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Preface

On June 06-09, 2013, the EUROMECH Workshop Similarity, Symmetry and
Group Theoretical Methods in Mechanics took place in Varna, Bulgaria.

It brought together many scientists from European countries and USA, and
focused on the current state of the art in the field of similarity methods in
mechanics. The aim of this Workshop was to bring together researchers who apply
similarity and symmetry analysis to theoretical and engineering problems in both
solid and fluid mechanics, researchers who are developing significant extensions of
these methods so that they can be applied more widely, and numerical analysts
who develop and use such methods in numerical schemes.

The scientific program of the Workshop was built around main speakers who
gave an overview of the field in the form of short lecture courses delivered by

Nail H. Ibragimov—Group Analysis as a Microscope of Mathematical
Modeling,

George Bluman—Some Recent Developments in Finding Systematically Con-
servation Laws and Nonlocal Symmetries for Partial Differential Equations, and

Charles-Michel Marle—Symmetries of Hamiltonian Dynamical Systems,
Momentum Maps and Reduction.

The two organizers are deeply grateful to EUROMECH for the provided sup-
port making possible the first in this new series of scientific meetings. This
Springer volume contains lecture notes written by the principal speakers of the
Workshop which are complemented by a few shorter contributions dealing with
specific problems.

The Editors hope very much that this volume gives a modern overview of the
similarity and symmetry methods and shows applications of this active field of
research in mechanics and will serve as a reference in the years to come.

Nancy, April 2014 Jean-Frangois Ganghoffer
Sofia Ivailo Mladenov
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Some Recent Developments in Finding
Systematically Conservation Laws
and Nonlocal Symmetries for Partial
Differential Equations

George Bluman and Zhengzheng Yang

Abstract This chapter presents recent developments in finding systematically con-
servation laws and nonlocal symmetries for partial differential equations. There is
areview of local symmetries, including Lie’s algorithm to find local symmetries in
evolutionary form and their applications. The Direct Method for finding local con-
servation laws is reviewed and its relationship to and extension of Noether’s theorem
are discussed. Moreover, it is shown how symmetries, including discrete symmetries
may yield additional conservation laws from known conservation laws. Systematic
procedures are presented to seek nonlocally related PDE systems for a given PDE
system with two independent variables. In particular, these procedures include the
use of conservation laws, point symmetries, and subsystems (including subsystems
arising after appropriate invertible transformations of variables) to obtain trees of
equivalent nonlocally related PDE systems. In turn, it is shown how the calculation
of point symmetries of such nonlocally related systems leads to the discovery of
nonlocal symmetries for a given PDE system. The situation of systematically con-
structing useful nonlocally related systems in multidimensions is considered. Many
illustrative examples are provided.

1 Introduction

This chapter is concerned with recent developments in finding conservation laws
(CL5s) and nonlocal symmetries for partial differential equations (PDEs). It focuses
on recent research of the authors and some of the first author’s collaborators, includ-
ing Stephen Anco, Alexei Cheviakov, Temuer Chaolu, Jean-Francois Ganghoffer,
Nataliya

G. Bluman (X)) - Z. Yang

Department of Mathematics, The University of British Columbia,
Vancouver V6T 172, Canada

e-mail: bluman@math.ubc.ca

J.-F. Ganghoffer and I. Mladenov (eds.), Similarity and Symmetry Methods, Lecture Notes 1
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Ivanova, Sukeyuki Kumei, Ian Lisle, Alex Ma, Greg Reid, Vladimir Shtelen and
Thomas Wolf. Much of the material in this chapter appears in more detail in [1, 2].

In the latter part of the 19th century, Sophus Lie initiated his studies on con-
tinuous groups of transformations (Lie groups of transformations) in order to put
order to, and thereby extend systematically, the hodgepodge of heuristic techniques
for solving ordinary differential equations (ODEs). In particular, Lie showed the
following.

e The problem of finding a Lie group of point transformations leaving invariant
a differential equation (point symmetry of a differential equation) is systematic
and reduces to solving a related linear system of determining equations for the
coefficients (infinitesimals) of its infinitesimal generator.

e A point symmetry of an ODE leads to reducing systematically the order of an
ODE (irrespective of any imposed initial conditions).

e A point symmetry of a PDE leads to finding systematically special solutions called
invariant (similarity) solutions.

e A point symmetry of a differential equation generates a one-parameter family
of solutions from any known solution of the differential equation that is not an
invariant solution.

However there were limitations to the applicability of Lie’s work.

e There were a restricted number of applications for point symmetries, especially
for PDE systems.

e Few differential equations have point symmetries.

e For PDE systems having point symmetries, the invariant solutions arising from
point symmetries normally yield only a small submanifold of the solution mani-
fold of the PDE system and hence few posed boundary value problems can be
solved.

e There was the computational difficulty of finding point symmetries.

Since the end of the 19th century there have been significant extensions of Lie’s
work on symmetries of PDEs to extend its range of applicability.

e Further applications of point symmetries have been found to include linearizations,
other mappings and solutions of boundary value problems. In particular, knowl-
edge of the point symmetries of a nonlinear PDE system (contact symmetries in the
case of a scalar PDE), allows one to determine whether the system can be mapped
invertibly to a linear system and yields a procedure to find such a mapping when
one exists [2—4]. Knowledge of the point symmetries of a linear PDE system with
variable coefficients allows one to determine whether the system can be mapped
invertibly to a linear system with constant coefficients and yields a procedure to
find such a mapping when one exists [2, 3].

e Extensions of the spaces of symmetries of a given PDE system to include
local symmetries (higher-order symmetries) as well as nonlocal symmetries
[2, 5-8].

e Extension of the applications of symmetries to include variational symmetries that
yield conservation laws for variational systems [2, 8].
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e Extension of variational symmetries to more general multipliers and resulting
conservation laws for essentially any given PDE system [2, 8-11].

e The discovery of further solutions that arise from the extension of Lie’s method
to the “nonclassical method” as well as other generalizations [2, 12, 13].

e The development of symbolic computation software to solve efficiently the
(overdetermined) linear system of symmetry and/or multiplier determining equa-
tions as well as related calculations for solving the nonlinear systems of determin-
ing equations arising when one uses the nonclassical method [14-18].

