Gunther Schmidt Simon Schönrock Winfried Schröder

Plant Phenology as a Biomonitor for Climate Change in Germany A Modelling and Mapping Approach



## **SpringerBriefs in Environmental Science**

SpringerBriefs in Environmental Science present concise summaries of cuttingedge research and practical applications across a wide spectrum of environmental fields, with fast turnaround time to publication. Featuring compact volumes of 50 to 125 pages, the series covers a range of content from professional to academic. Monographs of new material are considered for the SpringerBriefs in Environmental Science series.

Typical topics might include: a timely report of state-of-the-art analytical techniques, a bridge between new research results, as published in journal articles and a contextual literature review, a snapshot of a hot or emerging topic, an in-depth case study or technical example, a presentation of core concepts that students must understand in order to make independent contributions, best practices or protocols to be followed, a series of short case studies/debates highlighting a specific angle.

SpringerBriefs in Environmental Science allow authors to present their ideas and readers to absorb them with minimal time investment. Both solicited and unsolicited manuscripts are considered for publication.

More information about this series at http://www.springer.com/series/8868

Gunther Schmidt • Simon Schönrock Winfried Schröder

## Plant Phenology as a Biomonitor for Climate Change in Germany

A Modelling and Mapping Approach



Gunther Schmidt University of Vechta Vechta, Germany

Simon Schönrock University of Vechta Vechta, Germany Winfried Schröder Chair of Landscape Ecology University of Vechta Vechta, Germany

 ISSN 2191-5547
 ISSN 2191-5555 (electronic)

 ISBN 978-3-319-09089-4
 ISBN 978-3-319-09090-0 (e-Book)

 DOI 10.1007/978-3-319-09090-0
 Springer Cham Heidelberg New York Dordrecht London

Library of Congress Control Number: 2014944561

© The Author(s) 2014

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed. Exempted from this legal reservation are brief excerpts in connection with reviews or scholarly analysis or material supplied specifically for the purpose of being entered and executed on a computer system, for exclusive use by the purchaser of the work. Duplication of this publication or parts thereof is permitted only under the provisions of the Copyright Law of the Publisher's location, in its current version, and permission for use must always be obtained from Springer. Permissions for use may be obtained through RightsLink at the Copyright Clearance Center. Violations are liable to prosecution under the respective Copyright Law.

The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use.

While the advice and information in this book are believed to be true and accurate at the date of publication, neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or omissions that may be made. The publisher makes no warranty, express or implied, with respect to the material contained herein.

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

## Contents

| 1 |                                                                 |           | d and Goals                                        | ]<br>2 |  |  |  |
|---|-----------------------------------------------------------------|-----------|----------------------------------------------------|--------|--|--|--|
| 2 | Case                                                            |           | 1: Phenological Trends in Germany                  | 7      |  |  |  |
|   | 2.1                                                             | 0         | round and Goals                                    | 8      |  |  |  |
|   | 2.2                                                             |           | als                                                | 9      |  |  |  |
|   |                                                                 |           | Phenology Data                                     | 9      |  |  |  |
|   |                                                                 |           | Data on Air Temperatures                           | 10     |  |  |  |
|   |                                                                 |           | Ecological Land Classification                     | 15     |  |  |  |
|   | 2.3                                                             |           | ds                                                 | 15     |  |  |  |
|   | 2.4                                                             | Result    | S                                                  | 17     |  |  |  |
|   |                                                                 | 2.4.1     | Phenological Development in the Past and Future    | 17     |  |  |  |
|   |                                                                 | 2.4.2     | Spatially Discriminated Phenological Development   | 24     |  |  |  |
|   | 2.5                                                             | Discus    | ssion and Conclusions                              | 25     |  |  |  |
|   | Refe                                                            | rences    |                                                    | 26     |  |  |  |
| 3 | Case Study 2: Phenological Trends in the Federal State of Hesse |           |                                                    |        |  |  |  |
|   | 3.1                                                             |           | round and Goals                                    | 30     |  |  |  |
|   | 3.2                                                             | Materials |                                                    |        |  |  |  |
|   |                                                                 |           | Phenology Data                                     | 31     |  |  |  |
|   |                                                                 | 3.2.2     | Data on Air Temperatures                           | 33     |  |  |  |
|   | 3.3                                                             | Metho     | ds                                                 | 39     |  |  |  |
|   |                                                                 | 3.3.1     | Phenological Clocks                                | 39     |  |  |  |
|   |                                                                 | 3.3.2     | Correlation Analysis                               | 40     |  |  |  |
|   |                                                                 | 3.3.3     | Regression Analysis                                | 41     |  |  |  |
|   |                                                                 | 3.3.4     | Regression Kriging                                 | 41     |  |  |  |
|   | 3.4                                                             | Results   |                                                    | 42     |  |  |  |
|   |                                                                 | 3.4.1     | Phenological Development in the Past               | 42     |  |  |  |
|   |                                                                 | 3.4.2     | Spatially Discriminated Phenological Development   | 43     |  |  |  |
|   |                                                                 | 3.4.3     | Bivariate-Statistical Analysis                     | 46     |  |  |  |
|   |                                                                 | 3.4.4     | Mapping of Plant Phenological Development in Hesse | 46     |  |  |  |
|   | 3.5                                                             | Discus    | ssion and Conclusions                              | 59     |  |  |  |
|   | Refe                                                            | rences    |                                                    | 62     |  |  |  |

