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Preface

Fractal geometry is a young field. It was initially developed in the 1980s, driven by
the motivation to model rough phenomena in nature, and by new opportunities of
computer visualization. Towards the end of the 1980s, wavelets were introduced for
the needs of signal and image processing. Today, the field of fractals and wavelets
has grown into a respected mathematical discipline with specific concepts and
techniques, and with plenty of applications inside and outside mathematics.

In November 2013 a workshop and the first International Conference on Fractals
and Wavelets in India took place at Rajagiri School of Engineering and Technology,
Kochi, Kerala.

In the workshop, from November 9 to 12, leading experts from all over the
world gave comprehensive survey lectures on the state of the art in their areas.
In the International Conference from November 13 to 16, new research results
were presented by mathematicians from ten countries. There were more than 100
participants from India, revealing that research in fractals and wavelets has taken
root at many Indian universities, with an emphasis on applications to engineering,
medicine, Internet traffic, hydrology, and other fields.

This volume contains all invited lectures of the workshop as well as selected
contributions to the conference. Providing readable surveys, it can be used as a
reference book for those who want to start work in the field. It documents the present
state of research in the area, both in India and abroad, and can help to develop
cooperation among widely scattered groups.

The organizers of the conference would like to thank the management of Rajagiri
School of Engineering and Technology, Cochin, Kerala, India for the inspiration and
support provided to conduct the conference.

The organizers acknowledge the financial support given by the International
Centre for Theoretical Physics, the International Mathematical Union, the Inter-
national Council for Industrial and Applied Mathematics, the National Board for
Higher Mathematics India, the Department of Science & Technology India, the
Defence Research & Development Organisation India, the Indian National Science
Academy, the Kerala State Council for Science Technology & Environment, and
The South Indian Bank Limited.
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Introduction

This book is divided into three parts: Fractal Theory, Wavelet Theory, and Applica-
tions. Each part begins with survey papers written for a general audience, followed
by surveys on more advanced topics and by contributed papers presenting recent
results.

In the first part, C. Bandt gives an introduction to basic fractal concepts and
methods, followed by an introduction to self-similar sets. Self-similar sets are
generated by similitudes and form the most simple class of fractals. Another
important class, known from appealing computer visualizations, is generated by
iteration of polynomials, rational functions, and entire functions of a complex
variable. S. Sutherland presents the theory of Julia and Fatou sets, and R.L. Devaney
discusses their topological intricacies.

Four other invited lectures provide new concepts and techniques which were
developed by the authors. The concept of fractal homeomorphism is introduced
by M. Barnsley, B. Harding, and M. Rypka. Dimension results on self-affine sets
and measures are simplified by K. Simon by introducing the concept of almost self-
affine set. M. Urbański treats the more complicated class of self-affine sets over an
infinite alphabet, and A. Tetenov studies projection and rigidity properties of fractal
curves in n-dimensional space.

The contributed lectures of Part I deal with new three-dimensional fractals,
projections of Mandelbrot percolation sets, and approaches to fractals in more
general topological spaces.

Wavelet Theory and fractal functions are studied in Part II. Roughly speaking,
wavelets are basis functions with self-similarity properties which ensure an efficient
coding of signals and images. General bases in Hilbert spaces called frames are the
fundamental concept here. O. Christensen gives an introduction to frame theory. In
a second lecture with Hong Oh Kim and Rae Young Kim he presents recent trends
and open problems in the field. P.R. Massopust introduces a new class of fractal
functions, using the new concept of a local iterated function system.

The contributed talks of Part II concern a variety of different constructions
of fractal functions and wavelets with good approximation properties, such as
preservation of convexity.
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xii Introduction

Part III starts with an invited lecture of N. Cohen, the inventor of fractal antennas.
Taking examples from his field, he discusses the problems and difficulties which
arise on the way before new inventions can be implemented into practice.

The contributed lectures in this part deal with application to cancer detection and
brain signal analysis, chemical engineering and hydrology, Internet traffic, image
processing, and tomography. They illustrate the rapid development and wide range
of applied fractal research in India.