1.1 What is a Symmetry of a PDE System and How to Find One?

A symmetry (discrete or continuous) of a PDE system is any transformation of its
solution manifold into itself, i.e., a symmetry transforms (maps) any solution of a
PDE system to a solution of the same system. In particular, continuous symmetries
of a PDE system are continuous deformations of its solutions to solutions of the
same PDE system. Hence continuous symmetries are defined topologically and not
restricted to just point or local symmetries. Thus, in principle, any nontrivial PDE has
symmetries. The problem is to find and use the symmetries of a given PDE system.
Practically, to find symmetries of a given PDE system, one considers transformations,
acting locally on the variables of some finite-dimensional space, which leave invariant
the solution manifold of the PDE system and its differential consequences. However,
these variables do not have to be restricted to just the independent and dependent
variables of the given PDE system.

Higher-order symmetries (local symmetries) arise when the solutions of the linear
determining equations for infinitesimals are allowed to depend on a finite number of
derivatives of dependent variables of the PDE system.

e Infinitesimals for a point symmetry in evolutionary form allow at most linear
dependence on first derivatives of dependent variables of a PDE system.

e Infinitesimals for a contact symmetry in evolutionary form (only exists for a scalar
PDE) allow arbitrary dependence on at most first derivatives of the dependent
variable of a scalar PDE.

In making the extension from point and contact symmetries to higher-order sym-
metries, it is essential to realize that the linear determining equations for local sym-
metries are the linearized system (Fréchet derivative) of the given PDE system that
holds for all of its solutions. Globally, point and contact symmetries act on finite-
dimensional spaces whereas higher-order symmetries act on infinite-dimensional
spaces consisting of the dependent and independent variables of a given PDE system
as well as all of their derivatives. Well-known integrable equations of mathematical
physics such as the Korteweg-de-Vries equation have an infinite number of higher-
order symmetries [19].

Another extension is to consider solutions of the determining equations where
infinitesimals have an ad-hoc dependence on nonlocal variables such as integrals of
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the dependent variables [20-23]. For some PDEs, such nonlocal symmetries can be
found formally through recursion operators that depend on inverse differentiation.
Integrable equations such as the sine-Gordon and cubic Schrodinger equations have
an infinite number of such nonlocal symmetries.

1.2 Conservation Laws

In her celebrated 1918 paper [5], Emmy Noether showed that if a DE system admits
a variational principle, then any local transformation group leaving invariant the
action integral for its Lagrangian density, i.e., a variational symmetry, yields a local
conservation law. Conversely, any local CL of a variational DE system arises from
a variational symmetry, and hence there is a direct correspondence between local
CLs and variational symmetries (Noether’s theorem).

However there are limitations in the use of Noether’s theorem.

e Its application is restricted to variational systems. In particular, a given DE system,
as written, is variational if and only if its linearized system is self-adjoint.

e One has the difficulty of finding local symmetries of the action integral. In general,
not all local symmetries of a variational DE system are variational symmetries.

e The use of Noether’s theorem to find local conservation laws is coordinate-
dependent.

The Direct Method for finding CLs allows one to find local CLs more generally
for a given DE system. A CL of a given DE system is a divergence expression that
vanishes on all solutions of the DE system. Local CLs arise from scalar products
formed by linear combinations of local CL multipliers (factors that are functions
of independent and dependent variables and their derivatives) multiplying each DE
in the system. This scalar product is annihilated by the Euler operators associated
with each of its dependent variables without restricting these variables in the scalar
product to solutions of the system of DEs, i.e., the dependent variables are replaced
by arbitrary functions of the independent variables.

If a given DE system, as written, is variational, then local CL multipliers corre-
spond to variational symmetries. In the variational situation, using the Direct Method,
local CL multipliers satisfy a linear system of determining equations that includes
the linearizing system of the given DE system augmented by additional determining
equations that taken together correspond to the action integral being invariant under
the associated variational symmetry.

More generally, in using the Direct Method for any given DE system, the local
CL multipliers are the solutions of an easily found linear determining system that
includes the adjoint system of the linearizing DE system [1, 2, 9-11].

For any set of local CL multipliers, usually one can directly find the fluxes and
density of the corresponding local CL and, if this proves difficult, there is an integral
formula that yields them without the need of a specific functional (Lagrangian) even
in the case when the given DE system is variational [9-11].

One can compare the number of local symmetries and the number of local CLs
of a given DE system. When a DE system is variational, i.e., its linearized system
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is self-adjoint, then local CLs arise from a subset of its local symmetries and the
number of linearly independent local CLs cannot exceed the number of higher-order
symmetries. In general, this will not be the case when a system is not variational.
Here a given DE system can have more local conservation laws than local symmetries
as well as vice versa.

For any given DE system, a transformation group (continuous or discrete) that
leaves it invariant yields an explicit formula that maps a CL to a CL of the same
system, whether or not the given system is variational. If the transformation group
is a one-parameter Lie group of point (or contact) transformations, then in terms of
a parameter expansion a given CL can map into more than one additional CL for the
given DE system [2, 24].

1.3 Nonlocally Related Systems and Nonlocal Symmetries

Systematic procedures have been found to seek nonlocal symmetries of a given PDE
system through applying Lie’s algorithm to nonlocally related systems. In particular,
to apply symmetry methods to PDE systems, one needs to work in some specific
coordinate frame in order to perform calculations. A procedure to find symmetries
that are nonlocal and yet are local in some related coordinate frame involves embed-
ding a given PDE system in another PDE system obtained by adjoining nonlocal
variables in such a way that the resulting nonlocally related PDE system is equiva-
lent to the given system. Consequently, any local symmetry of the nonlocally related
system yields a symmetry of the given system (The converse also holds). A local
symmetry of the nonlocally related system, with the corresponding infinitesimals for
the variables of the given PDE system having an essential dependence on nonlocal
variables, yields a nonlocal symmetry of the given PDE system.
There are two known systematic ways to find such an embedding.

e Each local CL of a given PDE system yields a nonlocally related system. For each
local CL, one can introduce a potential variable(s). Here the nonlocally related
system is the given PDE system augmented by a corresponding potential system
[2, 25-27].

e Each point symmetry of a given PDE system yields a nonlocally related system.
Here, as a first step, the given PDE system naturally yields a locally related PDE
system (intermediate system) arising from the canonical coordinates of the point
symmetry. In turn, the intermediate system has a natural CL which yields a nonlo-
cally related system (inverse potential system) for the given PDE system [28, 29].
The intermediate system plays the role of a potential system for the inverse poten-
tial system.

