydrology brought a new
dimension to flood modelling [18, 39, 40]. Among several artificial intelligence
methods, artificial neural networks (ANN) holds a vital role and ASCE Task
Committee Reports [11, 12] have accepted ANN as an efficient forecasting and
modelling tool. Over the last decade, the artificial neural network has gained great
attention and has evolved as the main branch of artificial intelligence that is now a
recognized tool for modelling the underlying complexities in many artificial or
physical systems including floods [2, 86]. Unlike traditional conceptual and physics
based models, Artificial Neural Networks are able to mimic flow observations,
without any mathematical descriptions of the relevant physical processes. A study
by Jain et al. [46] demonstrated that the distributed structure of the ANN was able
to capture certain physical properties. The success of hydrological forecasting
systems depends on accurate predictions in the longer forecast lead time. Multi-
step-ahead prediction is a challenging task which attempts to make predictions
several time steps into the future. Dawson and Wilby [23] focused into neural
network application on rainfall-runoff modelling and stream flow modelling. Maier
et al. [61] provided a good review of neural network models used since 2000 for
water quantity and quality modelling. Chang et al. [21] developed a two-step-ahead
recurrent neural network for stream flow forecasting. Later, they explored three
types of multi-step ahead (MSA) neural networks viz. multi-input multi-output
(MIMO), multi-input single-output (MISO) and serial-propagated structure for
rainfall-runoff modelling using data sets from two watersheds in Taiwan [22].
Nayak et al. [69] gave a detailed review of the application of ANFIS in rainfall
runoff modelling. Mukherjee et al. [66] points out the advantages of support vector
machines (SVMs) in making better predictions than other approximation methods
such as polynomial and rational approximation, local polynomial techniques and
artificial neural networks. A comprehensive review by Abrahart [1] provided two
decades of neural network rainfall-runoff and streamflow modelling and suggested
extended opportunities in this field.
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1.2.2 Data Driven Solar Radiation Modelling

Solar radiation is one of the key inputs for most hydrological models in estimating
reference evapotranspiration [93]. Moreover, daily solar radiation data is more
popular than that of other time intervals for crop growth simulation models,
hydrological and soil water balance models [14]. In spite of the great importance of
solar radiation, many published studies pointed out the major challenges associated
with solar radiation data collections. Lack of solar radiation data is quite common
even in many developed countries, such as USA [42, 79] and Canada [49]. Many
researchers pointed to the fact that solar radiation is an infrequently measured
meteorological variable compared with temperature and rainfall [59, 102].

Over the past decades, many empirical and physical radiation models have been
proposed [71, 72, 80, 97]. The Angstrom equation, which was proposed by Ang-
strom [10] and subsequently modified by Prescott [78], is considered as the most
popular and widely used method for the estimation of monthly averaged daily
(global) irradiation value. Later, several physical based empirical models appeared
based on Chang [20], who reported that there was a good relation between net
radiation and global solar radiation, since the latter is the principal source of energy.
Based on this argument Bristow and Campbell [19], suggested an empirical rela-
tionship for daily global radiation, as a function of daily net radiation and the
difference between maximum and minimum temperature. Later, Allen [9] suggested
the use of a self-calibrating model to estimate mean monthly global solar radiation
based on the work of Hargreaves and Samani [41]. His research suggested that the
mean daily global radiation can be estimated as a function of net radiation, mean
monthly maximum and minimum temperatures. The Bristow–Campbell model has
been used in numerous hydrological related studies, and improvements have been
developed over the past years [25]. The Campbell–Donatelli suggested method was
implemented in many weather generators including MarkSim [48] and ClimGen
[91]. Recently Donatelli et al. [27, 26] developed a windows based model named
RadEst 3.00 which estimates and evaluates daily global solar radiation values at
given latitudes. Some other interesting work has been done in the area of solar
radiation prediction using ARMA and Fourier analysis [37, 67]. Furthermore, new
approaches for predicting solar radiation series have been developed using ANN
reported from different parts of the world, particularly from Turkey [74, 81, 95, 96],
and authors from other places such as Negnevitsky and Le [70], Alawi and Hinai
[4], Mohandes et al. [65], Kemmoku et al. [51] and Sfetsos and Coonick [82].
Mellit et al. [63] made an ANFIS-based prediction for monthly clearness index and
daily solar radiation. A detailed review of ANFIS based modelling in solar radiation
can be found in Mellit et al. [64]. Chen and Li applied support vector machine for
the estimation of solar radiation from measured meteorological variables of 15
stations in China.

