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Preface

The opportunity to study palæoclimate has been an exciting, challenging and
rewarding experience. As a Natural Sciences undergraduate student at the University
of Cambridge, I developed a strong interest in Earth Sciences, in particular climate
change, sedimentology and geomorphology. During my master’s degree, I was
lucky enough to take these interests further in a three-month research project. It is the
results of this project which provided the impetus for writing this book.

Developing an understanding of Earth’s climatic history has become all the more
intriguing and necessary in order to appreciate current climate change in the context
of longer timescales. Transitions from icehouse to greenhouse worlds and vice
versa are the largest of the climatic switches known to occur on Earth and they are
accompanied by extreme palæoenvironmental changes. This book documents one
such change, the Late Carboniferous to Permian deglaciation of southern
Gondwana, by drawing upon evidence from a Gondwana fragment that became the
Falkland Islands (Islas Malvinas) microplate following the break-up of the
supercontinent.

The sedimentology of the Hells Kitchen Member of the Port Sussex Formation
in East Falkland comprises deposits that document the switch from icehouse to
greenhouse conditions. These Falkland Islands strata correlate with glacigenic units
in South Africa and South America, all of which were deposited during the
widespread, Late Carboniferous to Early Permian glaciation of Gondwana. Sedi-
mentary logging, X-ray fluoresence (XRF) scanning and reflectance scanning were
carried out on solid rock cores which host these sediments. The data collected was
used to support a facies evaluation and an investigation into the nature of the cli-
mate change. In addition, it presented a unique opportunity to explore the appli-
cation of Milankovitch orbital cycles to sedimentary sequences at this time.

This book is published as part of the series of Springer Earth System Sciences. It
serves as a case study because the Falkland Islands cores pinpoint evidence from
just one locality nested within the Gondwanan supercontinent at the time of the
icehouse to greenhouse transition. The research complements other accounts of
Falkland Islands geology, the climate and palæotectonic reconstructions of the
Gondwanan supercontinent and long-term climate change. It is hoped that it will be
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a valuable resource to both scientists and students working across a range of
disciplines within the Earth Sciences, but primarily its focus is geared towards those
with research interests in the above areas.

Kate Horan
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Abstract

The Late Carboniferous to Early Permian ‘icehouse to greenhouse’ transition in
the Falkland Islands was accompanied by cyclical waxing and waning of the
Gondwanan, south polar ice sheet. The cyclical changes are manifested in the
sedimentary deposits of the Fitzroy Tillite and Port Sussex formations. This study
looks in detail at two sediment cores spanning these formations that were recovered
from the Falkland Islands in 2008 following a mineral exploration programme. The
lithologies and sedimentary fabrics appear to record a switch from deposition under
a grounded ice sheet to glaciolacustrine or glaciomarine deposition punctuated
by minor episodes of ice advance and retreat during a period of net ice sheet retreat.
X-ray fluorescence and reflectance data have been used to quantify the change in
terms of geochemical and geophysical properties respectively. Elements including
zirconium, manganese, chromium, iron and titanium helped to constrain the
cyclicity. Wavelet and spectral analyses, run to look for prominent periodicities in
the data, were suggestive of orbitally forced oscillations within the transition. This
permitted the development of a hypothetical time framework for the series spanning
approximately 1.2 million years through age modelling. The integrated approach of
this research, which combines sedimentological data with geochemistry, makes it a
robust insight into this past climatic transition and may help to evaluate and inform
predictions of future climate change.

Keywords Falkland Islands � Fitzroy Tillite Formation � Hells Kitchen Member �
Permo-Carboniferous � Icehouse to greenhouse � Gondwana � Deglaciation
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Chapter 1
Introduction

Abstract Investigating the dynamic behaviour of Earth’s climate system remains a
significant challenge. It is partly motivated by our limited knowledge of how the
system will evolve in the future and the resilience of ice sheets to perturbations.
Throughout geological history, the Earth has been subjected to extreme climatic
transitions. These have taken place over various spatial and temporal scales ranging
from localised decadal oscillations through to millennial- and multi-millennial-scale
processes affecting the whole planet. The focus of this study lies within the latter
kind, wherein the Earth flips between icehouse and greenhouse states. During the
Permo-Carboniferous, when the Gondwanan supercontinent lay close to the South
Pole, sedimentary deposits developed that documented one such transition. This
chapter outlines the potential for study in material extracted from East Falkland
during a mineral exploration programme in 2008. The geographical location of the
Falkland Islands in the Permo-Carboniferous based upon Palæozoic reconstructions
of Gondwana is discussed and the stratigraphic links between the Falklands
deposits and other similar deposits from across the continent explored. Our
understanding of how major climatic changes proceed, and the possible triggers
behind them, could be significantly improved by studies of such deposits.

