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v

This book encompasses a compilation of work by the authors on the manufacturing 
technique, Electrically Assisted Forming (EAF), whereby an electric current is passed 
through a metal during the forming process. The importance of improved metal 
deformation within manufacturing is described, and the need for novel enhanced 
metal forming techniques is presented. EAF has shown promising experimental form-
ing results on many lightweight metals, and within this book, macro-scale compres-
sion and tension modeling is presented. Bringing the technique even further towards 
industrialization, strategies for controlling the applied electric current during EAF are 
described. Furthermore, the sensitivities and impacts of EAF on intrinsic and extrin-
sic material properties are covered. Concluding the text, an explanation on designing 
an Electrically Assisted manufacturing process is presented, and real-world potential 
EAF applications are introduced.
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Deformation of metals is one of the key manufacturing processes for adding value 
in secondary operations. Deformation as a process evolved soon after metal refine-
ment in ancient times to shape tools and other functional parts. With the dawn of the 
second Industrial Age, the availability of localized power sources allowed for the 
development of more standardized automated processes for metal deformation, such 
as forging, stamping, drawing, and extrusion. These processes gave rise to high-
value, standardized components for construction, vehicles, and consumer goods.

With the development of automated deformation processes, there came a need 
for analysis of process behaviors and physics, in order to understand the process 
limitations, feasible design regions, and “optimum” points. A number of key mod-
els have been developed over the past century to describe behavior, such as the 
power law and Johnson-Cook models for flow stress, forming limit diagrams for 
sheet metal behavior, and various shearing and punching force models. These have 
been augmented with improved variables that better describe material changes 
with environmental and process effects such as temperature and strain rate, and are 
used to size equipment, plan processes, and define limitations.

Two key limitations of the deformation process are achievable strain (related to 
ductility) and flow stress (related to material strength and strain hardening behav-
ior). These become significant limitations to processing as more brittle, higher 
strength metal alloys are introduced to design. These limitations and the associ-
ated cost of higher capital investment to overcome them are the motivation for the 
methods described in this text.

To begin, we will describe technologies used to form metals, the mechanisms 
by which metals plastically deform, and details of the limitations to be addressed.

Chapter 1
Deformation of Metals

© Springer International Publishing Switzerland 2015 
W.A. Salandro et al., Electrically Assisted Forming, Springer Series  
in Advanced Manufacturing, DOI 10.1007/978-3-319-08879-2_1



2 1  Deformation of Metals

1.1 � Relevant Background on Automotive  
and Aerospace Industries

US-based automotive Original Equipment Manufacturers (OEM’s) are an integral 
part of the US economy, responsible for nearly one million automotive-related 
jobs [1]. A key evolution in today’s automotive designs is reduction of mass in 
order to meet more stringent legislation on allowable fuel economy and vehicle 
emissions for this industry (see Fig. 1.1).

Vehicle energy consumption across a given driving cycle can be described by

where the power P over time t can be decomposed into mass m effects (accel-
eration, increasing elevation), drag effects through the drag coefficient CD, fluid 
density ρ, frontal area Af, and rolling resistance Cr effects by way of weighting 
coefficients βi. This energy, and hence fuel consumption, can be reduced through a 
number of possible means as shown in Table 1.1.

Of these, lightweighting to reduce mass-based energy consumption is an 
approach that can be readily implemented and has significant and immediate 
effects on fuel consumption. The concept of vehicle lightweighting is currently a 
major focus for all US and foreign automotive manufacturing OEMs, due to the 
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Fig. 1.1   Current and planned minimum fuel economy standards for US passenger vehicles [after 
US Department of Transportation (2013). Fact Sheet: DOT and EPA Establish CAFE and GHG 
Emissions Standards for Model Years 2017 and Beyond]
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above-described regulatory standards for fuel consumption, and associated emis-
sions regulations. To reinforce the importance of this statement, the following are 
quotes from several automotive OEM’s about their commitment toward vehicle 
weight reduction:

•	 “The use of advanced materials such as magnesium, aluminum, and ultra-high 
strength boron steel offers automakers structural strength at a reduced weight 
to help improve fuel economy and meet safety and durability requirements.”—
Ford Motor Company [2]

