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Foreword

In April 2007, the Deutsche Forschungsgemeinschaft (DFG) approved the Priority
Program 1324 “Mathematical Methods for Extracting Quantifiable Information
from Complex Systems”. The objective of this volume is to offer a comprehensive
overview of the scientific highlights obtained in the course of this priority program.

Mathematical models of complex systems are gaining rapidly increasing impor-
tance in driving fundamental developments in various fields such as science and
engineering at large but also in new areas such as computational finance. Ever-
increasing hardware capacities and computing power encourage and foster the
development of more and more realistic models. On the other hand, the necessarily
growing complexity of such models keeps posing serious and even bigger challenges
to their numerical treatment.

Principal obstructions such as the curse of dimensionality suggest that a proper
response to these challenges cannot be based solely on further increasing computing
power. Instead, recent developments in mathematical sciences indicate that signif-
icant progress can only be achieved by contriving novel and much more powerful
numerical solution strategies by systematically exploiting synergies and conceptual
interconnections between the various relevant research areas. Needless to stress
that this requires a deeper understanding of the mathematical foundations as well
as exploring new and efficient algorithmic concepts. Fostering such well-balanced
developments has been a central objective of this priority program.

The understanding and numerical treatment of spatially high-dimensional sys-
tems is clearly one of the most challenging tasks in applied mathematics. The
problem of spatial high dimensionality is encountered in numerous application
contexts such as machine learning, design of experiments, parameter-dependent
models and their optimization, mathematical finance, PDEs in high-dimensional
phase space, to name only a few, which already reflect the conceptual breadth.
It is this seeming variability that makes a substantial impact of better exploiting
conceptual and methodological synergies conceivable and in fact likely. It seems
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that to be really successful, theoretical research and practical applications should
go hand in hand. In fact, this volume reflects an attempt to realize a proper
balance between research with a primary methodological focus and challenging
concrete application areas, although these two regimes can, of course, not be strictly
separated. To that end, it has appeared to be necessary to combine different fields
of mathematics such as numerical analysis and computational stochastics. On the
other hand, to keep the whole programme sufficiently focused, it seemed advisable
to concentrate on specific but related fields of application that share some common
characteristics that allow one to benefit from conceptual similarities.

On the methodological side, several important new numerical approximation
methods have been developed and/or further investigated in the course of the
priority program. First of all, as one of the central techniques, let us mention
tensor approximations. New tensor formats have been developed, and efficient
tensor approximation schemes for various applications, e.g. in quantum dynamics
and computational finance, have been studied; see Chaps.2, 10, 12, 16 and 19.
Adaptive strategies with all their facets have been employed in most of the projects;
see, e.g., Chaps.2, 4, 5, 9, 10, 14 and 16. Closely related with adaptivity is
of course the concept of sparsity/compressed sensing; see Chaps. 14 and 18. As
further techniques, sparse grids (Chap.9), ANOVA decompositions (Chap. 11) and
Fourier methods (Chap. 17) have been investigated. As a quite new technique, the
reduced basis methods also came into play (see Chap. 2), in particular in the second
period of SPP 1324. Of course, tensor methods as well as model order reduction
concepts such as the reduced basis method address spatially high-dimensional
problems. Both paradigms use the separation of variables as the central means to
reduce computational complexity. Moreover, they can be viewed as trying to exploit
sparsity by determining specific problem- and solution-dependent dictionaries that
are able to approximate the searched object by possibly few terms. Moreover,
Chaps. 1, 6 and 20 are concerned with Monte Carlo and Multilevel Monte Carlo
methods in the context of stochastic applications.