1.2 Stochastic Modelling Case Studies in This Book 7



1.2.3 Data Driven Evapotranspiration Modelling

Evapotranspiration, termed ET for short, is a natural phenomenon which is the
combined process of plant transpiration and soil evaporation. Though this study
focusing on data based modelling with soft computing techniques, we have used
some standard reference evapotranspiration equations for comparison. ET is con-
sidered as the most significant component of the hydrologic budget, apart from
precipitation. Two commonly used evapotranspiration (ET) concepts are: potential
evapotranspiration (ETp) and reference evapotranspiration (ET0). The ETp concept
was introduced in the late 1940s by Penman [75]. It defined as “the amount of water
transpired in a given time by a short green crop, completely shading the ground, of
uniform height and with adequate water status in the soil profile”. In this definition
of ETp, the evapotranspiration rate is not related to a specific crop and therefore
considered to be a shortfall. On the other hand ET0 is defined as “the rate of
evapotranspiration from a hypothetical reference crop with an assumed crop height
of 0.12 m (4.72 in), a fixed surface resistance of 70 s m−1 and an albedo of 0.23,
closely resembling the evapotranspiration from an extensive surface of green grass
of uniform height, actively growing, well-watered, and completely shading the
ground” [9]. In the late 1970s and early 1980s, the reference evapotranspiration
concept was popularised among irrigation engineers and researchers which helped
them to avoid ambiguities that existed in the definition of potential
evapotranspiration.

The accurate estimation of reference evaporation is very critical in the context of
many scientific and management issues; for example, irrigation system design,
irrigation scheduling, hydrologic and drainage studies, crop production, manage-
ment of water resources, evaluation of the effects of changing land use on water
yields, and environmental assessment. The estimation of ET0 depends on atmo-
spheric variables, such as air temperature, solar radiation, wind speed, number of
daylight hours, saturated vapour pressure and humidity. The Penman–Monteith
approach recommended by FAO (FAO-PM) is considered as the standard to cal-
culate reference evapotranspiration wherever the required input data are available
[9]. Many researchers have made strong recommendations to consider FAO-PM as
the standard method for evaluation of evapotranspiration through their comparative
studies [8, 9, 43, 45, 84, 99]. Some studies also suggest that the ET estimation
techniques are most appropriate for use in climatic regions similar to where they
were developed [47, 75].

Other modifications of the Penman equation to estimate evapotranspiration from
a hypothetical grass ET0, are the CIMIS Penman equation [36, 85] and ASCE
Penman equations. Doorenbos and Pruitt [28] added some modifications to the
Penman combination equation, with a wind function that was developed at the
University of California, Davis. This modification was adopted by California Irri-
gation Management Information System (CIMIS) for calculating hourly ET0 and is
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popularly known as CIMIS Penman equation [94]. ASCE-PM is a standardised
calculation of reference evapotranspiration (ET) as recommended by the Task
Committee on Standardization of Reference Evapotranspiration of the Environ-
mental and Water Resources Institute of the American Society of Civil Engineers.
Alexandris and Kerkides [5, 6] developed a new empirical equation for the hourly
and daily estimation of evapotranspiration, using a limited number of readily
available weather parameters and demonstrated the estimation of hourly values of
ET0 with a satisfactory degree of accuracy compared with the ASCE-PM estima-
tion. The proposed equation is based on solar radiation, air temperature and relative
humidity. The experiments had been conducted in an experimental field of The
Agricultural University of Athens (Copais) in central Greece, using surface poly-
nomial regression analysis. Thereafter the model was named the “Copais approach”
for ET estimation. Even though, many equations have been developed and adapted
for various applications based on available input data, there are still considerable
amounts of uncertainty existing among engineers and environmental managers as to
which method is to be adopted effectively in the calculation of ET0 [7]. Several
studies have been conducted by researchers for comparative evaluation of the most
widely used and strongly recommended models for estimating hourly ET0 like
Penman–Monteith (FAO56-Penman–Monteith), CIMIS version of Penman (CI-
MIS-Penman), and the American Society of Civil Engineers version of Penman–-
Monteith (ASCE-PM) [5, 28, 45]. In recent years several papers have evaluated
hourly ET0 equations (FAO-56 and ASCE Penman–Monteith, CIMIS Penman and
Hargreaves) by comparing them with lysimetric measurements [15, 60]. Alexandris
and Kerkides [5, 6] compared their model (Copais approach) performance with that
of FAO-PM, ASCE-PM and CIMIS-PM for hourly and daily values ET0 estimation
using statistics and scatter plots.