•	 “Lightweight design can be achieved by engineering lightweight, manufacturing 
lightweight and material lightweight design.”—BMW AG [3]

•	 “Lightweight design is a key measure for reducing vehicle fuel consumption, 
along with power train efficiency, aerodynamics and electrical power manage-
ment.”—Volkswagen [4]

•	 “Excess weight kills any self-propelled vehicle…Weight may be desirable in a 
steam roller but nowhere else.”—Henry Ford [5]

Since the early 1980s, US vehicle weights have increased significantly [6]. A state-
ment from General Motors claims that about 20–40 % of this weight increase is 
due to the content increase (i.e., navigation, electronics, and accessories) in newer 
vehicles [7]. Consumer trends toward larger vehicles have also contributed to this 
upward trend. This increase in weight has led to a decrease in efficiency of these 
vehicles, even as powertrain efficiencies have improved. Automotive OEMs realize 
that consumers want more efficient vehicles without compromising desires; this 
situation has led to a heightened focus on a number of lightweighting techniques.

Vehicle lightweighting is approached through two primary strategies: (1) By 
using new alloys with high strength-to-weight ratios (e.g., magnesium, high-strength 
steels, or titanium), or (2) By using creative design strategies (e.g., stainless steels 
with ribbed designs, integrated material full vehicle designs). Some case studies of 
creative design approaches are shown in Fig. 1.2. Some of the lightweighting metals 
may not be as strong as the heavier metals that they are replacing, so a combination 
of both lightweighting techniques will commonly be used. The following examples 
show how different lightweight materials and creative design strategies were used to 
reduce weight in a vehicle without compromising strength.

•	 For an automobile bumper, a 20 % weight reduction was achieved using stain-
less steel versus carbon steel, when the C1000 Stainless Steel design included 
“ribs” for strengthening rather than a large cross section of the carbon steel [9].

Table 1.1   Potential 
approaches to reduction of 
fuel consumption

Electrification/hybridization of powertrains
Development of low-resistance tires
Use of synthetic oil to reduce engine friction
Integration of fuel-tracking devices
Improvements in engine efficiency
Lightweighting of vehicles

1.1  Relevant Background on Automotive and Aerospace Industries



4 1  Deformation of Metals

•	 For an automotive fuel tank, a 4 % capacity increase and a 20 % weight reduc-
tion were accomplished by using stainless steel as the tank material compared 
with conventional plastic used in fuel tanks, because the tank wall thickness 
could be decreased [10].

Aside from the two examples shown above, the overall material content used 
in vehicle production as a whole has changed dramatically over the last century 
[11]. Specifically, larger amounts of high/medium strength steels, aluminum, 
polymers, and even some magnesium are being integrated into all components 
of the vehicle (e.g., body panels, trim, engine) to reduce weight [11]. An exam-
ple of this integration is the BMW X6 Sport-Activity Vehicle, which received the 
“Great Designs in Steel, Automotive Excellence Award” from the Automotive 
Applications Council of AISI’s Steel Market Development Institute (SMDI) for 
utilizing ultra-high strength steels (UHSS) to enforce strength without increasing 
weight [12].

Overall, there is a greater amount of aluminum and magnesium being imple-
mented into the vehicles. With the limited formability of these metals compared 
to current automotive metals, there is the need for an efficient metal-forming tech-
nique capable of making components from these and other comparable metals in 
place of the current metals.

1.2 � Present Forming Technologies

There are numerous techniques used in manufacturing plants today that help to 
improve metal formability. Within this subsection, several of the most common 
techniques are described and their advantages/disadvantages are discussed.