Keywords Permo-Carboniferous climate change � Icehouse to greenhouse �
Gondwana � Falkland Islands � Ice sheets

1.1 Overview

The climatic conditions of the Late Palæozoic Earth oscillated between cold
‘icehouse’ states with persistent polar ice and warm ‘greenhouse’ states without
polar ice (Fig. 1.1). With many questions about the long-term future of our climate,

Electronic Supplementary Material The online version of this Chapter (DOI 10.1007/978-3-
319-08708-5_1) contains supplementary material, which is available to authorized users.

© Springer International Publishing Switzerland 2015
K. Horan, Falkland Islands (Islas Malvinas) in the Permo-Carboniferous,
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it is increasingly important to improve understanding of how these major climatic
changes proceed. The Late Carboniferous Ice Age provides the last complete record
of a transition from icehouse to greenhouse conditions (Gastaldo et al. 1996) and
forms the focus of this study.

Mineral exploration drilling in the Falkland Islands between 2005 and 2007
generated eight core sections located between Old House Rocks and Black Rock,
East Falkland, that span the Permo-Carboniferous icehouse to greenhouse transi-
tion. Commercial interest in these cores declined in 2008 and permission was
obtained from the exploration company, Falklands Gold and Minerals Ltd., for
samples to be taken and returned to the UK for assimilation into the national core
archive. This is maintained by the British Geological Survey (BGS) at their
headquarters in Keyworth, Nottingham. The main objective of this book is to place
sedimentological and geochemical data collected from these cores within a
framework that explains the interactions between climate and glacier dynamics over

The average global temperature during icehouse conditions is 
approximately 12-14°C (Worsley et al. 1994).

The average global temperature in a greenhouse world is 
approximately 18-22°C (Worsley et al. 1994).

The Late Carboniferous to   Early   Permian   icehouse  to 
greenhouse transition, of interest to this study, was a long term 
(106-107 year) climate change. Icehouse conditions waned 
during the early Carboniferous, expanded during the early Late 
Carboniferous (Serpukhovian) and terminated during the early 
Permian (Artinskian) (Ziegler et al. 1997).

The Late Palæozoic Ice Age (LPIA) lasted between 320-
260Ma (Horton et al. 2012).

Superimposed upon broad scale climate changes are glacial-
interglacial cycles on the order of 104-105 years perhaps driven 
by cyclic changes in Earth’s orbit and associated changes 
(Horton et al., 2010).

The Late Neogene transition back to a full glacial state was the 
first return of intense glaciation since the Late Palæozoic
transition to a relatively ice free world. 

Fig. 1.1 Earth’s long-term climate history modified from Scotese et al. (1999) to reflect the recent
international chronostratigraphic chart (International Commission on Stratigraphy, August, 2012).
Numbers on the left hand side of the figure refer to age in millions of years. Note that this figure
does not account for the diachroneity of climate change across continents

2 1 Introduction



the segment of the Gondwanan continent from which the East Falkland Islands
formed. The core sequences contain deposits belonging to the Fitzroy Tillite and
Port Sussex formations. These are characterised by subglacial, massive diamictite
passing upwards into glaciomarine/glaciolacustrine diamictites, mudstones and
black shales; a record which provides an excellent opportunity to study ice sheet
advance and retreat across the East Falklands margin.

The nature of the icehouse to greenhouse transition may be explored through
addressing the following four questions.

1. Does the transition occur through gradual climatic drift to a warmer state or is it
marked by oscillations, episodic or periodic, between the extremes before a
tipping point is reached?

2. What are the links between the sedimentological and the physicochemical
properties of the deposits?

3. Could the climate changes within the course of the transition have been orbitally
forced? Improving our understanding of the climate system earlier in Earth’s
history may have relevance for our ability to gauge future climate change
projections operating under similar climate dynamics.

4. How do the deposits in the Falkland Islands correlate with deposits in other
localities that also span the transition? Synthesising the stratigraphic record from
the Falkland Islands with records across Gondwana could help to constrain the
waxing and waning of glacial intervals of the Late Palæozoic Ice Age (LPIA)
and provide insights into the drivers of ice growth and deglaciation.

1.2 Geographical Context

Today, the Falkland Islands are an archipelago in the South Atlantic Ocean situated
between 51° and 52° 30′S and 57° 30′ and 61° 30′W. They comprise two main
islands, East and West Falkland, and several hundred smaller islands (Fig. 1.2).