Part I
Fractal Theory



Introduction to Fractals

Christoph Bandt

Abstract This non-technical introduction tries to place fractal geometry into the
development of contemporary mathematics. Fractals were introduced by Mandel-
brot to model irregular phenomena in nature. Many of them were known before as
mathematical counterexamples. The essential model assumption is self-similarity
which makes it possible to describe fractals by parameters which are called
dimensions or exponents. Most fractals are constructed from dynamical systems.
Measures and probability theory play an important part in the study of fractals.

Keywords Fractal • Self-similarity • Box dimension

1 Mandelbrot’s Vision of Fractals

1.1 Potential Applications

Benoit B. Mandelbrot coined the term “fractal” and created fractal geometry with
his groundbreaking monography “The Fractal Geometry of Nature” [5] in 1982.
He begins this work with some words which have become famous: “Clouds are not
spheres, mountains are not cones, coastlines are not circles, and bark is not smooth,
nor does lightning travel in a straight line.”

Workshop on Fractals and Wavelets at Rajagiri School, Kochi, India, 9 Nov 2013.

C. Bandt (�)
Institut für Mathematik und Informatik, Universität Greifswald, 17487 Greifswald, Germany
e-mail: bandt@uni-greifswald.de

C. Bandt et al. (eds.), Fractals, Wavelets, and their Applications, Springer Proceedings
in Mathematics & Statistics 92, DOI 10.1007/978-3-319-08105-2__1,
© Springer International Publishing Switzerland 2014
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4 C. Bandt

Mandelbrot clearly saw the need of modelling irregular phenomena in science
and economy, since he had worked on this field for many years. He knew that
traditional methods do not work—a view which the majority of his colleagues did
not share. But his main message was positive: there are mathematical concepts
which can be applied to all of these phenomena.

Meanwhile fractal geometry is established as a mathematical area with deep
theorems and exciting intrinsic problems. Nevertheless, we must not forget that it is
the diversity of potential applications which makes our field so attractive.

1.2 Mandelbrot’s Way

As a rule, new ideas and their inventors do not get accepted right away. Actually,
Mandelbrot got his first tenure professorship at the age of 75. In his autobiography
[6] which appeared after his death in 2010, he characterizes himself as a “scientific
maverick.” He was born in 1924 in the Jewish quarter of the Polish capital which
became known as Warsaw ghetto during the Nazi occupation in World War II. Many
relatives, all neighbors and friends of his childhood were killed by the Germans.
Fortunately, his family emigrated to France before the war. When Nazi occupation
came to France, Mandelbrot had to cover his identity and live under continuous
threat for several years.

After the war, Mandelbrot became a mathematics student, proved his exceptional
geometrical talent, and gained scholarships at elite universities in France and the
USA. But then, instead of joining mainstream research, he became interested
in various obscure phenomena and strange applied problems. Mandelbrot had to
struggle 25 years to get recognized. In 1975, he wrote the initial French version of
his book which collected his views and results. Physicists started to accept and apply
his ideas. And then, within few years, fractals became very popular, and Mandelbrot
got a lot of honors.

2 Fractals in Contemporary Mathematics

Before we come to details, let me point out some personal views. In my opinion,
fractals form one important facet in the development of twenty-first century
mathematics.

2.1 Classical Mathematics

Classical mathematics, centered around analysis, was triggered by applications in
astronomy, physics, and engineering, by problems with a moderate amount of data.
Some ingenious ideas of Gauss are difficult to comprehend even today, and the
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Riemann hypothesis is still not solved—but most questions with impact outside
mathematics had a relatively simple structure. Up to the middle of the twentieth
century we had no calculators. All numerical calculations were done by hand,
with the help of tables. Nevertheless, classical mathematics was a driving force for
the development of all our achievements in science and technology: mechanical
watches, cars, railways, the atom bomb, the first computers, and the first studies
on global change. Mathematics also played a leading role in education. It was
considered necessary to understand the modern world.

2.2 New Challenges

Now we live in a world which is extremely complex and difficult to understand.
Nobody can oversee all structures he/she is involved in. Computers and huge
amounts of data are virtually everywhere. Life sciences, economy, and climate
research investigate processes of incredible complexity. They cannot do anything
without advanced mathematical methods. At the same time, public reputation of
mathematics has shrunk, and mathematical communication and education are in a
worldwide crisis.