One of the major themes within SPP 1324 has been high-dimensional problems
in physics. Chapter 21 is concerned with the regularity of the solution to the
electronic Schrodinger equation. Chapter 19 studies problems in quantum dynamics,
the chemical master equation is one of the topics in Chap. 15, and Chap. 11 is
concerned with electronic structure problems. Another very important issue within
SPP 1324 has been differential equations with random or parameter-dependent
coefficients and their various applications. The theory and numerical treatment of
these problems are discussed in Chaps.2 and 7. Closely related with this topic
are stochastic differential equations and stochastic partial differential equations.
The adaptive numerical treatment of SPDE:s is studied in Chap. 5. SDEs with their
various applications such as stochastic filtering are discussed in Chaps. 1, 6 and 8.
Additional fields of application have been computational finance (see Chap. 16) and
inverse problems (see Chaps. 3 and 18).

Overall, the network of SPP 1324 comprised more than 60 scientists, and 20
projects were funded in two periods. Up to now, more than 170 papers have been
published by the participants of SPP 1324. The aim of this volume is of course not
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to give a complete presentation of all these results but rather to collect the scientific
highlights in order to demonstrate the impact of SPP 1324 on further researches.
The editors and authors hope that this volume will arouse interest in the reader in
the various new mathematical concepts and numerical algorithms that have been
developed in the priority program. For further information concerning SPP 1324,
please visit http://www.dfg-spp1324.de/.

Marburg, Germany Stephan Dahlke
Aachen, Germany Wolfgang Dahmen
Bonn, Germany Michael Griebel
Leipzig, Germany Wolfgang Hackbusch
Kaiserslautern, Germany Klaus Ritter
Berlin, Germany Reinhold Schneider
Ziirich, Switzerland Christoph Schwab
Berlin, Germany Harry Yserentant

June 2014
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Chapter 1
Solving Stochastic Dynamic Programs
by Convex Optimization and Simulation

Denis Belomestny, Christian Bender, Fabian Dickmann,
and Nikolaus Schweizer

Abstract In this chapter we review some recent progress on Monte Carlo methods
for a class of stochastic dynamic programming equations, which accommodates
optimal stopping problems and time discretization schemes for backward stochastic
differential equations with convex generators. We first provide a primal maxi-
mization problem and a dual minimization problem, based on which confidence
intervals for the value of the dynamic program can be constructed by Monte
Carlo simulation. For the computation of the lower confidence bounds we apply
martingale basis functions within a least-squares Monte Carlo implementation. For
the upper confidence bounds we suggest a multilevel simulation within a nested
Monte Carlo approach and, alternatively, a generic sieve optimization approach with
a variance penalty term.

1.1 Introduction

In this chapter we review some recent progress on Monte Carlo methods for
dynamic programming equations of the form

Y = Fi(E;[Bi+1Y D, j=0,....J =1, Y] =F;(0) (.1

on a complete filtered probability space (£2, %, (%) =o..s, P) in discrete time.
In this equation an adapted R”*!-valued process B and the adapted random field
F:{0,...,J}x2xRP*! — R are given. Moreover, E; [] denotes the conditional
expectation given .%;. Assumptions on 8 and F will be specified later on.
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2 D. Belomestny et al.

Several time discretization schemes for backward stochastic differential
equations (BSDEs) with or without reflection and for fully nonlinear second order
parabolic PDEs lead to dynamic programs of the form (1.1),see [10,11,15,20,28]. In
financial engineering, equations of the form (1.1) appear (after a time discretization
is performed) in many nonlinear option pricing problems. These include:

* Bermudan option pricing: Here B = 1 and F;(y) = max{S$;, y}, where the
adapted process S; denotes the discounted payoff of the Bermudan option, when
called at the jth exercise time. Then, Y is the price of the Bermudan option (in
discounted units), see e.g. [25].

* Credit value adjustment: Here B = 1, F;(y) = (1—rA)y — (1= R)AA(y)4 for
Jj < J,where r > 0 is the risk-free interest rate, A > 0 is the default intensity
of the counterparty, R € [0, 1) is the recovery rate in case of default, and (-)+
denotes the positive part. The random variable F;(0) represents the payoff of
the option at maturity 7', if there is no default prior to maturity, and the interval
[0, T] is divided into J equidistant subintervals of length A. Then, ij" is the
price of the option at time jA including credit value adjustment (in a reduced
form approach), provided that default did not occur prior to jA. See e.g. [13,14]
for BSDE approaches to pricing under credit risk.

