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Supervisor’s Foreword

It gives me great pleasure to write the foreword for Tommaso Biancalani’s Ph.D.
thesis. The thesis is concerned with observable phenomena that arise due to the
noise which is generated as a consequence of the discrete nature of entities (atoms,
molecules, individuals, …) which make up a system. This is called intrinsic noise,
or in a biological context, demographic noise. Tommaso had already worked on
one type of phenomenon induced by demographic noise (stochastic Turing pat-
terns) for his master’s thesis with Duccio Fanelli in Florence, before coming to
Manchester, and so was already familiar with the concept. During the period he
was in Manchester, several new features of noise-induced structures were
uncovered, some of which appear in this thesis.

All these phenomena are fascinating, rather general and we have mathematical
and computational tools at our disposal to analyse them. However, this latter point
is not widely appreciated and the ideas have frequently been developed by theo-
retical physicists, rather than by those trained in the biological sciences. One
reason for this is not hard to find: the dynamics of the processes are stochastic, and
the subject of non-equilibrium statistical physics has stochastic dynamics at its
core. Another factor, which is just as important, is that the theory of stochastic
processes can be presented in a very mathematical way, essentially as a branch of
pure mathematics. The gap between this way of viewing stochastic phenomena
and the way empirical biologists work is usually too great for effective commu-
nication. In my experience, theoretical physicists have just the right mix of intu-
ition and mathematical background to successfully analyse stochastic systems
found in the biological sciences. Tommaso’s thesis is very much in this tradition.

There has been a long history of theoretical physicists moving into theoretical
biology. In recent years this trend has grown and a trickle has become, if not a
flood, at least a sizeable flow. There are many statistical physics groups around the
world in which many or all the members of the group apply the ideas and tech-
niques of statistical physics to biology and related fields. This area has become
known as ‘‘Biological Physics’’—to distinguish it from the older field of ‘‘Bio-
physics’’, which concerns itself more with the physical properties of biological
materials. Those trained in theoretical physics focus rather more on general
principles and unifying features—synthesis as well as analysis. They also tend to
favour bottom-up approaches to modelling: in the biological literature there is
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frequently little attempt to make any connection between ‘‘microscopic models’’—
in which the number of individuals of a given type define the state of the system,
and which are used in numerical simulations—and ‘‘macroscopic models’’—which
are average, deterministic, descriptions and are used in many traditional analytic
treatments. Yet it is vital to do this to get the correct form of noise and so the
correct form for the noise-induced structures. In practice, this is usually achieved
by working with ‘‘mesoscopic models’’ which have the structure of the macro-
scopic model, but with the correct form of noise inherited from the microscopic
system added on.

A simple example of a noise-induced structure is found in models of predator-
prey systems. This kind of dynamics is meant to favour cyclic behaviour, but the
simplest textbook models do not generically show this. It turns out that at least
some of the predator-prey cycles empirically observed are noise-induced. These
so-called quasi-cycles can be found by application of the linear-noise approxi-
mation, which as its name suggests linearises the noise about the macroscopic
(deterministic) equations. It is found that the amplitude of the cycles is amplified
by this noise, which has its origin in the discreteness of the fundamental constit-
uents of the microscopic model. Thus, while one would naively expect the
amplitude of the quasi-cycles to go like 1=

ffiffiffiffi

N
p

, where N is the number of indi-
viduals that can fit into the system, the resonant amplification multiplies this by a
large factor, so that cycles which have an amplitude of order one are seen even for
quite large values of N.

In the last decade quasi-cycles have been found in many different contexts, and
several other effects of demographic stochasticity which can be observed have
been identified. Tommaso discusses two of these effects in his thesis. The first is
stochastic waves, which have both a spatial and temporal aspect. The quasi-cycles
discussed above were found in well-mixed systems and consisted only of temporal
oscillations. Microscopic models which are defined on a lattice or network, and
so allow individuals not only interact with each other, but also to migrate to
neighbouring sites, lead to reaction–diffusion equations on the macroscale, and to
stochastic spatio-temporal patterns on the mesoscale. In fact mesoscopic reaction–
diffusion models may also contain stochastic versions of deterministic Turing
patterns, but as Tommaso explains these are not such natural generalisations of
quasi-cycles as are stochastic waves. However, all these phenomena can be suc-
cessfully analysed using the linear noise approximation, with all the advantages
that working with a linear system bring.

The second main topic of Tommaso’s thesis is noise-induced bistable states.
The classic picture of bistability is of a double-well potential with weak noise
permitting rare transitions between the two (meta)stable states. Noise-induced
bistable states, by contrast, may occur in situations in which only a single stable
state exists in the deterministic limit; now the noise not only causes the transitions,
but also creates the metastable states between which the transitions occur. The
model used to illustrate this effect in this thesis had its genesis in the study of a
model of Togashi and Kaneko on autocatalytic reactions. The noise is
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multiplicative, and so the linear noise approximation cannot be used, at least
without carrying out a nonlinear change of variables. These ideas are not new: in
the 1980s there was a great deal of interest in the possibility of multiplicative noise
causing transitions of this type. Much of the work of that time is summarised in the
book ‘‘Noise-Induced Transitions’’ by Horsthemke and Lefever. However, the
work carried out then started with a mesoscopic description—with all the ambi-
guities that entails—rather than with microscopic and biologically (or physically)
motivated processes.

I am sure that there are many new effects to be uncovered, as well as new
theoretical formalisms to be developed to understand them. I hope that the work
presented here will allow many more people to understand, and eventually con-
tribute to, the theory of phenomena induced by intrinsic noise.

Manchester, April 2014 Prof. Alan J. McKane
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Abstract

This thesis presents a mathematical analysis of two classes of behaviours which
occur in systems of populations: noise-induced bistability and stochastic pattern-
ing. Both behaviours have their origins in the intrinsic stochasticity possessed by a
population system due to the discreteness of the individuals: the intrinsic noise.

In the study of noise-induced bistability, we analyse a system which exhibits
switching between two states. These states do not correspond to fixed points of the
corresponding system of deterministic equations, but instead are the states at
which the system stochasticity is minimal or vanishing. This feature suggests that
the mechanism is intrinsically different to the traditional paradigm of bistability, in
which a system with two stable fixed points is subject to noise. Through our
mathematical analysis we highlight some characteristic properties of the dynamics,
suggesting a way to distinguish, in a real system, the presence of noise-induced
bistable states from other types of bistability.

Stochastic patterning arises when noise acts on a reaction–diffusion system
which exhibits pattern formation via an instability of the homogeneous state. If the
system is close to the onset of the instability, whilst still in the stable regime, then
patterning occurs due to a combination of stochastic agitation and the exponential
decay of the underlying stable homogeneous state. We investigate the case of the
stochastic travelling waves on both regular lattices and complex networks. In both
cases, a complete analytical treatment is provided via the power spectra of
fluctuations.

The spirit of the thesis is to propose a simple model which is representative of an
observed behaviour, and then solve the model analytically. Numerical simulations
are used throughout to verify the accurateness of the analytical approximations. Thus
the analytical treatments constitute the core of the work and have two purposes. They
are explanatory, in the sense that they help to develop intuition about how the noise
leads to a certain behaviour. Moreover, they give quantitative understanding, as we
provide the explicit expressions for various quantities \(stationary distributions,
mean times, etc.). In some cases, the formulas that we have obtained do not rely on
the details of the model, so that we would expect them to fit experimental data. In
other cases this is not so, yet the analytical treatment may give insight into how to
attack more realistic models.
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