In my mind, the basic challenge of today’s mathematical education is to give
people an orientation in a complex world. People must find strategies to comprehend
and influence their environment. We must remain masters of computers and not
become their slaves. We have to decide the essential things and leave routine work
to the machines.

Mathematics has the chance to shape the future, in research as well as in
education. Tremendous efforts are required to meet this challenge. Communication
practice and curricula must be thoroughly revised and changed. We need classical
mathematics as well as new concepts and techniques.

Fractals and networks are among the new concepts. It is no surprise that both
are strongly connected with computers. Complex networks became a research field
around 2000 in connection with the fast development of the world wide web. The
study of fractals was greatly enhanced by the development of computer graphics
facilities in the 1980s. Mandelbrot was a long-term fellow at IBM, the leading
computer enterprise in the time of mainframe computers.

3 Self-similarity

3.1 Fractal Symmetry

There is no precise mathematical definition of the word “fractal”. Most experts
agree that negative properties like “something very strange” or “very irregular,”
or Mandelbrot’s first definition “sets with non-integer dimension” are not helpful.
The essential property is self-similarity: small parts and big parts of the figure
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look similar. When we see a piece of the figure, we cannot conclude where we
are, nor can we say something on the size of the piece. This property is also called
scale-invariance. The structure of a fractal is nearly the same at every corner, on
large scale and on small scale.

Self-similarity is a kind of symmetry which simplifies the analysis of fractals.
Every kind of symmetry simplifies problems. To determine the volume of a solid, for
instance, we need a triple integral, but for a solid of revolution, we need only a single
integral. The real line, one of the fundamental sets in mathematics, is symmetric
with respect to translations and reflection. It is also self-similar in the above sense,
so it can be called a fractal. The same holds for Rn.

3.2 The Benefit of Self-similarity

In order to study the whole structure of a fractal, it is enough to study small pieces,
because the structure is everywhere similar. An everyday example is the process
of distribution of public money. When you know how this works in small scale, in
a town or university, then you can become a minister—since the mechanisms and
problems in the government are similar, only at larger scale.

When we consider a cloud, a mountain scenery, a satellite image of a coastline, a
tree or lightning, we can agree that self-similarity is present, at least to some extent.
So the definition should apply to reality. However, self-similarity is not a property
of nature. It is a model assumption, like the concept of a straight line or a circle.
In practice, lines are never infinite and they are never straight, but calculations with
lines have been successful. When we find sufficiently simple theoretical classes of
self-similar figures, we can try to use them as models of reality.

In the sequel we shall consider different relations between small and big pieces
of certain sets which lead to different classes of fractals with a rigorous definition.
For introductory reading, we recommend the classical treatments which convey
fascination in fractals: Mandelbrot’s original work [5], Barnsley’s well-illustrated
textbook [1], and Falconer’s mathematical treatment [3]. One may also consult the
introduction by Peitgen et al. [7], Schroeder’s view of a physicist [9], and Edgar’s
collection of seminal papers [2]. The web also contains a lot of stimulating material.

4 The Cantor Set

4.1 The Topological Viewpoint

The Cantor set is the basic example of a fractal. It comes in different disguise,
see Fig. 1. The topology of Rn characterizes it as an uncountable compact (closed
and bounded) set without isolated points which is totally disconnected—there is
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Fig. 1 Self-similar Cantor sets

Fig. 2 The mathematical picture of the Cantor set

no continuous curve which connects points within the set. The last property is
emphasized by Mandelbrot’s name Cantor dust.

In some of the examples of Fig. 1, self-similarity is obvious to the eye. In a more
abstract way, self-similarity can be introduced to the Cantor set C in many ways.
We divide C into two closed and disjoint subsets C0 and C1. In the plane, this is
done by enclosing the pieces into domains D0;D1 bounded by curves which do
not intersect C , as indicated in Fig. 2. Next, we divide the set C0 into two closed
disjoint sets C00 and C01, and C1 into two closed disjoint subsets C10; C11. Then we
do the same with the new sets Cw D Cw1w2 where w1;w2 2 f0; 1g, and so on. It is
clear that all these subsets are Cantor sets again. From the viewpoint of topology,
the pieces Cw are equal to C .