* Funding costs: We now assume that funding costs are incorporated in the
valuation mechanism, when at time jA the hedging costs for the delta hedge in
the risky stocks X !,.... X jD exceeds the price of the option with payoff F; (0) (at

maturity 7). In this case F; (yo,...,¥p) = (1—rA)y0—R(25=1 Ya—Yo)+A for
j < J,wherer is the interest rate, at which money can be lent, and (R +r) is the
rate, at which money can be borrowed. This is a classical example of nonlinear
option pricing by BSDEs, for which we refer to the survey paper [19]. The
variable y, represents the price of the option and the variables y;,d = 1,..., D,
describe the amount of money required for the delta hedge in the dth stock.
Correspondingly one chooses ,39 = 1 and ,3;1 as (a suitable approximation of)

X}l_l(X}l - Ej—l[X,"l])/Ej—l[(X}l - Ej—l[X}l])z]-

The main difficulty when solving equations of the form (1.1) numerically is
that, going backwards in time, in each time step a conditional expectation must be
approximated which depends on the numerical approximation of Y * one time step
ahead. Therefore one needs to apply an approximate operator for the conditional
expectation which can be nested without exploding costs. In particular, when the
generator I depends on w through a high-dimensional Markovian process, Monte
Carlo methods are usually applied to estimate the conditional expectations. In this
respect, the least-squares Monte Carlo method, which was suggested for Bermudan
option pricing by [21,26] and for BSDEs by [20], is certainly among the most pop-
ular choices. For the Bermudan option pricing problem this approximate dynamic
programming approach (i.e. solving the dynamic program with the conditional
expectation replaced by an approximate operator) is often complemented with the
primal-dual methodology of [1]. In a nutshell, the solution of the approximate
dynamic program is taken as an input in order to construct confidence intervals for
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the price Y;* of the option. This approach crucially relies on the dual representation
of [18,23] for Bermudan option pricing.

In Sect. 1.2 we first provide a review of this primal-dual approach for Bermudan
option pricing. Following the lines of [7] we then generalize the theory behind this
approach to dynamic programs of the form (1.1) under the assumptions that the
driver F is convex and that a discrete comparison principle holds. The remaining
sections are devoted to making this general primal-dual approach practical by
designing and analyzing algorithms, which improve on the existing literature in
various aspects. In Sect. 1.3 we suggest to run the least-squares Monte Carlo method
for the approximate dynamic program with a set of basis functions which satisfy
a martingale property. While this corresponds to the ‘regression later’ approach of
[17] for the Bermudan option problem, it was recently observed by [8] that the use of
martingale basis functions can significantly reduce the propagation of the projection
error over time and the variance in the context of time discretization schemes for
BSDE:s.

Given the corresponding approximate solution of the dynamic program (1.1), the
construction of a lower confidence bound for Y* is usually a straightforward appli-
cation of the primal-dual methodology. Contrarily, the construction of the upper
bound requires a martingale as input, which should be close to the Doob martingale
of BY*. In the context of Bermudan option pricing, Andersen and Broadie [1]
suggested a method to approximate this martingale starting from the solution of
the approximate dynamic program and applying one layer of nested simulation in
order to compute the Doob decomposition numerically. Based on [5] we present in
Sect. 1.4.1 a multilevel variant of this algorithm, where varying numbers of paths are
applied for the two layers of simulations at different levels. This multilevel variant
can be shown to reduce the complexity of the Andersen-Broadie algorithm from
£* (generic nested Monte Carlo) to 2 log(¢), which up to the logarithmic factor
is the same complexity as a plain non-nested Monte Carlo implementation. As an
alternative to the Andersen-Broadie type algorithms we also present a completely
generic approach to the approximation of the Doob martingale of §Y* via sieve
optimization combined with a variance penalty term in Sect. 1.4.2. Convergence
of this algorithm was analyzed in [3] for the Bermudan option pricing problem
as the number of martingales in the sieve and the number of simulated samples
converges to infinity. Finally, we illustrate the proposed algorithms by numerical
experiments in the context of nonlinear expectations under model uncertainty and
of option pricing under credit value adjustment.