If a local symmetry of such a nonlocally related system has an essential depen-
dence on nonlocal variables when projected to the given system, then it yields a
nonlocal symmetry of the given PDE system. It turns out that many PDE systems
have such systematically constructed nonlocal symmetries. Furthermore, one can
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find additional nonlocal symmetries of a given PDE system through seeking local
symmetries of an equivalent subsystem of the given system or one of its constructed
nonlocally related systems provided that such a subsystem is nonlocally related to
the given PDE system.

There are many applications of nonlocally related systems.

e Invariant solutions of nonlocally related systems (arising from CLs or point sym-
metries) can yield further solutions of a given PDE system.

e Since a point symmetry-based or CL-based nonlocal symmetry is a local symmetry
of a constructed nonlocally related system, it generates a one-parameter family of
solutions from any known solution (that is not an invariant solution) of such a
nonlocally related system. In turn, this yields a one-parameter family of solutions
from any known solution of the given PDE system.

e Local CLs of such nonlocally related systems can yield nonlocal CLs of a given
PDE system if their local CL multipliers have an essential dependence on nonlocal
variables.

Still wider classes of nonlocally related systems can be constructed systematically
for a given PDE system. One can further extend embeddings through the effective use
oflocal CLs to systematically construct trees of nonlocally related but equivalent PDE
systems. If a given PDE system has n local CLs, then each CL yields potentials and
corresponding potential systems. From the n local CLs, one can directly construct up
to 2" — 1 independent nonlocally related systems of PDEs by considering correspond-
ing potential systems individually (n singlets), in pairs (n(n — 1)/2 couplets), ...,
taken all together (one n-plet). Any of these systems could lead to the discovery of
new nonlocal symmetries and/or nonlocal CLs of the given PDE system or any of the
other nonlocally related systems. Such nonlocal CLs could yield further nonlocally
related systems, etc. Furthermore, subsystems of such nonlocally related systems
could yield further nonlocally related systems. Correspondingly, a tree of nonlocally
related, and equivalent, systems is constructed for a given PDE system [2, 30, 31].

The situation in the case of multidimensional PDE systems (i.e., with at least three
independent variables) is especially interesting. Here one can show that nonlocal
symmetries and nonlocal CLs arising from the CL-based approach cannot arise from
potential systems unless they are augmented by gauge constraints [2, 32, 33].

There exist many applications of such systematically constructed nonlocally
related systems that further extend the use of symmetry methods for PDE systems.

e Through such constructions, one can systematically relate Eulerian and Lagrangian
coordinate descriptions of gas dynamics and nonlinear elasticity. In particular, for
the Eulerian coordinate description, a subsystem of the potential system aris-
ing from conservation of mass, naturally yields the corresponding description in
Lagrangian coordinates [2, 30, 31, 34, 35].

e For a given class of PDEs with constitutive functions, one finds trees of nonlocally
related systems yielding symmetries and CLs with respect to various forms of its
constitutive functions.
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e One can systematically seek noninvertible mappings of nonlinear PDE systems to
linear PDE systems. Consequently, further nonlinear PDE systems can be mapped
into equivalent linear PDE systems beyond those obtained through invertible map-
pings [2, 27, 36].

e One can systematically extend the class of linear PDE systems with variable coef-
ficients that can be mapped into equivalent linear PDE systems with constant
coefficients through inclusion of noninvertible mappings [2, 37, 38].

The rest of this chapter is organized as follows. In Sect.2, we review local sym-
metries, Lie’s algorithm to find local symmetries in evolutionary form, applications
of local symmetries and as examples consider the heat equation and the Kortweg-
de Vries equation. In Sect.3, we consider the construction of conservation laws,
introduce the Direct Method and its relationship to Noether’s theorem, and show
how symmetries could yield additional CLs from known CLs. As examples, we
consider nonlinear telegraph equations, the Korteweg-de Vries equation, the Klein-
Gordon equation, and nonlinear wave equations. In Sect.4, we present systematic
procedures to seek nonlocally related systems and nonlocal symmetries of a given
PDE system with two independent variables. We introduce conservation law and
point symmetry based methods as well as the use of subsystems to obtain trees of
equivalent nonlocally related PDE systems. As examples, we focus on nonlinear
wave equations, nonlinear telegraph equations, planar gas dynamics equations, and
nonlinear reaction diffusion equations. In Sect. 5, we consider the situation of nonlo-
cality in multidimensions. We show that if one directly applies the CL-based method
to a single CL, then it is necessary to append a gauge constraint relating potential
variables of the resulting vector potential system when seeking nonlocal symmetries.
Some open problems are discussed.

2 Local Symmetries

Lie’s algorithm for seeking point symmetries can be extended to seek more general
local symmetries admitted by PDE systems. In the extension of Lie’s algorithm, one
uses differential consequences of the given PDE system, i.e., invariance of a given
PDE system is understood to include its differential consequences. Here it is impor-
tant to consider the infinitesimal generators for point symmetries in their evolutionary
form where the independent variables are themselves invariant and the action of a
group of point transformations is strictly an action on the dependent variables of the
PDE system, so that solutions are directly mapped into other solutions under the
group action. This allows one to readily extend Lie’s algorithm to seek contact sym-
metries (only existing for scalar PDEs) where now the components of infinitesimal
generators for dependent variables can depend at most on the first derivatives of the
dependent variable of a given scalar PDE (if this dependence is at most linear on the
first derivatives, then a contact symmetry is a point symmetry).