In contrast, current Late Carboniferous reconstructions of the Gondwana
supercontinent place the Falkland Islands at high latitudes off the east coast of
South Africa and in a rotated position close to Port Elizabeth. These reconstructions
(e.g. Adie 1952; Marshall 1994) are based on the continuity of structural trends
from the Gondwanan orogeny (Curtis and Hyam 1998), outcrop patterns, palæo-ice
flow directions, palæomagnetic reconstructions (Mitchell et al. 1986) and
palæocurrent data (Hyam et al. 1997) and are supported by the distribution of Early
Devonian marine faunas of the Malvinokaffric Province (Bradshaw 1998).
Comparison of Permian facies, ichnology and palæocurrents in the Falkland Islands
and the Dwyka, Ecca and Beaufort (part) groups in South Africa also support this
(Trewin et al. 2002). Nevertheless, despite the compelling evidence for microplate
rotation arising from comparisons of onshore geology, it should be noted that there
is a contrary view held mainly by those working with offshore data generated by
the hydrocarbon exploration programmes currently active around the Falklands.
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The offshore data provide no evidence in support of the rotational model. Indeed,
they are more readily reconciled with a Gondwana break-up in which the Falklands
remain a part of a fixed Falkland Plateau extending from the South American
margin (e.g. Lawrence et al. 1999). This debate continues.

Gondwana migrated across the South Pole during the Late Palæozoic (Fig. 1.3),
and as a result, glaciation began in western Gondwana (present-day South America)
in the Famennian (Late Devonian) (Caputo et al. 2008) and ended in eastern
Gondwana (eastern Australia) in the Capitanian (Middle Permian) (Fielding et al.
2008a). As a consequence, secular climate change associated with this latitudinal
movement across zonal climatic belts was superimposed on the change from ice-
house to greenhouse (Scotese et al. 1999).

Crowell and Frakes (1972), Crowell (1983) and Caputo and Crowell (1985)
concluded that a centre of glaciation migrated across South America, South Africa
and Antarctica from 350 to 240 Ma. Ice centres waxed and waned across the
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Australia

Africa
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South 
America
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Fig. 1.2 Geographical location of the Falkland Islands with locations relevant to the LPIA in
Gondwana labelled. Inset highlights study site. Images were taken and adapted from Google Earth
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different sites during this time interval. Glaciation likely ensued when broad con-
tinental areas reached near-polar positions, and expanses of open water were suf-
ficiently near to provide evaporative moisture. A reconstruction of ice cover in the
Late Carboniferous is provided in Fig. 1.4 and illustrates the likely ice flow
patterns.

In most localities from the Gondwanan landmasses, glacigenic deposits are
relatively thin and consist of a variety of rock types and/or striated surfaces
interpreted to indicate terrestrial or grounded marine ice sheets (Matsch and
Ojakangas 1992). When Gondwana began to break up *200 Ma (Stone et al.
2012), the glacial deposits became dispersed across the continents. Table 1.1
collates information from various sources on the thickness and age of the corre-
sponding glacial deposits across the present-day continents, and Fig. 1.5 synthesises
this information in time. Difficulties in correlating thicknesses arise because glacial
strata are often eroded; only those dumped during glacial retreat are typically
preserved. The correlation carried out in the time domain involved hypotheses
about the relative timing of events documented in the sedimentary record. Some
inconsistencies between sources (shown in Table 1.1) mean some boundaries are
approximate, highlighting the need for improved chronology. Oman, Pakistan and
Yemen were in the Northern Hemisphere at this time, which explains their devi-
ation from the trend of glacial strata becoming progressively younger in successive
stratigraphical columns from left to right across Fig. 1.5. Australia underwent early

Fig. 1.3 Palæomagnetic studies demonstrate that movements of the continents resulted in a
relative drift in the position of the South Pole; figure adapted from Henry et al. (2012), and Crowell
and Frakes (1972)
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glaciations and later Permian glaciations as a result of its position relative to the
South Pole (Fielding et al. 2008b, c). Therefore, it is also difficult to correlate
Australia with glaciations in Antarctica, Africa, the Falklands and South America.

1.3 Geological Context

The geology of the Falkland Islands has three main divisions: the Proterozoic Cape
Meredith Complex, the Silurian to Devonian West Falkland Group and the Car-
boniferous to Permian Lafonia Group (Aldiss and Edwards 1999). These are
illustrated in Fig. 1.6. The Lower Lafonia Group, of interest to this study, is
composed of three stratigraphic units, the Bluff Cove, Fitzroy Tillite and Port
Sussex Formations (Fig. 1.7).

1.4 Structural and Tectonic History

The Falkland Islands are just one segment of the Permo-Triassic Gondwanan Fold
Belt which was displaced during the fragmentation of Gondwana and opening of
the South Atlantic Ocean *300 Ma. As the ocean opened, the Falkland Islands

Fig. 1.4 a Reconstruction of ice extent across Gondwana with supporting evidence from various
authors utilised (e.g. Scotese et al. 1999). The Falkland Islands lay off the southeast coast of South
Africa at this time. b Ice flow patterns in the Late Palæozoic; adapted from Stollhofen et al. (2008).
Work by Visser (1987, 1997) and Grill (1997) showed that not all of these ice centres were active
at the same time
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