1.2 The Primal-Dual Approach to Convex Dynamic
Programs

In this section we first recall how the primal-dual approach works for the Bermudan
option pricing problem. Then we present a generalization to dynamic programs of
the form (1.1) with convex generator.



4 D. Belomestny et al.

As stated in the introduction, the Bermudan option pricing problem leads to a
dynamic program of the form

Y/ =max{S; E;[Y ]}, Y/=S5, (1.2)
for some adapted and integrable process S with S; > 0. The starting point of the
primal-dual approach is the well-known observation that this dynamic program is
the one associated to the optimal stopping problem (primal problem), i.e.

Y, = sup E[S.], (1.3)
1€

where . is the set of stopping times with values greater than or equal to j, and the
(smallest) optimal stopping time t* can be expressed as

™ =inf{i >0; S; > E;[V,,]}.

Hence, for any stopping time T, YOI"W := E[S;] yields a lower bound for the
Bermudan option price Y. In practice, a ‘close-to-optimal” stopping time t is often
constructed as follows: One first rephrases the dynamic program in terms of the
continuation value Z7 := E;[Y ] as

Z;‘ = Ej[max{Sj+1,Z;+1}]a Z; =0.

Then, one solves this dynamic program numerically, replacing the conditional
expectation by some approximate operator, which leads to an approximation Z of
Z*. Finally, based on Z one constructs the lower bound YOI"W via the stopping time
T =inf{i > 0; S; > Z;}. The primal lower bound is then complemented by a dual
upper bound. Indeed, Rogers [23] and Haugh and Kogan [18] showed independently
that Y;* can be expressed via the dual minimization problem

Y, = Migzl E[jg;l)?fj(sj - M;)], (1.4

where .#p+ denotes the set of R *!-valued martingales with M, = 0, and that
the Doob martingale of Y* is optimal. Hence, the construction of a tight upper
bound requires the numerical approximation of the Doob decomposition of Y *. The
nested Monte Carlo algorithm by [1] is popular to perform such numerical Doob
decompositions, but in Sect. 1.4 we present algorithms that can produce tight upper
bounds at the cost of a non-nested Monte Carlo implementation.

Following the approach of [7], which is detailed there for the case of discrete
time reflected BSDEs, we now generalize the construction of a primal maximization
problem and a dual minimization problem to dynamic programs of the form (1.1).
The following assumptions are in force:
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(R) (Bj); =(Boj,---.Bp,;);is abounded, adapted D + 1-dimensional process
with By ; = 1 forall j. The adapted random field F : {0,...,J} x 2 xRP*+! —
R is Lipschitz continuous in z € RP*! uniformly in (j, ) and satisfies
E[|F;(0)]?] < oo forevery j =0,...,J.

(Comp) For every j and any two .#;;;-measurable, integrable real-valued
random variables Y, Y such that Y > Y a.s., it holds that

Fi(E;[Bj+1Y]) = Fi(E;[Bj+1Y]).

(Conv) Themapz+— F;(w,z) is convex for every j and almost every w.

We briefly comment on the first two assumptions. The regularity condition (R)
makes sure that the dynamic program (1.1) recursively defines square-integrable
random variables Y*, j = J,...,0. Condition (Comp) entails a comparison
principle for the dynamic program (1.1). Indeed, if Y is a subsolution of (1.1), i.e.

Y; < Fi(Ej[Bj+1Y;1]), j=0,....J =1, Y, < F;(0),
then one can easily show by backward induction that, thanks to (Comp),
ijYj*, j=0,...,J. (1.5)

Of course, the analogous statement holds for supersolutions.

