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Preface

This volume on Ultrafast Magnetism is a collection of articles presented at the
international “Ultrafast Magnetization Conference” held at the Congress Center in
Strasbourg, France, from October 28th to November 1st, 2013. This first confer-
ence, which is intended to be held every two years, received a wonderful attendance
and gathered scientists from 27 countries in the field of Femtomagnetism,
encompassing many theoretical and experimental research subjects related to the
spins dynamics in bulk or nanostructured materials. The participants appreciated
this unique opportunity for discussing new ideas and debating on various physical
interpretations of the reported phenomena. The format of a single session with
many oral contributions as well as extensive time for poster presentations allowed
researchers to have a detailed overview of the field.

Importantly, one could sense that, in addition to studying fundamental magnetic
phenomena, ultrafast magnetism has entered in a phase where applied physics and
engineering are playing an important role. Several devices are being proposed with
exciting R&D perspectives in the near future, in particular for magnetic recording,
time resolved magnetic imaging and spin polarized transport, therefore establishing
connections between various aspects of modern magnetism. Simultaneously, the
diversity of techniques and experimental configurations has flourished during the
past years, employing in particular Xrays, visible, infra-red and terahertz radiations.
It was also obvious that an important effort is being made for tracking the dynamics
of spins and magnetic domains at the nanometer scale, opening the pathway to
exciting future developments. The concerted efforts between theoretical and
experimental approaches for explaining the dynamical behaviors of angular
momentum and energy levels, on different classes of magnetic materials, are worth
pointing out. Finally it was unanimously recognized that the quality of the scientific
oral and poster presentations contributed to bring the conference to a very high
international standard.

The organization of this conference has greatly benefitted from dedicated people.
First we thank our sponsors for making the event possible. Let us mention insti-
tutions like the European Research Agency (Research Advanced Grant ATOMAG),
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the French Ministry of Education and Research (Equipex UNION and Labex NIE),
the National Scientific Research Center in France (CNRS), the University of
Strasbourg and the University of Kaiserslautern. We acknowledge our friendly
industrial partners who also contributed significantly to the success of the confer-
ence: Coherent, Amplitude Technologies, Newport, Fastlite, Zhinst, Femtolasers,
Acalbfi. The local and international committee had to review 115 contributions
which appear to be an excellent up-to-date condensate of the actual research and
development in ultrafast magnetism. Our special thanks go in particular to Drs.
Nabila Kadiri and Mircea Vomir (CNRS, University of Strasbourg) the organiza-
tion, the web site as well as the preparation of this volume.



Key words: Coherent magnetic processes + Femtosecond - Magnetic recording -
Magnetism - Magneto-Optics - Optics - Spin photo-emission - Spins - Ultrafast
Dynamics
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Abstract The technological demand to bump the Gigahertz switching speed-
limit of today's magnetic memory and logic devices into the Terahertz regime un-
derlies the entire field of spin-electronics and integrated multi-functional nano-
devices. In this talk, I show how all-optical switching based on the ultrafast quan-
tum-mechanical manipulation of spins could meet this challenge.