Fig. 1.2   Lightweight design strategies [8]. Using lightweight materials or creative design strate-
gies are two main methods for lightweighting. a A stainless steel ribbed bumper beam [9] design 
saves weight compared with a carbon steel design, b The reduced thickness of a stainless steel 
gas tank [10] decreased the weight and allowed for greater capacity compared with a plastic tank. 
a Stainless steel bumper beam [9], b Plastic versus steel gas tank [10]
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1.2.1 � Hot Working

Hot working is defined as the deformation of a material at an elevated temperature. 
As part of this process, the metal is heated above its recrystallization temperature, 
thus increasing the formability of the material. Advantages to hot working include 
decreased flow stress and increased ductility. This is one of the simplest manufac-
turing methods because all that is required is a heat source, such as a heater or fur-
nace. In many cases, however, these benefits come at the expense of part quality. 
One key disadvantage includes lower dimensional accuracy, due to uneven ther-
mal expansion resulting from temperature gradients within the material. Moreover, 
a rougher surface finish (resulting from an oxide layer developing on the outside 
of the part) is another consequence of using this process. Also, as the size of the 
workpiece increases, larger furnaces will be needed, proving to be more costly and 
taking up a larger footprint on the shop floor. Further, energy use is much higher 
for this technique. Regardless of the minor fluctuations in part quality and cost, 
this relatively simple and effective process makes it a desirable choice when hold-
ing rough tolerances where secondary finishing operations will likely follow.

Using the stress versus strain graph in Fig. 1.3, the effects of hot working can 
be compared to a room-temperature (i.e., cold forming) compression test when 
forging Ti-6Al-4V. Due to hot working, the compressive flow stress was decreased 
and the amount of achievable compressive displacement prior to fracture was 
increased when compared to cold-working conditions.

1.2.2 � Incremental Forming

Incremental forming (IF) is a type of manufacturing process in which a metallic 
part is deformed in small steps with a minor heat treatment (i.e., a process anneal) 

Fig. 1.3   Hot working. Parts are bulk heated to induce thermal softening, then formed at high tempera-
ture with lower forces. a Ring being hot rolled to increase diameter. b Stress–strain curve for Grade 5 
Titanium showing cold working (upper curve) versus hot working (lower curve) stress profiles. a Hot 
ring rolling [13], b Ti-G5 hot working [14] (Figure courtesy of McInnes Rolled Rings, Erie, PA, USA)

1.2  Present Forming Technologies
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performed in between steps [16]. Figure 1.4 shows a schematic diagram of the incre-
mental-forming process, along with a graphic of a blank at different stages of the 
IF process. This type of manufacturing is especially beneficial when forming brittle 
sheet metals and is used in the automotive and aircraft industries. The major advan-
tages to this process are the large amounts of deformation and the decrease in the 
required deformation forces that can be obtained. These advantages are possible 
because of the minor heat treatments performed in between the increments of defor-
mation. The treatments eliminate the effects of cold work or strain hardening by 
causing recrystallization to occur during each process anneal, thus resulting in a new, 
overall weaker material. Aside from the benefits, this process does have its disadvan-
tages. A big downfall is the potential for low-dimensional accuracy, since the part 
must be continuously removed and re-fixtured before and after the heat treatments. 
The decreased accuracy arises from the fact that the part may not be fixtured in the 
exact fashion each time it is removed and re-installed. Also, this process can be very 
time-consuming, depending on the variables such as the number of heat treatments 
and their respective durations, as well as the depth of the desired deformations. 
Using this technique, production times are greatly increased, hence, IF may not be 
an optimum process for high-production or high-precision manufacturing, however, 
materials can be formed to great distances and complex shapes can be achieved.

1.2.3 � Superplastic Forming

Superplastic forming (SPF) involves heating a material to extremely high temper-
atures (roughly two-thirds of its melting temperature) when deforming, as seen in 
Fig. 1.5. This process can produce tremendous elongations of up to 2,000 %, cou-
pled with greatly reduced flow stress [17]. Other advantages include being able 
to form precise complex shapes in which minimal or no residual stresses are pre-
sent. Also, lower strength tooling and fixtures can be used since the required forces 