Primal lower bounds. The construction of the primal maximization problem
relies on a linearization of F in terms of its convex conjugate and is analogous
to Proposition 3.4 in [19] for BSDEs in continuous time. Recall that the convex
conjugate Ff of F; is defined by

Fi(p)= sup p'z—F;(z) (1.6)

z€RP+I1

and lives on the (bounded uniformly in w) domain D7y < RP*! where the
supremum in (1.6) is finite. We denote by <7 the set of adapted, R”*!-valued
processes p such that p; takes values in D7y and satisfies E[F}(p;)] < oo for
j =0,...,J — 1. For a fixed p € &, we define recursively the typically non-
adapted process 6" := 0/ (p) via 0/ := F,;(0) and

J—1 J—1 i—1
01" = p] Bj+107% — Fi(pj) = F1(0) [ | of Ber = D Ff(o) [ od Besr.
k=j i=j k=j
(1.7
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Then, the adapted process defined by Y := Y[ (p) := E;[0'""] satisfies

Y = pl Ei[B 1Y) — Fl(0;) < sup (p" E;[B;+1Y,%] — Fl(p))

pEDl_#
= Fj(Ej[Bi+1 Y/, j=0....J-L (1.8)

where the final step uses that F; = F by convexity. As Y} = F;(0) = Y, we
observe that YV is a subsolution, and, hence, (1.5) yields Y;”W (p) < Yj* for every
j =0,...,J. Finally, by the Lipschitz assumption there exists an adapted process
p* such that

E; [,Bj+1Yj*+1] - Fj#(p;k) = Fj(E; [:Bj+1Yj*+1])‘ (1.9)

One can now show by induction that Y * = Y;”W(p*) forevery j =0,...,J.
We can summarize these considerations in the following theorem.

Theorem 1.1 (Primal problem). Under assumptions (R), (Comp), and (Conv), Y*
can be represented as value of the maximization problem

J—1 J—1 i—1
Y= sup E[6;™ (0)] = sup £ [FJ(O)Hp;I Bevi— Y Fio) [T ol ﬂk+1}

k=0 i=0 k=0

Moreover, any process p* € of , which satisfies (1.9), is optimal.

Dual upper bounds. For the construction of the dual minimization problem we
apply a pathwise dynamic programming approach, i.e. the conditional expectations
are dropped in (1.1), but some martingale increments are added to the equation
instead. To this end we first fix an R”T!-valued martingale, i.e. an integrable and
adapted process M with E;[M;+; — M;] = 0 and My = 0. Define recursively the
typically non-adapted process 6“7 := "7(M) via 0} := F;(0) and

07" = Fj(Bj+10/% ) — (Mj+1— M))).

Taking conditional expectations and applying Jensen’s inequality shows that the
adapted process ¥ = E;[0"] satisfies

Y > Fi (B[00 = Fi(Ej[Bj+ Y% ). j=0.....0—1. (L10)

As Y} = F;(0) = Y7, Y is a supersolution of (1.1), and hence the comparison
principle implies that Y”p =Y * for all j. Finally, choosing M * as the the Doob
martingale of Y *, i.e. M M* =B Y —E;_1[B,;Y /] forall j, one can check
inductively that 6"’ (M *) 1s adapted and that 0rP(M*) = Y *. We, thus, arrive at the
following result.
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Theorem 1.2 (Dual problem). Under assumptions (R), (Comp), and (Conv), Y *
can be represented as value of the minimization problem

* _ : up
Y=t B ()L

Moreover, the Doob martingale of BY* is optimal even in the sense of pathwise
control, i.e. Qgp(M*) =Y

Remark 1.1. (1) As explained in Remark 3.5 of [7], the above minimization
problem can be re-interpreted as the dual problem to the maximization problem
in Theorem 1.1 in the sense of information relaxation. For the general theory
of information relaxation duals for discrete time stochastic control problems
we refer to [12].

(i1) The results in [7] also cover constructions of minimization and maximization
problems with value given by Y, for implicit dynamic programs of the form

Y¥ = Fj(Y, Ej[Bj+1Y ). j=0.....0 =1, Y} = F;0).

even without imposing the convexity assumption on F.

(iii)) The primal-dual methodology can also be applied for problems with a
multi-dimensional value process Y* such as multiple stopping problems,
see [6,24].