v

## **List of Figures**

| Fig. 2.1 | Measurement networks on air temperature ( <i>left</i> ) and plant                                                                          |     |  |
|----------|--------------------------------------------------------------------------------------------------------------------------------------------|-----|--|
|          | phenology ( <i>right</i> ) in Germany, both maintained by the<br>German Weather Service (DWD)                                              | 10  |  |
| Fig. 2.2 | Long-term annual means on air temperatures in Germany for                                                                                  | 10  |  |
|          | the climate reference period 1961–1990 ( <i>left</i> ) and the period 1991–2009 ( <i>centre</i> ) as well as according differences between | 1.0 |  |
| Fig. 2.3 | both periods ( <i>right</i> )<br>Projected long-term annual means on air temperatures                                                      | 12  |  |
| Fig. 2.5 | in Germany for the climate periods 1991–2020 ( <i>left</i> ),                                                                              |     |  |
|          | 2021–2050 ( <i>centre</i> ) and period 2051–2080 ( <i>right</i> ) according to                                                             |     |  |
|          | climate model WettReg and considering emission scenario                                                                                    |     |  |
|          | A1B ( <i>upper row</i> ) and B1 ( <i>lower row</i> )                                                                                       | 13  |  |
| Fig. 2.4 | Projected long-term annual means on air temperatures                                                                                       |     |  |
| 8        | in Germany for the climate periods 1991–2020 ( <i>left</i> ),                                                                              |     |  |
|          | 2021–2050 (centre) and period 2051–2080 (right)                                                                                            |     |  |
|          | according to climate model REMO and considering                                                                                            |     |  |
|          | emission scenario A1B (upper row) and B1 (lower row)                                                                                       | 14  |  |
| Fig. 2.5 | Ecoregions of Germany calculated by CART (Classification                                                                                   |     |  |
|          | and Regression Trees) from the data in Table 2.1.                                                                                          |     |  |
|          | (According to Schröder and Schmidt 2001)                                                                                                   | 16  |  |
| Fig. 2.6 | Regression analysis for the statistical association                                                                                        |     |  |
|          | between the beginning of flowering of Tilia platyphyllos                                                                                   |     |  |
|          | (large-leaved lime) and air temperatures in Germany                                                                                        |     |  |
|          | for the climate period 1991–2005                                                                                                           | 18  |  |
| Fig. 2.7 | Observed (1961–1990, 1991–2005) and projected                                                                                              |     |  |
|          | (1991–2020, 2021–2050, 2051–2080) onset of flowering                                                                                       |     |  |
|          | of <i>Tilia platyphyllos</i> (large-leaved lime) in Germany                                                                                | 10  |  |
| E'- 20   | according to climate model WettReg and emission scenario B1                                                                                | 19  |  |
| Fig. 2.8 | Observed (1961–1990, 1991–2005) and projected                                                                                              |     |  |
|          | (1991–2020, 2021–2050, 2051–2080) onset of flowering                                                                                       |     |  |
|          | of <i>Tilia platyphyllos</i> (large-leaved lime) in Germany                                                                                | 20  |  |
|          | according to climate model WettReg and emission scenario A1B                                                                               | 20  |  |