Fig. 1.4   Incremental Forming (IF): Parts are deformed in small increments, with a minor heat 
treatment usually performed off-line in between steps. a A cone is formed from a flat sheet of 
metal in four forming steps (increments).  b A stress–strain schematic of an IF process
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for deformation are minimized. This process can be used to form complex shapes 
because of the very low-forming forces; however, it also has its disadvantages. 
First, the superplastic-forming process is only applicable for very fine-grained 
alloys (less than 10–15 µm), such as some aluminum (5083-FG and 7475), titanium 
(Ti-6AL-4V), and magnesium alloys (Mg-AZ31B). These small grains allow for 
GBS (grain boundary sliding) to occur at elevated temperatures, which is the pri-
mary SPF deformation mechanism responsible for the huge elongation increases. 
Another consequence of this process is that extremely slow strain rates must be used 
(10−4  –  10−2  s−1). Similar to the incremental-forming technique, the superplastic 
technique may not be practical for many high-production manufacturing applica-
tions and can be classified as a batch-forming process. Neglecting the limited num-
ber of applicable materials and the slow strain rate that is required, this process is 
capable of producing precise complex geometrical parts with little or no finishing 
operations needed. Vehicle manufacturers, such as Porsche and Aston Martin, have 
used SPF to form components for their low-production exotic cars.

1.2.4 � Tailor-Welded Blanking

When using tailor-welded blanks (TWB’s), different sheets of material (i.e., differ-
ences in material grade, thickness, or coating) are mechanically or automatically 
welded together before the forming process [18]. This allows the manufacturers 

Fig. 1.5   Superplastic forming. A part is heated to roughly two-thirds of its melting temperature 
and formed to allow for great elongations and a formed part with very few residual stresses

1.2  Present Forming Technologies
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to produce custom blanks, where strong, lightweight materials are placed where 
they are needed, while utilizing more formable steels in other areas, thus allowing 
for a relatively strong and easily formable part. However, this process can be time-
consuming, costly and can result in reduced part accuracy because of all the extra 
manufacturing steps and associates required to prepare the blanks.

1.3 � Limitations of Current Technologies

The goal of any manufacturing engineer is to produce quality parts as efficiently 
and cost-effectively as possible. For many common engineering metals, this can 
be accomplished rather easily, however, it has proven challenging with some of 
the stronger, more lightweight metals which are being incorporated into today’s 
designs. These materials, such as high-strength aluminum-, steel-, magnesium-, 
copper-, and titanium-based alloys, all possess high strength-to-weight ratios, but 
their limited formability makes them impractical for use in many real-world appli-
cations that require complex part geometries. The main downfall in using these 
materials to make complicated shapes is the fact that, with current technology, the 
forming capability is insufficient, such that the forming process is extremely time-
consuming and some very complex shapes may not even be able to be formed at 
all. In this case, numerous simpler parts must first be formed and then attached 
using screws, rivets, or welds, which can significantly increase the overall cost and 
useable lifecycle of the products.

High-production costs and poor part quality issues can result from attaching 
smaller, simpler parts together, making the disadvantages of using these materials 
outweigh their great strength-to-weight characteristics. To this end, formability-
enhancing techniques are used to increase the overall efficiency of the manufactur-
ing process, thus increasing the applicability of these materials and allowing more 
complex part geometries to be formed from single blanks rather than attaching many 
smaller components together. Formability-enhancing techniques must be devised 
and employed on current manufacturing methods to make them more applicable 
for forming lightweight metals. Experts say that extensive research, which couples 
materials and manufacturing engineering, is the key toward further developing light-
weight engineering [19, 20]. Not only do novel manufacturing techniques need to 
be created and proven, but computer-aided engineering (CAE), analytical modeling, 
and simulations of these novel processes must be further developed in order to gain 
industry acceptance for a specific formability-enhancing technique.