8 G. Bluman and Z. Yang

A contact symmetry is equivalent to a point transformation acting on the space of
the given independent variables, the dependent variable and its first derivatives and,
through this, can be naturally extended to a point transformation acting on the space
of the given independent variables, the dependent variable and its derivatives to any
finite order greater than one.

Lie’s algorithm can be still further extended by allowing the infinitesimal gen-
erators in evolutionary form to depend on derivatives of dependent variables to any
finite order. This allows one to calculate symmetries that are called higher-order
symmetries. In the scalar case, contact symmetries are first-order symmetries. Oth-
erwise, higher-order symmetries are not equivalent to point transformations acting
on a finite-dimensional space including the independent variables, the dependent
variables and their derivatives to some finite order. Higher-order symmetries are
local symmetries in the sense that the components of the dependent variables in their
infinitesimal generators depend at most on a finite number of derivatives of a given
PDE system’s dependent variables so that their calculation only depends on the local
behaviour of solutions of a given PDE system.

Local symmetries include point symmetries, contact symmetries and higher-order
symmetries. Local symmetries are uniquely determined when infinitesimal genera-
tors are represented in evolutionary form.

Sophus Lie considered contact symmetries. Emmy Noether introduced the notion
of higher-order symmetries in her celebrated paper on conservation laws [5]. The
well-known infinite sequences of conservation laws of the Korteweg-de Vries (KdV)
and sine-Gordon equations are directly related to admitted infinite sequences of local
symmetries obtained through the use of recursion operators [19].

Consider a given scalar PDE of order k

R(x,t,u,0u,...,0%) =0 (1

with independent variables (x, #) and dependent variable u(x, t); 0’ u denotes the
jth order partial derivatives of u(x, t) appearing in the PDE (1). In evolutionary
form, the local symmetries of order p of a PDE (1), in terms of their infinitesimal
generators

0
n(x,t,u,ou,...,0%0u)—
Ou

are the solutions n(x, t, u, Ou, . .., 9P u) of its linearized system (Fréchet derivative)
OR OR OR R
==+ 5Dy + Dy + —— DN+ |x=0 =0
Ou Ouy Ouy Ouy DR =0.
T =V,

in terms of fotal derivative operators
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Dx—ﬁ_i_u 8+Mxx a + .
Ox ou Ouy
D=+ 8‘|‘Mxt 0 +oe
ot 8 Ouy

and holding for all solutions u = 6(x, t) of the PDE (1) and its differential conse-
quences.

A local symmetry of order p, n(x,t,u,du,...,0" u)% (including its natural
extension to action on derivatives), maps any solution u = 6(x, t) of PDE (1) (that
is not an invariant solution of PDE (1)) into a one-parameter (&) family of solutions
of PDE (1) given by the expression

0 0 ) 0
Y (ef('/é)ﬂﬁ(Dxn)o;x+(Dﬂ1)0i,[+~~)u)

u=0(x,t)

and is equivalent to the transformation

v _ (1t O g+ O )
=u-+en(x,t,u,ou,...,00u)+ 0.

If p = 1, then the first order symmetry is equivalent to the contact symmetry

x* _x+88 + 0@

Ouy
* a 2
t—t+€—+0(5)

Ouy
f—ut /L + 0@
u ' =u Uy —— + Up—— —

9 8 tat 3

_ O on 2
ux_ux+6< uxa 8x)+0(6)
dn  On

M?:M;—F&(—M;a—a)-{-()(é‘z).

If a first order symmetry has an infinitesimal of the form
n(x,t,u, 0u) = Ex, t,wuy + 7(x, t, wu; —w(x, t,u)

then it is equivalent to the point symmetry
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x*=x4ef(x, 1, u) + O
t*=t+er(x, t,u)+ 0>
= u+ewlx,t,u) + 0.

2.1 Example 1: The Heat Equation

The heat equation
R=u; —u, =0

has the point symmetries [12, 13]

0 0 0
Xi=ux—, Xp=u—, X3=(xux+2tuz)a—
u

Ou Ou
0
X4 = (xtuy + tzut + [41—1162 + %t]u)a—
u
0 0
1
X5=(tux+§xu)a, X():M%.

2.2 Example 2: The Korteweg-de Vries Equation

The Korteweg-de Vries (KdV) equation
R=u;+uuy +uxxy =0
has an infinite sequence of higher-order symmetries given by
Ry, n=0,1,2,...
in terms of the recursion operator [19]
R = (Do) + 3u+ tu Dy~

Specifically, one obtains corresponding nonlocal symmetries

Uy, (uuy+ uxxx)a

Ou

5.2 5
(gu ux +4duyxuyxy + FUUxxx + Uxxxxx)

5,....

For a given PDE system, local symmetries can be used to determine
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e specific invariant solutions.

e a one-parameter family of solutions from “any” known solution.

e whether it can be linearized by an invertible transformation and find the lineariza-
tion when it exists [3, 4, 21].

e whether an inverse scattering transform exists.

e whether a given linear PDE with variable coefficients can be invertibly mapped
into a linear PDE with constant coefficients and find such a mapping when it exists
[39, 40].

3 Construction of Conservation Laws

In this section, we consider the problem of finding the local conservation laws for a
given PDE system. In particular, we present the Direct Method for the construction
of CLs. In the Direct Method one first derives the determining equations yielding the
multipliers (local CL multipliers). Following this, one finds the fluxes and densities
of corresponding local CLs. It is shown that a subset of the determining equations
for local CL multipliers includes the adjoint equations of the determining equations
yielding the local symmetries (in evolutionary form) of a given PDE system. The self-
adjoint case is especially interesting since here the given PDE system is variational
and thus the local CL multipliers are also local symmetries (the converse is false) of
the given PDE system. A comparison is made with the classical Noether theorem.
Further connections between symmetries and CLs are presented. In particular, it is
shown how a symmetry of a PDE system maps a known CL to a CL of the same
PDE system. In the case of a local symmetry it is shown that a parameter expansion
could yield more than one new CL from a known CL.