Examples. (1) We first revisit the Bermudan option problem, which is governed
by the dynamic programming equation (1.2). As D = 0, 8 = 1 and
Fi(z) = max{S;,z}, the standing assumptions are satisfied. One easily
computes Ff(p) = (p—1)S; with domain D}’ = [0, 1]. The primal problem
of Theorem 1.1 then reads

J-1 J—1 i—1
Yy =sup E |:SJ l_[Pk + ZSi(l - pi) l_[pk,:|
P k=0 i=0 k=0

where p runs over the set of adapted process with values in [0, 1]. By the
optimality condition (1.9), it obviously suffices to take the supremum over the
set of adapted processes p with values in {0, 1}. The primal problem is then seen
to be a reformulation of the optimal stopping problem (1.3), if one maps p on the
stopping time inf{i > 0; p; = 0}. Concerning the dual minimization problem,
M;)). Hence, the dual minimization problem in Theorem 1.2 collapses to the
dual formulation in (1.4) due to [18,23].

(i1)) The second example is concerned with an Euler type time discretization
scheme for backward stochastic differential equations (BSDEs) driven by
a D-dimensional Brownian motion W. For a BSDE of the form
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A% = —f(t. %, Z)di + ZdW,. P =h

we consider Y * as discretization over the time grid {f, ..., ;}, where:
* I/V’/+l —
Yj _E [ j+1]+(t]+1_t)f t/’E [Y1+1] E ]+1 : _ 7
Jjt+l1 J
with terminal condition Y} = h. The generator f is an adapted,

square-integrable, convex and (uniformly in (¢, ®)) Lipschitz continuous
random field and % is a square-integrable .%;-measurable random variable.
This is a slight variant of the schemes studied by [11, 28] and coincides with
the one suggested by [15] in the more general context of second order BSDE:s.
As filtration in discrete time we can choose the one generated by the Brownian
motion up to the jth point in the time grid. By defining 81, ..., Bp as suitably
normalized and truncated increments of the Brownian motion, this recursion is
of the form F; (z) = zo + (¢t;4+1 — ;) f(¢;,z). Assumptions (R) and (Conv) are
then certainly fulfilled. The truncation of § depends on the time grid and the
Lipschitz constants of f in an appropriate way and is necessary to ensure that
(Comp) is satisfied, see [7] for details.

1.3 Construction of Lower Bounds via Martingale Basis
Functions

This section reviews the popular least-squares Monte Carlo approach for the
approximate solution of a dynamic program of the form (1.1) via empirical
regression on a set of basis functions, see e.g. [20,21,26]. A special emphasis will be
on the particular situation where the basis functions form a set of martingales. This
case was studied by [17] for optimal stopping problems and by [8] for the BSDE
case.

In view of the optimality condition (1.9) for the primal maximization problem
we first rewrite the dynamic program in terms of Z}“ = E;[Bj+1 Yj* 1] as

Z7 =EjlBj+1Fivi(Z71)), Z7 =0, (1.12)

and note that the solution of the dynamic program (1.1) can be recovered from
Z* as Yj* = F; (Z;f). The basic idea of the least-squares Monte Carlo approach
is to replace the conditional expectations in (1.12) by an orthogonal projection on
a linear subspace of L?(.% ), which is spanned by a set of basis functions. The
orthogonal projection is then calculated numerically via Monte Carlo simulation by
replacing the expectations in the definition of the orthogonal projection by empirical
means. More precisely, denote by 74 ; a row vector of A .#;-measurable random
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variables for every time index j and every d = 0,..., D + 1. We then define an
approximation Z; of Z7 by

Zaj=na;0;, d=0,...,D,

where the coefficients o ; are computed as follows: Assume we have N indepen-
dent copies (‘regression paths’) of

{ED BP0, =0, g =1, N}

at hand. We now define oy ; = O foreveryd =0,..., D and

N
1 2
— : (n) (n) (¢ (n) (n) (n)
Oq,j = argarél]g}‘ N E ‘,Bd,j.;_lFj+1(770,j+1a0,j+ls cees UD,j+1aD,j+l) Ny ;@
n=1