Introduction

The technological demand to push the gigahertz switching speed limit of magnetic
devices into the terahertz regime is met by all-optical magnetic switching based
on coherent spin manipulation in strongly correlated systems, where the strength
of local spin-spin, Coulomb, and electron-lattice interactions exceeds the kinetic
energy and width of the electronic energy bands. Strong correlations between
electrons in neighboring lattice sites determine the optically-induced coherent
nonlinear dynamics and lead to time-dependence absent in weakly-correlated
magnetic systems'. By analogy to femto—chemistry and photosynthetic dynamics,
where photo-products of chemical/biochemical reactions can be influenced by
creating suitable superpositions of molecular states, we show that femtosecond
(fs) laser—excited coherence between spin/orbital/charge quantum states in neigh-
boring sites can switch magnetic orders” by “suddenly” breaking the delicate bal-
ance between competing phases of correlated materials such as the colossal mag-
neto—resistive (CMR) manganites’. We predict theoretically and observe in the
experiment” fs photoinduced switching from antiferromagnetic to ferromagnetic
ordering. Ferromagnetic spin correlation is driven by the establishment, within the
~100 fs time interval of the pulse duration, of laser-induced coherent
superpositions of electronic quantum states in neighboring lattice sites. The de-
velopment of ferromagnetic correlations during a single fs laser pulse reveals an
initial quantum coherent regime of magnetism, clearly distinguished from the pre-
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viously studied picosecond lattice-heating regime characterized by phase separa-
tion without laser intensity threshold behavior. Note that, in the studied material,
a transition from antiferromagnetic to ferromagnetic ordering cannot be induced
by increasing the temperature, which excludes laser-induced heating as a possible
mechanism during the 100fs pulse duration, where the observed magnetic phase
transition occurs®. Our theory is based on equations of motion for composite fer-
mion density matrices, which treat the strong Jahn-Teller, Coulomb, and Hund’s
rule magnetic interactions, as well as the nonlinear coherent fs optical
photoexcitation. Our results, summarized in Fig. 1, show fs local spin nonlinear
dynamics and underpin fast quantum spin—flip fluctuations correlated with coher-
ent laser-induced superpositions of electronic states to initiate local ferromagnetic
correlations via quantum kinetic processes beyond the statistical approach’.

In the present work, we show fs photoinduced switching from antiferromagnet-
ic to ferromagnetic ordering in Prj;Ca,3;MnQO;, by observing the establishment,
within 120 fs, of a huge temperature—dependent magnetization with
photoexcitation threshold behavior absent in the optical reflectivity (see Fig. 2).
Our theory is based on equations of motion for the density matrix of composite
fermion operators that describe the electronic excitations of the strongly correlated
system, including local self-energy time-dependent effects and quantum spin fluc-
tuations. Our simulations predict, in particular, fs quantum spin—flip fluctuations
correlated with photoexcited coherent superpositions of electronic states to initiate
local ferromagnetic correlations between neighboring chains that are anti-
ferromagnetically coupled in the ground state, as shown schematically in Fig.1.
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Figure 1. (a) Schematics of ultrafast excitations of a CE-type AFM/CO/OO order. Mn4+ config-
urations, with empty doubly—degenerate eg orbitals and t2g orbitals filled by three spin—aligned
electrons, mostly populate the one—dimensional (1D) zig—zag chain corner sites. The 1D chain

bridge sites are mostly populated by Mn3+ configurations, with an additional eg—orbital electron
populating alternating orbitals (OO). For classical spins, electron conduction and optical transi-
tions are restricted within the same 1D ferromagnetic chain (white arrow). Quantum spin—flip

fluctuations, however, allow eg electrons to hop on sites with opposite local t2g spin, by forming

non—equilibrium total spin eigenstates (red arrow). (b) Calculated photoinduced total spin and in-
ter—atomic coherence (inset) for three Rabi energy values. The laser pulse time—dependence is

superimposed, demonstrating that FM local correlations transiently build—up from the AFM
ground state (total spin zero) during the nonlinear photoexcitation.
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Figure 2. A three-dimensional view demonstrating the distinct femtosecond spin and charge dy-
namics as well as photo-excitation threshold behavior observed experimentally in Ref. [2]. (a)
Time-resolved ellipticity change and (b) differential optical reflectivity as function of pump
fluence. Measurements were taken under the same experimental conditions. A photo-excitation
threshold is seen for emergence of femtosecond magnetization, whereas the charge dynamics ex-
hibits no threshold. Magnetic field B=0.5T and temperature T=30 K.
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Abstract We report experimental results which indicate the contribution of non-
thermal process in photo-induced ferromagnetic resonance (FMR) in (Ga,Mn)As
excited by weak, fs laser pulses.