3.1 Uses of Conservation Laws

Conservation laws can yield constants of motion for any posed boundary value prob-
lem for a given PDE system. For this reason, for global convergence of an approxi-
mation scheme, it is important to preserve CLs, at least those CLs considered to be
of importance for a particular posed boundary value problem.

From knowledge of the local CL multipliers for a given nonlinear PDE system,
one can determine whether it can be mapped invertibly to a linear PDE system and
set up the equations to find such a mapping when one exists [2].

In Sect. 4, it will be shown how one can use local CLs to find nonlocally related
systems for a given PDE system. In turn, invariant solutions arising from local sym-
metries of such a nonlocally related system could yield further solutions of the given
PDE system beyond those obtained as invariant solutions arising from local symme-
try reductions. Moreover, the computation of local CLs of a nonlocally related system
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could yield nonlocal CLs of a given PDE system and to noninvertible linearizations
of nonlinear PDE systems.

3.2 Direct Method for Construction of Conservation Laws

Consider a given system R{x; u} of N PDEs of order k with n independent variables
x=(' ..., x") and m dependent variables u(x) = Wl (x), ..., u"(x))

R°[u]= R (x,u,0u,...,0"u) =0, o=1,...,N. )
A local conservation law of the PDE system (2) is an expression
D;®'[u] = D1®'[u] + - + D, @"[u] = 0 3)

holding for any solution of the PDE system (2). In (3), the operators D;,i = 1,...,n
are total derivative operators.

Definition 1 A PDE system R{x; u} (2) is totally non-degenerate if (2) and its
differential consequences have maximal rank and are locally solvable.

The proof of the following theorem appears in [11].

Theorem 1 Suppose R{x; u} (2) is a totally non-degenerate PDE system. Then for
every nontrivial local conservation law

D;®' [u] =D;® (x,u,0u,...,0u) =0
of (2), there exists a set of multipliers, called local conservation law multipliers,
A Ul = Ap(x,U,0U,...,8'U), o=1,...,N

such that _
D;®'[U] = A;[UIR[U]

holds for arbitrary U (x).
Definition 2 The Euler operator with respect to U/ is the operator

U]_W_ l%ij+...+(_) i+ Diy ——

iy
The proofs of the following two theorems follow from direct computations.

Theorem 2 For any divergence expression D; ®'[U], one has
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Ey(D;®'[U)=0, j=1,....m.
Theorem 3 Let F[U] = F(x,U,0U,...,0°U). Then
Ey,FIUI=0, j=1,....m
holds for arbitrary U (x) if and only if
FlUl=D;¥'(x,U,dU,...,0° 'U)
for some set of functions {(Wix,U,0U,..., o1 U)).

The next theorem follows directly from Theorems 2 and 3.

Theorem 4 A set of local multipliers { Ay (x, U, 0U, ..., BIU)} vields a divergence
expression for PDE system (2) if and only if

Eyi(Ay(x,U,0U, ..., 0'UYR° (x,U,dU,...,0"U)) =0, j=1,....m

4)
holds for arbitrary U (x).

3.2.1 Summary of Direct Method to Find Local CLs

The Direct Method to find local CLs for a given PDE system (2) can be summarized
as follows. Further details can be found in [2, 10, 11].

1. Seek multipliers of the form A,[U] = A,(x, U, 0U, ..., 8'U) with derivatives
0'U to some specified order /.

2. Obtain and solve the determining Eq. (4) to find the multipliers of local conser-
vation laws.

3. For each set of multipliers, find the corresponding fluxes @' [U] = &' (x, U,
ouU, ..., d"U) satisfying the identity

AG[UIR’[U] = D;®'[U]. (5)
4. Consequently, one obtains the local CL
D;®'[u] =D;® (x,u,0u,...,0'u) =0

with fluxes ®[u] holding for any solution of the PDE system (2).

The fluxes @' [U] = @' (x, U, U, ..., d"U) in (5) can be found in the following
ways:

e Directly manipulate the left-hand side of (5) to obtain the right-hand side diver-
gence form.
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e Treat the fluxes as unknowns in expression (5). Expand the right-hand side to set
up a linear set of PDEs for the fluxes. Solve this linear set of PDEs.

e If one is unable to perform either of the first two ways successfully, then one
can formally obtain the fluxes through use of an integral (homotopy) formula that
appears in [11].

Example 1 Nonlinear Telegraph System
Consider the nonlinear telegraph system

Ri[u,v]l =v; — (u2+ Duy —u=0
Rylu,v]l = u; — v, =0. (6)

We seek local CL multipliers of the form
A =¢U,VI=£&x,1,U, V), Ay=9[UVl=pkx,t,UV) ()

for the nonlinear telegraph system (6). In terms of the Euler operators

g2 p 9 90 g _9 590 S0
U=%9u  Tou, ‘eau,, VT av. Tav,  lav,

the multipliers (7) yield a local CL of the nonlinear telegraph system (6) if and only
if the determining equations

Ey LU, VIRI[U, V] + ¢[U, VIR[U, V]) =0
Ev(@U, VIRI[U, V] + ¢[U, VIR[U, V]) =0 ®)

hold for arbitrary differentiable functions U (x, t), V(x, t). It is straightforward to
show that the Eq. (8) hold if and only if

wy —&u =0
ou — (U +1Ey =0
o —&— Uty =0 9)

U+ D& — o —Uly —£=0.

The five linearly independent solutions [41] of the linear determining system (9) are
given by

ELen =01, () =x—3tD), (& p3)=(,—1)

1,2 1,2 1,2 1,2
+5 UV +5U%4V F5U2—V +5U-V
(s, pa) = ("2 ,Ue™2 ), (&5, p5) = ("2 ,—Ue" 2 ).
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Correspondingly, through manipulation, one obtains the following five local conser-
vation laws [41]

D;u +D,[—v] =0
D,[(x — 3)u + tv] + D [3r* —x)v — 13w’ +w)] =0
Dy[v — tu] + Dyftv — (34> +u)] =0

1 1
Dy[e" 2] 4 D, [—ue™ 2+ = 0

1o 15
D[[Cx+2u v]+Dx[uex+2u v]=0

Example 2 KdV Equation
As a second example, consider again the KdV equation [10]
Rlu]l = uy + uny + uyyxr = 0. (10)
It is convenient to also write (10) as
up = glul = —(uux + xxy). 1D
Due to the evolutionary form of the KdV equation (10), it follows that all local
CL multipliers are of the form A[U] = A(t,x, U, 0, U, ..., 8)I(U), [=1,2,....