(1.13)

Given these coefficients we can compute on the one hand an approximation of ¥ * by
Y; = Fj(nojooj,....Np,jop,;j), and on the other hand we can (approximatively)
solve for the optimality criterion (1.9) with Z* replaced by Z in order to get an
approximation p of the optimizer p* of the primal problem, i.e. p; satisfies

(0.0~ ----Npjapj)pj — Fi(p;) & Fj((n0,j0,. - 1D.j&p.;))-

Then,

J—1 J—1 i—1
E [FJ(O) [1ofBev =Y Fron [] ol ﬁkﬂ}
k=0

i=0 k=0

is a lower bound for Y;* which is expected to be good, if the basis functions are
well-chosen and the number of simulated sample paths is sufficiently large. For a
detailed analysis of the projection error due to the choice of the basis and of the
simulation error for least-squares Monte Carlo algorithms we refer to [27] and [2]
for the Bermudan option pricing problems and to [20] for the BSDE case. Lower
confidence bounds for Y* can finally be calculated by replacing the expectation by
a sample mean over a new set of independent samples (‘outer paths’) of {F, 8, n}
(which are independent of the regression paths). We note that the complexity of this
type of algorithm can be reduced by a multilevel approach, which balances the cost
between the effort for approximating the conditional expectations and the number
of outer paths at different levels, see [4] for the Bermudan option problem. We do
not dwell on the details here, but present a similar idea for the computation of upper
bounds in Sect. 1.4.1.

In order to illustrate the above least-squares Monte Carlo scheme, let us denote
the simulation based projection on the d'th set of basis functions at time j by &, ;.
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Then the algorithm can be written (informally) as

Zj=24;(Bj+1Fit1(Zj+1).

i.e. the conditional expectations of the dynamic program are replaced by the
empirical projections. We now modify this algorithm by adding an additional
projection. Precisely we replace the above Z; by

Z;=Py; (Bj+1P0j+1(Fj+1(Z;11))).

A-priori this does not look like a good idea, because each additional empirical
projection is expected to increase the numerical error. However, this scheme can
be simplified, if the basis satisfies the following additional martingale property:

(MB) The basis functions 7o ; form a system of martingales, i.e. £;[no j+1] =
no, for j =0,...,J —land,ford = 1,..., D, the basis functions are defined
via ng; := Ei[Ba j+11M0,j+1] (Which entails that these conditional expectations
are available in closed form).

Under this martingale basis assumption one chooses one set of basis functions
no,; at terminal time only, and all the other basis functions are computed from this
set. The main advantage of assumption (MB) is that conditional expectations of
linear combinations of the basis functions (even if multiplied by the S-weights)
are at hand in closed form. Hence, the outer empirical projections in the definition
of Z need not be performed, but should rather be replaced by the true conditional
expectations. These considerations lead to the the martingale basis algorithm

Z;MB’ =E; [,3;+13”0,j+1(Fj+1(Z;'AjrBl)))] :

More precisely, one modifies the construction of the coefficients «;; compared to
the standard least-square Monte Carlo scheme as follows. Define «;; = «; for all
d=0,...,D,where ¢y = 0and

( (
a; = arg mm ~ Z ‘F n)l(’70/+1°‘;+1» cee ”Dn,)j+1“/‘+l) - ’78,1/)‘+1“

(1.14)

Once the coefficients are computed, one constructs the approximations of
Y*, Z*, p* and the lower bound for Y in exactly the same way as described
above. An obvious advantage of this martingale basis algorithm for D > 1 is, that
only one empirical regression is performed at each time step, while the original
least-squares Monte Carlo algorithm requires (D + 1) empirical regressions per
time step.

In the setting of discrete time approximations of BSDEs one has F;(z) = zo +
(tj+1 —t;) f(t;,z). Hence, (with a slight abuse of notation), the martingale basis