In mathematical constructions of a Cantor set C , one starts with a surrounding
set D, which may be an interval, rectangle, or ball, and continues with surrounding
sets Dw, so that Dw0 and Dw1 are disjoint for every word w. This abstract
construction of a Cantor set is shown in Fig. 2.
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Fig. 3 The binary tree—another picture of the Cantor set

4.2 Algebraic Description of the Cantor Set

We consider the alphabet A D f0; 1g with two letters. Each piece Cw and its
surrounding set Dw is given by a word w D w1w2 : : :wn 2 An of some length n.
The set of all words of the alphabet addresses the pieces of C which we constructed,
and their surrounding sets.

Next consider a point x 2 C . It is contained in some Dw1 , then in some Dw1w2 ,
in some Dw1w2w3 and so on. These sets are nested: D � Dw1 � Dw1w2 � : : : If we
construct the Dw in such a way that their diameter tends to zero with n ! 1 (this
is not difficult to arrange), then x will be the intersection of the nested sequence:

fxg D
1\

nD1
Dw1w2:::wn for some sequence s D w1w2 : : :

Thus each point x of the Cantor set corresponds to a unique sequence s in the
alphabet A. This is the abstract concept of a Cantor set:
C is the set of all sequences s D w1w2 : : : over some finite alphabet A.

4.3 The Binary Tree

The binary tree is another strong picture of the Cantor set (Fig. 3). Each node of the
tree is denoted by a word w D w1 : : :wn, and is connected to its parent w1 : : :wn�1 as
well as to its children w0 and w1. The root of the tree is denoted by the empty word �.
The points ofC correspond to infinite non-intersecting paths starting in �, which can
be written in the form s D w1w2 : : : Such trees appear in the analysis of algorithms
and in programming. Of course this tree is usually modified by assigning varying
numbers of children to the nodes or by identifying certain words, as indicated in
Fig. 4. The structure of many algorithms, as well as the structure of languages, the
structure of human thinking and society, show some self-similarity—certainly not
as regular as our figures.
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Fig. 4 Two regular modifications of the binary tree. How many nodes does level n contain?

4.4 Description of Self-similarity

How is the whole setC related toC0, or any other pieceCw? The sequences of points
in C0 are those which start with 0. When we assign to each sequence s D s1s2 : : :

the sequence 0s D 0s1s2 : : : then we get a one-to-one correspondence between C
and C0. More generally, for every word w D w1 : : :wn we have a function fw.s/ D
ws D w1 : : :wns1s2 : : : which mapsC ontoCw in a one-to-one way. It is not difficult
to show that this function is a homeomorphism with respect to the product topology,
or to the usual topology of sets in Fig. 1. Adding letters in front of a sequence will
lead us from the whole set to subsets.

4.5 The Number System

When you feel uncomfortable with the use of an alphabet, think of our decimal
number system. Each real number between 0 and 1 has a decimal expansion
x D 0:a1a2 : : : Here the alphabet is A D f0; 1; : : : 9g. One instance of the Cantor
set is defined by those decimal numbers which involve only digits 0 and 9. It is too
tiny to draw, try it! Cantor’s original middle-third set from 1888 takes all numbers
with digits 0 and 2 in the ternary expansion:

C D ˚
x 2 Œ0; 1� ˇ̌ x D P1

kD1 ak3�k with ak 2 f0; 2g� : (1)

4.6 The Interval

If we do not exclude digits, we get the unit interval, with ten basic pieces for
the decimal system and two pieces for the binary system. We can call it C ,
but it is not a Cantor set, it is connected. The reason is that some points have
two addresses, for instance 0:1000 : : : D 0:0999 : : : in the decimal system and
1
2

D 0:1000 : : : D 0:0111 : : : in the binary system. Thus the two pieces C0 and C1
have a common point. Moreover, the pieces Cw0 and Cw1 are also connected since in
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the binary system 0:w1 : : :wn0111 : : : D 0:w1 : : :wn1000 : : : So the self-similarity
is preserved, and the unit interval Œ0; 1� is a fractal.