Then By (A[UN(U; + UUy + Uyyy)) = 0 if and only if

—D;A—UDyA =D} A+ (U + UUy + Upr) Ay
_Dx((Ut+UUx+Uxxx)A3xU)+"' (12)
+ (='DLU; + UUy + Urr) Agiy) = 0.

Note that the linear determining Eq. (12) is of the form
aq +O¢2Ut+a38xU,+~~+O¢1+25§CUI =0 (13)

where in Eq. (13) each coefficient o;; depends at most on ¢, x, U and x-derivatives of
U. Since U (x, t) is an arbitrary function in Eq. (13), it follows that each of the terms

Uy, 0. U, ..., 8)[‘ U, must be treated as independent variables in (13). Hence o; = 0,
i=1,...,1+2. Thus Eq.(13) splits into an overdetermined linear system of / 4 2
determining equations for the local multipliers A(¢, x, U, 0y U, ..., 8915 U), given by

DA+ UDA+D3A=0 (14)
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I
> (=D Agiy =0 (15)
k=1

|

[
A=A+ D, o (D) T Agy =0, g =1.....1-1 (16)
k=q+1 q: 9

(1= (=DHAgy =0 (17)

where ]3, = % + g[U]% + (g[U])x% + --- is the total derivative operator
restricted to the KdV equation, with g[U] = —(UU, + Uyxx).

Now we seek local CL multipliers of the form A[U] = A(x,t, U). Then the
determining Eqs. (15)—(17) are satisfied and the determining Eq. (14) becomes

(Ar + U Ay + Ayey) + 3400 Us + 3 A0 U2
+ AUUUU):: +3AxyUsx +3Ayy Uy Uy = 0.
(13)

Equation (18) holds for arbitrary values of x, ¢, U, U, and U,,. Hence Eq. (18)
splits into six equations. Their solution yields the three local CL multipliers A} = 1,
Ay = U, A3 = tU — x. In turn, after simple manipulations, these three multipliers
yield the divergence expressions

Uy + UUx + Usxy =D,U + Dy (SU? + Uyy)
U(Uy; 4+ UUx + Urx) =Di(3U?) + De(FU° + UUsy — 3UD)
(tU = x)(U; + UUx + Usxx) =Dy (51U* = xU)
+ Dy (—3xU? + tUUy — $1U2 — xUsy + Uy).

Thus the corresponding local conservation laws for the KdV Eq. (10) are given by

Dy + Dy (Ru? + uyy) =0
Dy (3u”) + Dy (3u° + uttxx — ju3) = 0

Dt(%nﬂ —xu) + Dx(—%xu2 + tunyy — %tui — Xuyy +uy) = 0.

One can show that there is only one additional local CL multiplier of the form
AlU] = A(x,t, U, Uy, Uyy), given by

Ay = Uy + 3U%

Moreover, one can show that in terms of the recursion operator
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R*[U] =D} + U + iD;' o U o Dy

the KdV equation has an infinite sequence of local CL multipliers given by
Ay = (R*[UD'U, n=12,....

General Expression Relating Local CL Multipliers and Solutions of Adjoint
Equations.

Consider a given PDE system (2). Let R°[U] = R°(x, U, 0U, ..., 8kU), o=
1,...,N,where U(x) = (U'(x), ..., U™ (x)) is arbitrary and U (x) = u(x) solves
the PDE system (2).

In terms of m arbitrary functions V (x) = (Vi(x), ..., V™(x)), the linearizing
operator L[U] associated with the PDE system (2) is given by

OR°[U] OR°[U] OR°[U]
LUV’ = D+ -4+ ——"D; ---D;, | VP,
ol [ T 7
c=1,...,N
and, in terms of N arbitrary functions W(x) = (Wi(x), ..., Wx(x)), the adjoint

operator L*[U] associated with the PDE system (2) is given by

LW, ww(ww)

our ouf
OR’[U]
k
+ (=1 DilmDik(aUﬁ_.ik Wa), p=1,...,m.

In particular, WUL;,’[U VP — V/’L*;‘)[U ]W, is a divergence expression.
Let
W, = As[U] = Ag(x,U,8U, ..., 0'U), o=1,...,N.

By direct calculation, in terms of Euler operators, one can show that

Eyr (A, [UIR[U]) = L*)[U]A,[U] + F,(RIUT) (19)
with
0A,UT 0A,UT ,
Fy(RIU]) = aur R[U]—Di( 9U° R [U])-i-"'

Ao
+<—1)1D,-1~~-Di,((9 p[U]R"[U]), p=1.....m  (20)

1]
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From (19), it follows that {A,(x, U, 0U, ..., 8IU)}(’TV=1 yields a set of local
CL multipliers for the PDE system (2) if and only if the right-hand side of (19)
vanishes for arbitrary U (x). Moreover, since the expressions (20) vanish on any
solution U (x) = u(x) of R{x; u} (2), it follows that every set of local CL multipli-
ers {A;(x,U,0U, ..., 81U)}f,\7:1 of the PDE system (2) must be a solution of its
adjoint system of PDEs, which is the adjoint of its linearizing system of PDEs, when
U (x) = u(x) is a solution of R{x; u} (2), i.e.,

L ulAsu) =0,  p=1,....m. @21)

The proof of the following theorem follows directly from expression (19).

Theorem 5 Consider a given PDE system (2). A set of functions {A,(x, U, OU, . . .,
81U)}£/ | Yields a set of local CL multipliers for PDE system (2) if and only if the

identities

our ouf
0A4U]
ou’

i

0 046UT 946UT
L7, [UA, U]+ R [U]_Di( R [U])+-~~

+(—1)1D,~1-~-Dil( R"[U])zo, p=1,....m

hold for m arbitrary functions U (x) = (UY(x), ..., U™ (X)) in terms of the compo-
nents {L*g [U1} of the adjoint operator of the linearizing operator (Fréchet derivative)
for the given PDE system (2).