Introduction

In metallic systems, it has been recognized that randomization of ordered spin sys-
tems by the intense laser irradiation (mJ/cm?) is the fundamental process to realize
ultra-fast magnetic excitation (12 Tn (Ga,Mn)As, photo-induced FMR (ph-FMR)
could be triggered by a few uJ/cm? laser pulse without an external magnetic field
1341 There have been two different arguments to account for the basic mechanism:
the ultra-fast spin randomization (thermal process) [**), and excitation of electronic
states associated with ordered spins (non-thermal process) *). We report here that,
in the time-resolved magneto-optical (TRMO) measurements for the weak excita-
tion regime (< 10 zJ/cm?), signals due to the ultra-fast randomization have been
hardly observed, and the onset of ph-FMR strongly depends on excitation wave-
length. These results suggest significant contribution of non-thermal effect.

Experimental method

TRMO measurements were carried out at 10 K with one-color pump and probe
technique. The light source and the sample were a mode-locked Ti:sapphire laser
(a pulse width of 150 fs with repetition rate 76 MHz) and a 100 nm-thick
GagogMng o,As grown on GaAs(001), respectively. Experimental setup has been
detailed in Ref.3. The wavelength has been varied in the range A = 750 - 900 nm,
whereas the polarization plane was fixed at the [010] GaAs axis for both pump
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and probe beams. The fluence of the probe beam was fixed at 84 nJ/cm’, whereas
that of the pump (P*) was varied between 0.34 zJ/cm® and 10 zJ/cm’.

Results and discussion

Characteristic oscillatory signals due to ph-FMR have been observed for the
wavelengths of A = 880 nm or shorter. We have found a striking difference con-
cerning the onset of oscillation between the data obtained with A < 820 nm, the re-
gion S, and those with A > 820 nm, the region L. TRMO data obtained with P* =
1.7 ,uJ/cm2 are shown in Figs.1(a) and (b). Oscillation starts immediately after the
excitation in the region L, whereas it is accompanied with noticeable time delay in
the region S. Note that, in the ultrafast time regime (= 2 ps), signals due to ultra-
fast demagnetization have hardly been observed (Fig.1(b)).
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Fig. 1. Photo-induced FMR in (Ga,Mn)As measured at long time scale (a), and short time
scale (b). Lines and dots in (b) are experimental and calculated TRMO data, respectively.

Magnetization dynamics was calculated numerically by solving LLG equation.
We have added a new delay term into the dynamics of an effective field that was
developed earlier ). Before excitation, the effective field H and the magnetization
M both lie along the in-plane [100] direction; with certain time delay 7, after the
excitation at ¢t = 0 ps, H rotates toward the out-of-plane [001] direction and relax
back to the [100] direction, with its time constant 7; and 1, respectively. During
this event, M precesses around H with natural damping. With this scenario, the
angle 6 (¢) of H with respect to the [100] axis was formulated as follows:

A1) = erf(t - 1) exp(-t/7) {1 —exp(-t/1,)} 1

Here, the delay term is expressed by the error function erf(f) with the retarda-
tion time 7,. Our approach has reproduced successfully the experimental data,
from which 7, is extracted and summarized in Fig. 2 as a function of excitation
photon energy and wavelength. Reflecting the instantaneous oscillations, 7, = 0 in
the region L. This fact indicates the presence of electronic states which allow di-



Investigation of non-thermal process in the dynamics ... 7

rect access to the spin subsystem (Fig.3). In the region S, the 7, value increases
with increasing photon energy. This fact suggests that we enter into the region in
which another states, presumably the states associated with a host semiconductor,
is first excited, and the excess energy is then transferred to the spin subsystem
(Fig.3). A dip observed at 790 nm is presumably due to enhanced LO phonon scat-
tering [,
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Photan energy [eV] Fig. 3. Schematic illustration of the excita-
Fig. 2. Photon energy and wavelength tion process for the ph-FMR. Values in the
dependence of retardation time 7. figure indicate the excitation wavelength.
Conclusions

We have found the presence of two different excitation channels for the photo-
induced ferromagnetic resonance in (Ga,Mn)As. In the region L (820 <A < 880
nm), magnetization precession occurs instantaneously with pulsed laser excitation.
In the region S (A < 820 nm), the precession is accompanied with retardation
whose retardation time varies with the wavelength.
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Abstract a We report on time resolved experiments that provide insight into the
time scales and the nature of the interactions in ferromagnetic InMnAs and
InMnSb. Theoretical calculations are performed using an 8 band k:p model in-
cluding non-parabolicity, band-mixing, and the interaction of magnetic Mn impu-
rities with itinerant electrons and holes.