5 Some Fractal Curves

5.1 A Nowhere Differentiable Curve

As modifications of Œ0; 1�, we obtain some fractals which were known as mathemat-
ical counterexamples around 1900. Von Koch suggested in 1904 to lift the middle
third of an interval Œa; b� instead of deleting it. He replaces the middle third of the
interval by two intervals of the same length with a common endpoint c, and repeats
this procedure with all small intervals again and again. The result is a continuous
curve K which does not possess a tangent in any of its points.

5.2 A Proof with Self-similarity

We assume there is a tangent in some point x 2 K and derive a contradiction. For
each " > 0 there must be a little piece Kw which is inside the double cone around
the tangent line with vertex x and angle ˙". But since the pieceKw is geometrically
similar to K (see Sect. 6), the same must hold for K and a line through some point
y 2 K . Since y is inside the triangle T D 4abc, every side of the triangle is seen
from y under an angle of at least 30ı. If a double cone through y containsK , then at
least two of the vertices a; b; c are on one side of the cone. Thus the opening angle
of the cone is at least 30ı which contradicts the assumption for " < 15ı. We proved
that K has no tangent.

Mandelbrot did not consider the non-differentiability ofK as a bad property. On
the contrary, he recommended Koch’s curve as a model for coastlines. They have
(almost) infinite length when we measure them precisely enough.

The construction of K can also be rephrased as a “decreasing set construction.”
We delete from the triangle T a maximal equilateral triangle, delete from each of
the remaining triangles again an equilateral triangle, etc. Now we can also delete
isosceles triangles with a smaller base b and will get wilder Koch curves, cf. Fig. 5.

5.3 A Plane-Filling Curve

One can ask what happens in the limit b ! 0. We still have a curve, but with
a lot of double points. This curve will cover the whole triangle T which is now
right-angled. Such plane-filling continuous curves were constructed by Peano and
by Hilbert around 1890, and they were quite disturbing for the mathematical concept
of dimension. Mandelbrot turned the property into the positive: look here, this is a
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Fig. 5 The Koch curve and an almost plane-filling modification

good model for the system of human blood circulation. This must consist of vessels,
but must be space-filling. Because whenever you hurt you anywhere, blood will
come out.

5.4 A Simple Curve with Positive Area

There is another variation due to Knopp 1915: we can consider triangle bases bn
which decrease with the level n of construction, in such a way that the sum of the
triangle areas which we cut out at level n is half as large as at level n�1. In that case
we are left with a proper continuous curve K with no double points. But since the
sum of deleted areas is less than the area of T , the curve has positive area! A more
complicated proof for the existence of such curves was given by Osgood in 1905.

5.5 Different Types of Self-similarity

The pieces of Koch’s curve are all geometrically similar to each other. So we call it
a self-similar set. The right-angled triangle which comes as the limit Peano curve is
also a self-similar set. Knopp’s curve with positive area is not self-similar, but there
are continuous bijective maps between the pieces Kw and K , and we also consider
it a fractal. The Koch and Knopp curves are homeomorphic to the unit interval—
but not the Peano curve, due to double points. So the topological relation between
pieces and the whole is the same, but the metric properties differ. As a matter of
fact, the fractal dimension of the curve with deleted base b is : : : (see Sect. 7).

5.6 The Graph of Brownian Motion

To conclude this section, we mention a very important curve construction which
introduces random self-similarity. We assume that we have a device which yields
independent random numbers with standard normal distribution. Any mathematical
software on your computer will do, even Excel. Those numbers are between �5
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Fig. 6 The Lévy curve and its basic triangle

and 5. Our basic interval I will start at .0; 0/ and end at .1; z/ where z is the first
random number. The midpoint of the interval is . 1

2
; z
2
/. Now the midpoint is shifted

by z�=
p
2 in vertical direction, up or down, depending on the random number z�.

Next, we shift the midpoints of the resulting intervals I0 and I1 by z0=2 and z1=2
in vertical direction, getting four intervals Iw1w2 . We proceed by induction: on level

n the midpoints intervals Iw are moved up or down by zw=
p
2
nC1

. This random
construction will converge, with probability one, to the graph of a continuous
function f . Of course we get different functions for different random numbers, as
shown in Fig. 7 below. The construction is self-affine, not self-similar, since in each
step, horizontal direction shrinks by the factor 1

2
and vertical direction by 1=

p
2.