| Fig. 2.9  | Observed (1961–1990, 1991–2005) and projected<br>(1991–2020, 2021–2050, 2051–2080) onset of flowering<br>of <i>Tilia platyphyllos</i> (large-leaved lime) in Germany |     |
|-----------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
|           | according to climate model REMO and emission scenario B1                                                                                                             | 21  |
| Fig. 2.10 | Observed (1961–1990, 1991–2005) and projected                                                                                                                        | 21  |
| 8         | (1991–2020, 2021–2050, 2051–2080) onset of flowering                                                                                                                 |     |
|           | of <i>Tilia platyphyllos</i> (large-leaved lime) in Germany                                                                                                          |     |
|           | according to climate model REMO and emission scenario A1B                                                                                                            | 22  |
| Fig. 2.11 | Mean onset of lime bloom in ecoregion 12 (low mountain                                                                                                               |     |
|           | range) calculated using observations (1961–2005) on phenology                                                                                                        |     |
|           | (obs. data provided by the German Weather Service) and                                                                                                               |     |
|           | projections on phenological development based on modelled                                                                                                            |     |
|           | air temperatures (2020–2080) (w WettReg, r REMO) for two                                                                                                             |     |
|           | different climate emission scenarios (B1, A1B)                                                                                                                       | 24  |
| Fig. 3.1  | Outlier (•) analysis by example of phase 67 (ripening of                                                                                                             |     |
| 0         | Sambucus nigra, black elder). For the observation periods                                                                                                            |     |
|           | 1961–1990 and 1971–2000 there were 3 outliers for two                                                                                                                |     |
|           | sites (indicated by the site no.) detected showing conspicuous                                                                                                       |     |
|           | values for the long-term phase onset                                                                                                                                 | 33  |
| Fig. 3.2  | Spatiotemporal patterns of air temperature development in                                                                                                            |     |
|           | Hessian natural land units depicted by maps indicating the                                                                                                           |     |
|           | differences between the long-term annual means for the periods                                                                                                       |     |
|           | 1971–2000 and 1961–1990 ( <i>left</i> ), 1991–2009 and 1971–2000                                                                                                     | 2.4 |
| E'- 22    | ( <i>centre</i> ), and 1991–2009 and 1961–1990 ( <i>right</i> )                                                                                                      | 34  |
| Fig. 3.3  | Annual mean air temperatures in Hesse. <i>Above</i> : measurements                                                                                                   |     |
|           | from 1961 to 2009 by DWD; <i>below</i> : projections for 1971–2000, 2031–2060, and 2071–2100 for emission scenario A1B based                                         |     |
|           | on the REMO/UBA climate model                                                                                                                                        | 35  |
| Fig. 3.4  | Annual mean air temperatures in Hesse. <i>Above</i> : measurements                                                                                                   | 55  |
| 1.5.011   | from 1961 to 2009 by DWD; <i>below</i> : projections for 1971–2000,                                                                                                  |     |
|           | 2031–2060, and 2071–2100 for emission scenario A1B based                                                                                                             |     |
|           | on the ECHAM5/COSMO-CLM climate model                                                                                                                                | 36  |
| Fig. 3.5  | Annual mean air temperatures in Hesse. Above: measurements                                                                                                           |     |
|           | from 1961 to 2009 by DWD; below: projections for 1971–2000,                                                                                                          |     |
|           | 2031–2060, and 2071–2100 for emission scenario A1B based                                                                                                             |     |
|           | on the HADCM3/COSMO-CLM climate model                                                                                                                                | 37  |
| Fig. 3.6  | Annual mean air temperatures in Hesse. Above: measurements                                                                                                           |     |
|           | from 1961 to 2009 by DWD; <i>below</i> : projections for 1971–2000,                                                                                                  |     |
|           | 2031–2060, and 2071–2100 for emission scenario A1B based                                                                                                             | •   |
|           | on the WettReg2010 (run 0) climate model                                                                                                                             | 38  |
| Fig. 3.7  | Development of the projected mean annual air temperatures                                                                                                            |     |
|           | in Hesse as based on the climate models ECHAM5/CLM,                                                                                                                  |     |
|           | HADCM3/CLM, REMO/UBA and WettReg2010 (run 0)                                                                                                                         |     |
|           | regarding emission scenario A1B for the periods 1971–2000, 2031–2060, and 2071–2100                                                                                  | 40  |
|           | 2031–2060, and 2071–2100                                                                                                                                             | 40  |