Introduction

Carrier-induced ferromagnetism in magnetic III-V semiconductors has opened up
new opportunities for device applications, as well as fundamental studies in mate-
rial systems in which itinerant carriers interact with the localized spins of magnet-
ic impurities. A low temperature MBE technique is nearly always used to prepare
thin ferromagnetic films, although MOVPE, an alternative technique, allows sin-
gle phase magnetic InMnAs and InMnSb compounds to be deposited at 500° C,
much higher than that used in MBE. Films with hole densities of 1018 cm-3 can
have T, above room temperature [1].

In this work, we perform time resolved differential transmission (TRDT) stud-
ies to obtain insight into the dynamics in MOVPE grown ferromagnetic films on
the picosecond time scale. To understand the effects of ferromagnetic order on the
electronic structure and subsequent relaxation dynamics, we calculate the electron-
ic structure for bulk InMnAs and InMnSb. By calculating the electronic band
structure, we can determine where photoexcited carriers are generated by the
pump pulse and which regions of the electronic structure are sampled by the probe
pulse. The calculations are based on an 8 band k-p model which includes the con-
duction and valence band mixing [2]. We use k = 0 Bloch basis states for the con-
duction bands, heavy-holes, light holes and split-off holes for a total of 8 states in-
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cluding spin. In our model, we include the effects of the spontaneous magnetiza-
tion of the Mn ions and the sp-d coupling of this magnetization to the electrons
and holes [2]. Figure 1 shows an example of the calculations for ferromagnetic
InMnSb at 77 K in the absence of an externally applied magnetic field.
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Fig. 1. The band structure and the Fermi energies as a function of carrier density for InMnSb at
77 K as a function of n and p carrier concentrations. The Fermi energy for the undoped semicon-
ductors is indicated by the dotted line. The Curie temperature is taken to be 400 K.

Experimental Approach

By probing the dynamical behavior of the nonequilibrium carriers created by in-
tense laser pulses, we gain valuable information about the band structure and dif-
ferent scattering mechanisms. Using TRDT in the MID-IR, we achieved tunability
of carrier dynamics and relaxation times with characteristics unobtainable in MBE
grown ferromagnetic structures [2]. The MOVPE grown InMnAs structure is an
800 nm thick film with a Mn content of 4%, and the InMnSb film is a 200 nm film
with a Mn content of 3.7%. Both samples, demonstrated 7. above room tempera-
ture. The laser pulses were tuned in NIR and MIR using different sources with
repetition rates of 1 KHz and pulse durations of ~ 100 fs.

As shown in Fig. 2 for InMnSb, we observe the sensitivity and tunability of the
carrier dynamics to the initial excitation. The initial increase in the differential
transmission is due to free carrier Drude absorption where the fast component of
the temporal evolution is attributed to the relaxation of hot electrons and the slow-
er component is due to electron-hole recombination. Exploiting the selection rules
for interband transitions, spin-polarized carriers are created using circularly polar-
ized pump beams. By monitoring the transmission of a weak delayed probe pulse
that has the same circular polarization (SCP) or opposite circular polarization
(OCP) as the pump pulse, as shown in Fig. 3, the optical polarization can be ex-
tracted. Figure 3b shows the exponential fit to the SCP-OCP in the TRDT signal
which gives a spin relaxation time of ~ 6.0 ps, which is much higher than the re-
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ported time scale for other narrow gap ferromagnetic semiconductors. This fact is
due to much higher hole mobilities in these material systems.
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Fig. 2. TRDT a) in a non-degenerate scheme, b) when the pump and probe are the same wave-
length. Both the magnitude of the TRDT and the time scale of the relaxations vary by tuning the
initial excitation wavelength.
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Fig. 3. a) Spin Polarized Time Resolved Differential Transmission b) Exponential fit to the SCP-
OCP, to extract the spin relaxation time.
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