The derivation leading to Eq.(21) can be summarized in terms of the following
theorem.

Theorem 6 Consider a given PDE system (2). Suppose one has a set of local CL
multipliers {A,(x, U, 0U, ..., 81U)}f>’=1 for the PDE system (2). Let {L*Z[U]} be
the components of the adjoint operator of the linearizing operator (Fréchet deriv-
ative) for the PDE system (2) and let U(x) = u(x) = u'(x), ..., u™(x)) be any
solution of the PDE system (2). Then L*Z[u]Ag[u] =0.

The Situation When the Linearizing Operator is Self-adjoint

Definition 3 Let L[U], with its components Lg [U], be the linearizing operator asso-
ciated with a PDE system R{x; u} (2). The adjoint operator of L[U] is L*[U], with
components L*Z[U]. L[U] is a self-adjoint operator if and only if L[U] = L*[U],
ie., LZ[U] = L*Z[U], o,p=1,...,m.

One can show that a given PDE system, as written, has a variational formulation
if and only if its associated linearizing operator is self-adjoint [8, 42, 43].

If the linearizing operator associated with a given PDE system is self-adjoint, then
each set of local CL multipliers yields a local symmetry of the given PDE system.
In particular, one has the following theorem.
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Theorem 7 Consider a given PDE system R{x; u} (2) with N = m, i.e., the number
of dependent variables appearing in PDE system (2) is the same as the number of
equations in PDE system (2). Suppose the associated linearizing operator L[U] for
PDE system (2) is self-adjoint. Let {A,(x,U, U, ..., 8[U)}f7":l be a set of local
CL multipliers for (2). Let

n”(x,u,@u,...,@lu)zAa(x,u,ﬁu,...,alu), c=1,....,m

where U (x) = u(x) is any solution of the PDE system (2). Then
n% (x, u, Ou 8114)i (22)
b 9 LA auo.

is a local symmetry of R{x; u}.

Proof Since the hypothesis of Theorem 6 is satisfied with L[U] = L*[U], from the
equations of this theorem it follows that in terms of the components of the associated
linearizing operator L[U], one has

Lg[u]Ag(x,u,au,...,alu) =0, p=1,...,m (23)
where u = 6(x) is any solution of the given PDE system (2). But the set of Eq. (23)
is the set of determining equations for a local symmetry A, (x, u, Ou, . . ., o u)%
of PDE system (2). Hence (22) is a local symmetry of PDE system (2). m]

The converse of Theorem T is false. In particular, suppose 17 (x, u, du, . ..,
8’14)% is a local symmetry of a PDE system R{x;u} (2) with a self-adjoint
linearizing operator L[U]. Let A, (x, U, U, ..., d'U) = n°(x, U, 0U, ..., d'U),
o =1,...,m, where U(x) = (U'(x), ..., U™(x)) is arbitrary. Then it does not
necessarily follow that {A, (x, U, dU, ..., 0'U )}'_, is a set of local CL multipliers
of R{x; u}. This can be seen as follows: In the self-adjoint case, the set of local sym-
metry determining equations is a subset of the set of local multiplier determining
equations. Here each local symmetry yields a set of local CL multipliers if and only
each solution of the set of local symmetry determining equations also solves the
remaining set of local multiplier determining equations.

To illustrate the situation, consider the following example of a nonlinear PDE
whose linearizing operator is self-adjoint but the PDE has a point symmetry that
does not yield a multiplier for a local CL

uy — u(uuy)y =0. (24)

It is easy to see that the PDE (24) has the scaling point symmetry x — ax, u — ou,
corresponding to the infinitesimal generator

0
X = (u—xux)a—u~ (25)
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The self-adjoint linearizing operator associated with PDE (24) is given by
) 22 2
LIU] =D; —U“Dy —2UU:Dy —2U Uy, — U;.

The determining equation for the local CL multipliers A(t, x, U, U;, Uy) of the
PDE (24) is an identity holding for all values of the variables ¢, x, U, U;, Uy, Uy,
Uiy, Uxxs Ustty Ustx, Upxx, Uryx, and splits into a system of two equations consisting
of

D?A —UD?A —2UU,D A — QUU, + UHA =0 (26)

and y
2Ay + D;Ay, — Dy Ay, = 0 27

in terms of the “restricted” total derivative operator D; = % + Utg% + U[Xa_lajx +
9lU 5% + Unx 55— + Dy (glUD) 55 where g[U] = U(UUy);.

Equation (26) is the determining equation for A(t, x, u, u;, uy) % to be a contact
symmetry of the given PDE (24). If the contact symmetry satisfies the second deter-
mining Eq. (27) then it yields a local CL multiplier A(t, x, U, U;, Uy) of PDE (24).
Itis easy to check that the scaling symmetry (25) obviously satisfies the contact sym-
metry determining Eq. (26) but does not satisfy the second determining Eq. (27) when
u(x, t) is replaced by an arbitrary function U (x, #). Hence the scaling symmetry (25)
does not yield a local conservation law of PDE (24).

3.3 Noether’s Theorem

In 1918, Emmy Noether presented her celebrated procedure (Noether’s theorem) to
find local CLs for a DE system that admits a variational principle.

When a given DE system admits a variational principle, then the extremals of
the associated action functional yield the given DE system (the Euler-Lagrange
equations). In this case, Noether showed that if a one-parameter local transformation
leaves invariant the action functional (action integral), then one obtains the fluxes of
a local CL through an explicit formula that involves the infinitesimals of the local
transformation and the Lagrangian (Lagrangian density) of the action functional.

3.3.1 Euler-Lagrange Equations
Consider a functional J[U] in terms of n independent variables x = (x!, .. x™

and m arbitrary functions U = (U'(x), ..., U™(x)) and their partial derivatives to
order k, defined on a domain £2
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J[U]:/L[U]dx:/L(x, U,U, ..., " U)dx. (28)
Q Q

In (28), the function L[U] = L(x, U, dU, ..., 9*U) is called a Lagrangian and the
functional J[U] is called an action integral.