5.7 Lévy and His Curve

This is the midpoint displacement algorithm for Brownian motion, the most
fundamental stochastic process which was suggested as a model for the financial
market by Bachelier in 1905 [5]. The construction was known to the great probabilist
Paul Lévy in the 1940s. Mandelbrot considered himself as a student of Lévy: he
“came closest to being my mentor” [5, p. 398]. Incidentally, Lévy also discovered
a plane-filling curve which is obtained when we repeatedly replace an interval Iw

by two intervals Iw0; Iw1 which form an isosceles triangle with right angle over Iw

(Fig. 6). This curve is self-similar and it is plane-filling, which is rather difficult
to prove. As a young man, Lévy reported this result to a meeting of the French
academy in 1912. Probably he was discouraged by the reaction of the audience
since he published his work only in 1937 [2]. Thus the dimension of the Lévy curve
is 2. The dimension of its boundary was found to be 1.955 by several authors only
around 2000, which confirms the fact that the interior of Fig. 6 is very fragmented.
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Fig. 7 Illustration for random self-similarity: three graphs of Brownian motion on Œ0; 1� and their
rescaled left and right parts

5.8 Random Self-similarity

For the graphs of Brownian motion constructed in Sect. 5.6 and illustrated in Fig. 7,
self-similarity is more complicated. All pieces are realizations of the same random
process, after rescaling. Rescaling here means that the graph of f .x/ with x 2 Œa; b�
is replaced by the graph of 1p

b�a �Œf .aCx.b�a//�f .a/� for x 2 Œ0; 1�. The rescaled

piece is a realization of Brownian motion on Œ0; 1�, probably not the one with which
we started. This holds for the graphs of the function over arbitrary intervals Œa; b�,
not only for the dyadic construction intervals. It is this random kind of relation
what we observe in clouds and mountains. Random constructions are much more
realistic models of nature than the Koch curve, but their study is also much more
difficult. Two-dimensional midpoint displacement constructions were used to model
mountain scenery in [5] and in various computer games.

6 Fractal Constructions by Mappings

6.1 Hutchinson’s Equation

Self-similarity can be understood best when it is defined by mappings. The middle-
third set 1 of Cantor is transformed into its left piece C0 by the map f0.x/ D x

3
,

and into its right piece C1 by f1.x/ D xC2
3

. Both maps are similarity maps, so C is
self-similar, and can be characterized as solution of the equation

C D f0.C /[ f1.C / : (2)
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Since f0 and f1 map the whole set onto a subset, it is natural to assume that they
are contractive maps. That means, the distance of the images of two points x; y is
strictly smaller than the distance of the points themselves. A bit more rigorously, f
is a contraction if there is a number r < 1 such that

jf .x/ � f .y/j � r � jx � yj :

Hutchinson [4] proved that for any two contractions f0; f1 on R
n there is a unique

compact non-empty set C which fulfils Eq. (2). Thus we have a lot of self-similar
sets, one for any choice of two contractions. We can also take three or more, but we
stick to the simplest case.

6.2 The IFS Algorithm

Barnsley [1] came up with a computer construction for C . Take one point c of
C , for instance the fixed point of f0. Then the images ci D fi .c/ must also be
in C , because of Eq. (2). The same holds for fw D fw1 � � �fwn.c/ for each 0-1-word
w D w1 : : :n. Since the pieces Cw have diameter smaller rn times the diameter of C ,
the collection of these 2n points for some moderate n, say 15, will be a perfect
computer approximation of the fractal C . This requires five lines of code.

A random algorithm for approximating C starts with c0 D c, and takes
independent random numbers zn 2 f0; 1g for n D 1; 2; : : : (this is like coin-tossing:
head is 1 and tail is 0). Then define

cn D f0.cn�1/if zn D 0 and cn D f1.cn�1/ if zn D 1 :

This requires only two lines of code, and with high probability, it will soon generate
points in all Cw. As a rule, already 30,000 points give a reasonable picture for
the eye. Barnsley suggested the name “iterated function system,” or IFS, for such
algorithms.