1.4 � Plastic Deformation of Metals

Plastic deformation can be classified as permanent reshaping of a metal. In plastic 
deformation by slip, dislocations move through the crystal structure of the metal, 
breaking, and reforming metallic bonds. Dislocation motion (i.e., deformation) can 
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be hindered by defects in the crystal structure of the metal. In this section on plas-
tic deformation, the following will be explained:

•	 Bonding
•	 Dislocations
•	 Crystal structure
•	 Lattice defects

1.4.1 � Bonding

Any group of bonded atoms has an associated energy. The bonding force for metal-
lic bonds consists of the attraction forces, due to opposing charges of the atoms, 
and the repulsion forces, that are due to the overlapping of the outer shells of the 
electrons. The equilibrium spacing is achieved by balancing the attractive forces 
and the repulsive forces. As these forces increase, the energy state of the bonded 
atoms increases, and thus, it is more willing to find another atom to bond with that 
will decrease the energy state. In metals, the ion nuclei (consisting of protons and 
neutrons) exert a net positive charge. The valence (or free) electrons (with a nega-
tive charge) surround these ion cores, creating an attraction. Note that the mass of 
an electron (9.11 × 10−31 kg) is much smaller than the mass of a proton or neu-
tron (1.67 × 10−27 kg) [21]. Each ion core carries a net positive charge because its 
valence electrons were given up to create the “electron cloud” or “sea of electrons” 
that is shared between all the ion cores. The positive charge of a particular ion core 
and the same positive charge of neighboring ion cores lead to the ion cores hav-
ing repulsive forces between them. The negatively charged valence electrons are 
attracted to the much larger positively charged ion cores. In doing this, the valence 
electrons negate these repulsive forces from the neighboring ion cores. The valence 
electrons create the spacing between the ion cores and absorb the repulsive forces 
from the same charges. Depending on the magnitude of the charge of the ion cores, 
a corresponding amount of valence electrons will be attracted to it.

Of the three main types of bonds (ionic, covalent, and metallic), metallic 
bonds are the weakest. A bond generally consists of atoms or a core, and elec-
trons. Surrounding each atom are shells of electrons. Each shell has the maximum 
number of electrons that it can hold in it. The electrons in the outer-most shell are 
called valence electrons or free electrons because they have the ability move from 
one outer shell to another. If a particular atom has open spaces for extra electrons 
in its outer shell, then that particular atom is at a higher energy level as compared 
with an atom with all of the open spaces in its outer shell occupied. If the atoms 
have their outer shells completely full of electrons, then they will be at the lowest 
energy state and will not be reactive to the other atoms (i.e., the noble gases at the 
far right column of the periodic table). If there are openings available in the outer 
shell, the atom is still at a higher energy state than what it could be. In addition to 
missing valence electrons, the energy of the atoms could also be increased by an 
applied external stress. As this external stress on the atom increases, it will create 

1.4  Plastic Deformation of Metals
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an energy state higher than what the atom can withstand and will force the atom to 
break its bonds and reform new bonds and share valence electrons.

In essence, the classification of the bond type is dependent on how the valence 
electrons are utilized by the material. In ionic bonds of NaCl, the valence electrons 
are permanently transferred from a metallic element to the nonmetallic element. 
In doing so, the two elements now will have equal and opposing charges. This is 
a strong type of bonding because the valence electrons are not shared, but actually 
transferred, and each atom exclusively owns their electrons.

Materials with ionic bonding are ceramics. These materials can also withstand 
high temperatures, since their bonding strength is high and it would take a lot of 
heat to increase the energy of the atoms to cause the bonds to break.

In covalent bonds, the valence electrons are shared between multiple atoms. 
Methane (CH4) is an example of a covalently bonded material, since electrons are 
shared between the carbon element and the four hydrogen elements. In this case, 
each element needs the shared valence electrons to stay bonded. This type of bond 
is typically not as strong as the ionic bond because the valence electrons are being 
shared, rather than actually being transferred from one atom to another, so several 
atoms own the electrons and each can have an effect on what happens to the total 
electron count in the bond. In the case of CH4, if one out-of-the four total hydro-
gen elements (per CH4 molecule) breaks and reforms with another set of elements, 
then the CH4 molecule is now left at a higher energy state and desires another 
hydrogen element to share electrons.