Later data based approaches, including artificial intelligent techniques, have
been applied in evapotranspiration estimation. Just as in the case of rainfall runoff
modelling, ANN offered a promising alternative for modelling evapotranspiration in
the case of data scarcity [53, 57]. The study by Sudheer et al. [92] used radial basis
ANN in modelling ET0 with limited climatic data. The study by Kumar et al. [57]
used a multilayer perceptron (MLP) with back propagation training algorithm for
estimation of ET0 utilising various ANN architectures in data limited situations.
Kisi [53] investigated the estimation of ET0 using MLP. The results were compared
with the above mentioned traditional approaches like Penman and Hargreaves’
empirical models. Adaptive Neuro-fuzzy system (ANFIS) has been applied to
evapotranspiration estimation by Kisi and Öztürk [54] to check the prediction
capability. Wang and Luo [101] adopted Wavelet network model for reference crop
evapotranspiration forecasting. A detailed study by El-Shafie et al. [31] suggests
that ANN model is better than ARMA model for multi-lead ahead prediction of
evapotranspiration.
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1.3 Why Do You Read This Book?

Despite an abundance of studies on prediction and modelling of different hydro-
logical processes in the hydrological cycle in the last few decades using nonlinear
techniques like ANN, ANFIS and SVMs, there are still many questions that need to
be answered. For example, to what extent do the inputs determine the output by a
smooth model? Given an input vector x, how accurately can the output y be pre-
dicted? How many data points are required to make a prediction with the best
possible accuracy? Which inputs are relevant in making the prediction and which
are irrelevant? These questions have not been fully addressed adequately by the
hydrological community [39]. The hydrological community acknowledged that
issues like evaluation of available data, assessment of data adequacy and optimum
decision on input selection are main challenges and potentially complicated ques-
tions in data based modelling. Although the performance of a model generally
improves with addition of more information during model calibration, plateaus exist
wherein new information adds little to a model’s performance [77, 90]. In fact,
systems accuracy can be reduced with increasing information during validation
[90], usually because the additional variables produce models with overfitting
problems [98]. An overfitted model is very specific to the training set and performs
poorly on the test set. Overfitting is known to be a problem with multi-variate
statistical methods when the data set contains too many predictor variables [98],
which lead to excellent results on the training data but very poor results on the
unseen test data. Therefore, an important question for modellers is which inputs are
relevant in making the prediction and which are irrelevant.

However, due to the advancement of modern computing technology and a new
algorithm from the computing science community called the Gamma Test [3, 56], it
is possible that we could make significant progress in tackling these problems.
A formal proof for the Gamma Test (GT) can be find in Evans and Jones [33]. It is
accomplished by the estimation of the variance of the noise var(r) computed from
the raw data using efficient, scalable algorithms. This novel technique, the Gamma
Test, enables us quickly to evaluate and estimate the best mean squared error that
can be achieved by a smooth model on unseen data for a given selection of inputs,
prior to model construction. This technique can be used to find the best embedding
dimensions and time lags for time series analysis. This information would help us
determine the best input combinations to achieve a particular target output. The
Gamma Test can avoid overtraining, which is considered as one of the serious
weaknesses associated with almost all nonlinear modelling techniques including
ANN. The Gamma Test is designed to solve this problem efficiently by giving an
estimate of how closely any smooth model could fit the unseen data. Thus we can
avoid the guesswork associated with the nonlinear curve fitting techniques. This
book makes use the capabilities of these concepts in input selection and redundancy
assessment when we have large number of input series for modelling.
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Information theory is a widely used mathematical theory in electronics and
communication. Information theory has two primary goals: (i) to develop the fun-
damental theoretical limits on the achievable performance when communicating a
given information source over a given communications channel using coding
schemes from within a prescribed class; (ii) to develop coding schemes that provide
performance that is reasonably good in comparison with the optimal performance
given by the theory.More detailed concept of Information Theory and Entropy can be
found in Gray [38]. The capability mentioned in the first goal could be used for data
quality assessment. In information theory, entropy is often referred as Shannon
entropy which measures the uncertainty and randomness associated with a random
variable. Capabilities of Shannon entropy to measure the average information content
associated with input data series are explored in this book. Despite the claimed
success of the methods from the aforementioned literature, there is a lack of com-
parison with conventional methods, data splitting approaches like cross validation
approaches and cross correlation approaches. This book aims at comparison and
assessment of model input selection based on the Gamma Test, entropy theory, AIC
BIC and the above mentioned traditional benchmarking approaches in modelling.