6.3 An Exercise in Complex Numbers

Let us model a tree T in the complex plane, with a stem S from 0 to 2i and two
branches from 2i to 3i C 1 and 3i � 1. The mappings from the stem to the branches
will be f0.z/ D z

2
� .1 � i/ C 2i and f1.z/ D z

2
� .1 C i/ C 2i . When we turn

on the IFS algorithm, we get the Lévy curve! That is too much, so we shall later
decrease the ratios of the fi , replacing 1

2
by 0:4, say. First we have to care for the

branches which are not drawn by the IFS algorithm. Only the leaves of the tree form
the self-similar set. One has to add a third map, f2.z/ D 1

3
� Im z to obtain stem and
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Fig. 8 A fractal measure

branches. The tree is not strictly self-similar, since f2 is not a similarity map, but it
fulfils the equation T D S [f0.T /[f1.T / (cf. [1]). Much more natural trees were
constructed by Prusinkiewicz [8] with the related concept of L-systems.

6.4 Fractal Measures

In our first experiment with random IFS in 1987, we tried to draw a triangle with
vertices 0; 1, and .1Cp

3i/=4. Any right-angled triangle is self-similar, as you know
from high-school. The mappings have the form fi .z/ D ai z C bi . The random IFS
with 500,000 points yields the surprising Fig. 8.

After a while, we found that the picture is correct. The IFS will indeed fill the
whole triangle, if it runs long enough. But the picture shows what today is called
a fractal measure or multifractal, with an uneven distribution of the points. The
areas of the right piece T1 of the triangle is three times larger than the area of the
left piece T0, but the number of IFS points in both pieces is the same. What is
worse, the area of n-th level pieces T11::1 and T00::0 are related by the factor 3n

and still both get the same number of IFS points. With nonlinear maps, we get
even more impressive examples of fractal measures. Fractal measures have become
a separate area of fractal geometry. Actually, measure theory is the mathematical
toolbox which has most often been used by mathematicians in the field. Hausdorff
defined measures of fractional dimension already in 1918 (cf. [2]), which can be
considered as the starting point of fractal geometry. It took more than 10 years before
colleagues started to understand Hausdorff’s ingenious idea.

6.5 Dynamical Systems

This is another key concept connected with fractals. A dynamical system consists
of a set X with some mathematical structure and a mapping g W X ! X which
preserves that structure. For a Cantor set C fulfilling Eq. (2), the mapping g W C !
C can be defined as inverse of f0 and f1,

g.c/ D f �10 .c/ for c 2 f0.C / and g.c/ D f �11 .c/ for c 2 f1.C / :
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If the fi are contracting, then g is expanding. The fractals best-known to the public
are the Julia sets of complex quadratic maps g.z/ D z2 C b with various constants
b 2 C. Here f0; f1 can be considered as the quadratic roots fi .z/ D ˙p

z � b, the
two inverse branches of g, and the Julia set as the solution of (2). The Mandelbrot
set, that well-known logo of fractal geometry, is the set of all constants b for which
the Julia set is not a Cantor set. The situation is somewhat involved, however.
Among others, the fi are not contractive.

6.6 Attractors

There are important fractals which are generated by a single map g which provides
the self-similarity, but in such a way that there is no obvious structure of pieces.
One example is the Hénon map on X D R

2 given by the simple formula
h.x; y/ D .yC1�ax2; bx/ [7, Sect. 12.1]. The fractal which is obtained by repeated
application of such a map is called an attractor of the dynamical system .X; g/. The
structure of the Hénon attractors, even for the standard values a D 1:4; b D 0:3,
is not yet mathematically understood although famous mathematicians have tried
their best. Also some properties of the Mandelbrot set are not yet resolved. Even in
the unit interval, it is not exactly known for which parameters r between 3.5 and
4 the quadratic mappings g.x/ D rx.1 � x/ have Cantor set or interval attractors.
There are lots of open mathematical problems in this field.

7 Dimensions and Exponents

7.1 The Concept of an Exponent

When we adopt the topological viewpoint, there is only one Cantor set, up to
topological equivalence. This viewpoint is now too general. We want to study metric
properties, we want to distinguish thick and thin Cantor sets in Fig. 1.