1.4.2 � Dislocations

Dislocation motion is required for plastic deformation by slip. A dislocation is sim-
ply a misalignment of the atomic structure in the lattice of a metal. There are three 
types of dislocations (edge, screw, and mixed dislocations). In the edge dislocation 
shown in Fig. 1.6, there is an extra set of atoms within the top half of the lattice. The 
location of where the string of atoms is un-bonded at its end is the dislocation in 
the lattice structure, and it is at a higher energy state as compared with the bonded 
atoms. As a force is applied to the metal, the string of atoms that were previously 
un-bonded at its end will now bond with the neighboring string of atoms in the lower 
half plane. This will then leave the neighboring string of atoms in the top plane, 
which are one atomic unit in the direction of the force, and un-bonded. Thus, the 
dislocation or the bonding defect in the lattice moved one atomic unit. As the bonds 
continue to break and reform, which is caused by the external force exerted on the 
metal leading to the stress exerted on the dislocation, the bonding defect (disloca-
tion) will migrate through the metal’s lattice. This overall shifting of the dislocations 
is termed plastic deformation. To clarify the difference between elastic and plastic 
deformation, in elastic deformation, the bonds are only stressed, and the lattice goes 
back to its original spacing once the metal is unloaded. Conversely, bonds must be 
broken for plastic deformation to take place. Once bonds are broken, the metal can-
not go back to its original shape without re-breaking and reforming of the bonds.
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The second type of dislocation is the screw dislocation, as seen in Fig. 1.7. In this 
type of dislocation, there is a step or ramp shape that is created due to the external 
forces. As seen in the figure, the external forces create a shear stress that moves the 
front upper region of the lattice one atomic spacing unit past the front bottom region. 
As you examine the depth of the lattice, a screw-like “ledge” is formed since the 
front region shifted a complete atomic spacing unit and the rear region did not yet. 
As a greater amount of shear force is exerted, the neighboring bonds near the front 
region will become more stressed and will likely break and reform to enable this 
shift to move its way along the depth of the crystal structure in the figure.

Fig. 1.6   Edge dislocation. 
The bonding defect in the 
center of the lattice, where 
there is a string of un-bonded 
atoms, is an edge dislocation

Fig. 1.7   Screw dislocation. 
The screw dislocation is 
created by a shear stress 
that causes the lattice above 
or below the shear line to 
advance one atomic spacing 
unit

1.4  Plastic Deformation of Metals
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The third type of dislocation is the mixed dislocation, as shown in Fig.  1.8. 
Most of the dislocations in metals are mixed dislocations, since they may consist 
of multiple lattice defects that are representative of both edge and screw disloca-
tions. In the figure, as the force is exerted at point A, the bonded atoms at the loca-
tion of where the force was applied break bonds with the aligned atoms and reform 
bonds with the atoms one atomic spacing in the direction of the force to cause a 
screw dislocation. This causes one set of bonded atoms in the top half of the unit 
cell to now be un-bonded, which is shown by the edge dislocation at point C.

Regardless of the dislocation type, the number of dislocations within a metal 
increases as the level of plastic deformation increases. This is because the disloca-
tions do not only move through the lattice, but new dislocations are created at lat-
tice defects. A dislocation line can be classified as an un-bonded string of atoms. 
A defect in the lattice disrupts the equilibrium bonding of the lattice. If forces are 
exerted on the lattice and bonds must consistently break and reform, this disruption 
by the lattice defect can create bonding inconsistencies in the form of dislocations, 
because of the extra energy needed to break and reform bonds around this defect.

There are certain “pathways” that dislocations can move throughout a metal’s lat-
tice. These pathways are called slip systems. The dislocations travel on slip systems, 
which are comprised of slip planes and directions, and are specific to the particular 
crystalline structure of the material. While traveling on these slip systems, the dislo-
cation motion can be hindered by different interfacial defects within the lattice. Such 
defects include impurities, voids, grain boundaries, faults, and other dislocations. As 
these obstacles hinder the dislocation movement, the dislocations begin to pileup, 
thus increasing the forces needed to continue plastic deformation. This phenomenon 
is known as strain hardening. In order for the dislocations to be able to surpass the 
obstacles, additional energy is required to force the dislocation past the defect. In 
order for the dislocations to continue moving, there must be enough energy to: (1) 

Fig. 1.8   Mixed dislocations. 
Mixed dislocations are a 
combination of edge and 
screw dislocations