This book makes an effort to comment on another rising debate in data based
modelling in hydrology: should the input data be treated as signals with different
frequency bands so that they could be modelled separately? Wavelet theory is a
novel field of mathematics, which recently gained attention among scientists
studying acoustics, fluid mechanics, and chemistry. The concept of wavelet trans-
formation involves representation of a general signal or time series in terms of
simpler, fixed building blocks of constant shape but at different scales and positions.
Discrete Wavelet Transforms (DWT) can give very useful decomposition of time
series in such a way that faint inherent temporal structure of the time series can be
revealed and can be effectively handled by the above mentioned and used non-
parametric models in this book. This capability has been used effectively in various
fields of engineering for dealing issues in noise removal, object detection, image
compression and structural analysis [89]. Unlike Fourier transforms, wavelets have
an ability to elucidate simultaneously both spectral and temporal information within
the signal whereas Fourier spectrum contains only globally averaged information.
This property overcomes the basic shortcoming of Fourier analysis in modelling.
Therefore, data pre-processing can be carried out by time series decomposition into
its subcomponents using wavelet transform analysis [73]. The wavelets can express
original signals as additive combination of wavelet coefficients at different reso-
lution level. A study by Aussem et al. [13] was the first hybrid ANN-wavelet
conjunction model in which they used it for financial time series forecasting. Later
Zhang and Dong [104] proposed a short-term load forecast model based on multi-
resolution wavelet decomposition with ANN model. The first application in
hydrology was in 2003 when Wang and Ding [100] applied wavelet-network model
to forecast shallow groundwater level and daily discharge. In the same year Kim
and Valdes [52] applied this conjunction model concept in coupling dyadic wavelet
transforms and ANNs to forecast droughts for the Conches river basin. Keeping the
success stories of the aforementioned literature in mind, this book attempts to
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couple DWT with nonlinear models like ANN, ANFIS and SVM and apply these
novel hybrid schemes to three case studies. In some cases, a well calibrated data
based model may not provide faultless forecast results over a longer time. To
improve and make such dynamic conceptual models suitable for operational and
long term real time predictions, integration of on-line or sequential data assimilation
techniques could be used. Partial Recurrent Neural Networks (PRNN) is good
example for such model with data assimilation principle. Kalman filtering is a most
common data assumption exercise widely used in environmental application along
with data based models with definite state space architecture. Application of data
assimilation approaches and related case studies are beyond the scope of this book.

The relevant questions in data based modelling in hydrology are how useful is a
model for predicting a particular component within the hydrological cycle and does
a complex model work better? Though such debates are prominent in physics based
modelling, related literature is almost non existant in the case of data based mod-
elling. The usefulness of any model depends ultimately on the directional accuracy
of its estimates, not on its ability to generate unassailably correct numerical values
[76]. Critical evaluation on the usefulness of models based on sensitivity modelling
error and complexity is essential in data based modelling. This study introduces an
index of utility for critical evaluation of models in different modelling situations
which utilises information like model sensitivity (response to changes in training
data set), model complexity (changes in training time) and model error (closeness of
simulation to measurement) for all used models in this book. Extreme value
modelling is a challenging field in hydrology. This made an attempt to use state-of-
art Statistical Blockade in extreme value modelling and compare the capabilities
with other data driven approaches.

In short, this book aims to address the above mentioned issues in data based
modelling by the following means:

1. The application of novel approaches in data and model selection to avoid the
aforementioned difficulty associated with data based modelling;

2. A reliability check of the novel data selection approaches with conventional
methods;

3. To propose and use new wavelet hybrid schemes with traditional data based
intelligent systems;

4. To investigate the capabilities of popular and widely used artificial intelligent
models with newly proposed hybrid schemes.

5. To introduce statistical blockade to hydrology and compare the capabilities with
other models.

The above mentioned five objectives are accomplished through four case studies
broadly dealing with data based modelling in respective fields.

Chapter 2 describes the modelling issues associated with data based modelling in
hydrology. The chapter gives a detailed description on puzzling questions in
hydrology like model selection, selection of model input architecture, selection of
training data length, selection of best data interval etc. Another main goal of this
chapter is to suggest an approach to identify and characterize modelling quality as a

12 1 Introduction

http://dx.doi.org/10.1007/978-3-319-09235-5_2


function of the model complexity, model sensitivity and model error. Major studies
made in this Book are conducted on the upper Brue catchment, Somerset, using the
HYREX data set. However, for evapotranspiration estimation, we have used data
from three other catchments, namely the Santa Monica station of the USA, the
Chahnimeh reservoirs region of Iran and the Beas basin in India. The details of the
catchments including location specification and data collection description are
given in each case study. The detailed illustration of statistical parameters of the
data used for the modelling is given in respective case study chapters. Different
novel approaches in data selection methods are introduced and discussed in detail in
Chap. 3. The novel approach called the Gamma Test has been described along with
other mathematically sound techniques like Entropy Theory, Cluster Analysis,
PCA, BIC and AIC and other traditional approaches. Chapter 4 gives details data
driven models used in this study (ANNs, ANFIS, SVMs, and other hybrid forms).
Chapters 5, 6 and 7 focuses different case studies on research themes like solar
radiation modelling, rainfall-runoff dynamics and evapotranspiration modelling.
Chapter 8 describes mathematical details of state-of-art Statistical Blockade and a
river basin scale case study to illustrate its capability in extreme value modelling.
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