How can we describe, measure and classify fractals? There is one important
principle: size does not matter. Geometrically similar sets are considered to be equal,
only shape is important. The type of self-similarity is studied: how much does the
structure change if we pass to smaller pieces? Even though we are more specific than
topologists, our parameters will be more general than those of Euclidean geometry.
They are called dimensions or exponents.

The paradigm of classical mathematics is the differential equation. Give me the
equation, give me the initial values, and I tell you all details about the system for
all times up to infinity. This paradigm is not valid anymore. Even for rather simple
differential equations, the tiniest deviation from the initial conditions can completely
change the development of the system.
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More importantly, nobody wants to care about every detail when the system is
complicated. And it is not good to care about too many details of a complex system,
because the system can organize itself when the essential parameters are properly
regulated. This can be seen in everyday life, for instance in the education of small
children. We need a robust but not too detailed description. For fractals, exponents
are the appropriate parameters.

7.2 Box Dimension

Probably the simplest exponent is box dimension of a fractal F in the plane. Draw
a mesh of squares with side length s, and count the number N.s/ of squares which
intersect F . If you want, you can do this several times, shifting and rotating the
mesh, and takeN.s/ as average. The numberN.s/ itself, however, is not interesting
since size does not matter.

The trick is to do this for different s and study the function s 7! N.s/. When F
is a line segment, or a rectifiable curve, then N.s/ � k

s
for some constant k. When

F is a rectangle, or, more general, F contains interior points, then N.s/ � k
s2

for
some constant k. Thus a general assumption will be

N.s/ � k

sˇ
or; equivalently logN.s/ � log k � ˇ log s (3)

for some number ˇ 2 Œ0; 2�which is called the box dimension of F . Since rectifiable
curves have dimension 1 and open sets have dimension 2, and the empty set has
dimension 0, the name is justified.

7.3 How to Continue?

If you are a theoretical mathematician, you will now look for examples where the
approach does not work, will define box dimension as a limit—or better, upper and
lower limit so that it always exists and then find classes of sets where upper limit and
lower limit coincides. You can also read Hausdorff’s beautiful old paper in [2] which
presents a mathematically clean dimension concept, using arbitrary sets instead of
boxes, and infinite coverings.

If you are a physicist or more applied mathematician, you will look for nice
model sets where you can try the method numerically, by determining concrete
valuesN.s/, drawing points .s; N.s// into a logarithmic plot and calculating ˇ from
a linear regression.
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Fig. 9 Exponent of disconnectedness for groups of islands

7.4 An Illustrative Example

We conclude by presenting a small example in the physicists’ way. We shall not
count boxes, but connected components of the fractal F . The number N.s/ will be
the number of connected components of F with diameter larger than or equal to s.
The corresponding ˇ in (3) is some measure of fragmentation of F which could be
called exponent of disconnectedness. Connected fractals will have ˇ D 0. Note that
ˇ is not defined when F is a Cantor set.

Here we take two maps, from Sri Lanka and from the Lakshadweep islands, and
count the number of islands according to diameter (length). Probably my count is
not very accurate. You can improve it. For Sri Lanka, I found islands with diameter
210, 12, 8, 7, 6, two times 5 mm, four times 3 mm, twelve times 2 mm and twenty
times 1 mm. One millimeter is about 1.65 km in reality, but for the exponent this is
not relevant. For Lakshadweep islands, I got diameters 6, 5, four times 3 mm, four
times 2 mm, eleven times 1 mm and twelve times 1

2
mm. Here 1 mm is almost 2 km,

but as we said, size does not matter. We draw the values N.s/ into the logarithmic
plot of Fig. 9 and determine the two regression lines corresponding to Eq. (3).

It turns out that Sri Lanka does not provide a good linear approximation, because
of the big main island. If we drop that point, we get a regression line with slope
�1:27. The Lakshadweep islands have no mainland, so they have a more fractal
appearance. The exponent is ˇ � 1:35, only slightly larger than 1.27. The line does
not approximate too well, perhaps due to inaccurate counting. When we neglect the
mainland of Sri Lanka, the degree of fragmentation for the two groups of islands is
more or less the same.
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