Consider an infinitesimal change U(x) — U(x) + ev(x) where v(x) is any
function such that v(x) and its derivatives to order k — 1 vanish on the boundary
082 of the domain £2. The corresponding infinitesimal change (variation) in the
Lagrangian L[U] is given by

6L =L(x,U +¢ev,0U 4 €dv, ..., 00 + d*v) — L(x, U, dU, ..., 8*U)

= e(aL[U]vi + aL[[.]]vi~ 4+ 4 OLIUI ”i'l---.ik) + 0(?). (29)

i i ’ i J
ou 3Uj 8Ujl"'jk

Let

WU, v] = o' (3L[U] 4o+ (=DFIDy, Dy OL[U] )

8U[l aUlljlmjkq
. [ OL[U] k=2 OLL]
+v;‘1 (W_{_..-—l—(—l) Djz"'Djk—lan— (30)
i Jilj2-jk—1
N L OL[U]
Jie k=1
OV

After repeatedly using integration by parts, one can show that
6L = e(W'Eyi (LIUD) + D W' U, v]) + O (%) (31)

where E;i is the Euler operator with respect to U !, The corresponding variation in
the action integral J[U] is given by

6J = JIU +ev] — J[U] = /5de
2
=¢ / W' Eyi (LIU) + DyW! U, v])dx + O(£) (32)
2

= g(/ v'Eyi (LIUD)dx + / WU, vinldo) + 0(?).
2 082
Hence if U(x) = u(x) extremizes the action integral J[U], then the O(¢) term in

¢J must vanish. Thus f_Q v'E,i (L[u])dx = O for an arbitrary function v(x) defined
on the domain £2. Hence, if U (x) = u(x) extremizes the action integral J[U], then
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u(x) must satisfy the PDE system

OL[u]
Ou!

3L[u]

ik A
811 Jk

E,i (L[u]) = + -+ (=1!D;, ---D; =0, i=1,...,m. (33)

The Eq.(33) are called the Euler-Lagrange equations satisfied by an extremum
U(x) = u(x) of the action integral J[U]. Thus the following theorem has been
proved.

Theorem 8 If a smooth function U (x) = u(x) is an extremum of an action integral
(28), then u(x) satisfies the Euler-Lagrange equations (33).

3.3.2 Standard Formulation of Noether’s Theorem

Definition 4 In the standard formulation of Noether’s theorem, the action integral
(28) is invariant under the one-parameter Lie group of point transformations

) =xl+efl(x,U)+0@E>, i=1,....n
UH* =U" +enf(x,U) + 0D, pu=1,....m (34)

with infinitesimal generator X = &(x,U) E)a' nt(x, U )agw if and only if

X x x where is the image o under the Lie grou
Jos LIU*1dx* = [, L[Uldx where £2* is th ge of §2 under the Lie group
of point transformations (34).

The Jacobian of the one parameter Lie group of point transformations (34) is given
by J = det(D; (x*)7) = 1 + eD;& (x, U) + O(e?). Then dx* = Jdx. Moreover,
L[U*] = eXL[U] in terms of the infinitesimal generator X. Consequently, in the
standard formulation of Noether’s theorem, X is a point symmetry of J[U] if and
only if

O:/(Jeex—l)L[U]dx =5/(L[U]Dl~§i(x,U)+X(k)L[U])dx+0(52) (35)
2 2

holds for arbitrary U (x) where X® is the k-th extension (prolongation) of the infin-
itesimal generator X. Hence, if X is a point symmetry of J[U], then the O(¢) term
in (35) must vanish. Thus L[UD;& (x, U) + X® L[U] = 0.

The one-parameter Lie group of point transformations (34) with infinitesimal gen-
erator X is equivalent to the one-parameter family of transformations in evolutionary
form given by

(") = xt, i=1,...,n

(UHP = UF +e[nf'(x, U) = U (x, D)1+ 0,  p=1,....m (36)
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with k-th extended infinitesimal generator X® = U ]% + ---. Under trans-
formation (36), U(x) — U(x) + ev(x) has components vH(x) = MUl =
nt(x, U) — Ul'¢ (x, U). Hence 6L = eXWL[U] + O(e?). Thus

/ SLdx = ¢ / X®OL[Udx + 0E?). (37)
2 2

Consequently, after setting v/ (x) = n*[U] = n*(x, U) — Uiﬂfi (x, U), and compar-
ing expressions (32) and (37), it follows that

X® LU = 4*[U1Eys(LIUT) + Dy W' U, AU (38)

By direct calculation, one can show the following.

Lemma 1 Let F[U] = F(x,U,dU, ...,9*U) be an arbitraryfunctioy of its argu-
ments. Then, in terms of the extended infinitesimal generators X® and X®, one has
the identity

XOFU]+ FIUID;:E (x, U) = XPFU1 + Di(FIUIE (x, U)).  (39)

Theorem 9 Standard formulation of Noether’s theorem. Suppose a given PDE sys-
tem is derivable from a variational principle, i.e., the given PDE system is a set of
Euler-Lagrange equations (33) whose solutions u(x) are extrema U (x) = u(x) of an
action integral J[U] with Lagrangian L{U]. Suppose the one-parameter Lie group
of point transformations (34) with infinitesimal generator X leaves invariant J[U].
Then

1. The identity
A'UIEy«(LIUT) = =D; (€' (x, U)LIUT+ W'[U, HLUT]) (40)
holds for arbitrary functions U (x), i.e., {n[U ]}Z‘=1 is a set of local CL multipliers
of the Euler-Lagrange system (33).
2. The local conservation law
D; (¢ (e, w) L{u] + W'{u, flull) = 0 (41)
holds for any solution u = 0(x) of the Euler-Lagrange system (33).

Proof Let F[U] = L[U] in the identity in Lemma 1. Then the identity
XOLIUT+ D (LIUIE (x, U)) =0 (42)

holds for arbitrary functions U (x). Substitution for )A((k)L[U ] in (42) through (38)
yields the identity (40). If U(x) = u(x) solves the Euler-Lagrange system (33),



