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Preface

This book presents a wide-band and technology independent SPICE-compatible
RLC model for TSVs in 3D ICs. This proposed model accounts for a variety of ef-
fects, including skin effect, depletion capacitance, and nearby contact effects. The
TSV is modeled like a MOS structure where it is assumed that a full depletion re-
gion exists around the TSV. A lumped parameter model is then proposed to model
the TSV. The equivalent circuit model includes a single TSV model and coupling
model between TSVs. The dimensional analysis method is applied to obtain closed
form solutions for the resistance, capacitance, and inductance of the TSV lumped
model. The accuracy of the expressions is then verified with the electromagnetic
field solver under typical high-density TSV dimensions, and it shows a significant
accuracy up to 100 GHz.

Although there are several works in the literature that provide an RLC model
for a TSV and closed form expressions with different levels of accuracy, this book
discusses models that exhibit several additional enhancements as compared to exist-
ing literature. The models in this book include: (1) MOS depletion R and C effect.
(2) Body contact effect. (3) Model linearization, i.e., single nonlinear or frequency-
dependent element can be approximated by multiple linear, and frequency-inde-
pendent elements. (4) Simulation comparisons (e.g. with full-wave, quasi-static,
and device simulation). This book can be very useful in the fast SPICE-compatible
parasitic extraction of TSVs for 3D IC design.

Moreover, a proposed architecture based on TSV technology for a spiral inductor
is demonstrated and characterized. Also, in this book, and for the first time, a novel
inductive coupling interface that uses the magnetic near field induced by TSV-based
spiral inductor is demonstrated. The feasibility of using TSV for wireless near field
communication is shown. A TSV-based near-field inductive-coupling system of-
fers a high quality factor and a good coupling coefficient. Therefore, the proposed
communication system appears to be a promising technology for wireless com-
munication. Moreover, another application for the TSV, which is bandpass filter, is
discussed in this book.

This book presents the effects of substrate doping density on the electrical per-
formance of TSV. Moreover, parasitic coupling capacitive between through-silicon
vias and surrounding wires is analyzed and studied. Noise coupling between TSVs
and CMOS is also investigated.
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This book also presents several new directions for TSV fabrication and use in de-
sign. It presents performance comparison between Air-Gap Based Coaxial TSV and
conventional circular TSV. Air-gap TSVs reduce the energy loss compared to the
conventional circular TSV or conventional coaxial TSV. Moreover, SW-CNT bun-
dles as a prospective filler material for TSV are investigated compared to conven-
tional filler materials like Cu, W, and poly-silicon. CNT-filled TSVs have superior
performance compared to Cu-filled TSVs, resulting in reduction in transmission
loss at high frequency of operation. Moreover, TSV-based ADIABATIC logic based
on the adiabatic switching principle is presented and analyzed.
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Chapter 1
Introduction: Work Around Moore’s Law

Interconnect dimensions and complementary metal-oxide—semiconductor (CMOS)
transistor feature sizes approach their physical limits. Therefore, scaling will no
longer be the sole contributor to performance improvement. In addition to trying to
improve the performance of traditional CMOS circuits, integration of multiple tech-
nologies and different components in a high-performance heterogeneous system is a
major trend. This chapter briefly surveys key technology level trends, classified as
“More Moore” such as: new architectures (silicon on insulator, SOI; FinFET; Twin-
Well) and new materials (High-K, metal gate, strained Si), “More than Moore” such
as: new interconnect schemes (three-dimensional, 3D; network on chip, NoC; opti-
cal; wireless), and “Beyond CMOS” such as: new devices (molecular computer,
biological computer, quantum computer).

1.1 Scaling Limitations of Conventional Integration
Technology: Work Around Moore’s Law

By 2020, the minimum physical gate length of transistors will be close to 7 nm
(Fig. 1.1), which is considered by most researchers to be the physical limit of silicon
as that limit is the size of the atom and molecule. Clearly, devices cannot be fabri-
cated smaller than the dimension of a single molecule. Also, lithography technology
seems unfit for precise manufacturing beyond 7 nm, and if silicon dioxide insula-
tors are reduced to just a few atomic layers, electrons can tunnel directly through
the gate. The interconnect congestion bottleneck is also a limiting factor (Fig. 1.2),
where interconnect delay dominates with scaling (Table 1.1). These limitations of
silicon-based integrated circuits (ICs) are summarized in Table 1.2. These limita-
tions are now causing the industry to identify at least three main research domains
(Fig. 1.3), namely: (1) “More Moore,” (2) “More than Moore,” and (3) “Beyond
CMOS” (CMOS, complementary metal-oxide—semiconductor) [1].

The “More Moore” domain traditionally deals with technologies related to fur-
ther scaling silicon-based CMOS. The “More than Moore” domain encompasses
the engineering of complex systems that can combine, by heterogeneous integra-

K. Salah et al., Arbitrary Modeling of TSVs for 3D Integrated Circuits, 1
Analog Circuits and Signal Processing, DOI 10.1007/978-3-319-07611-9 1,
© Springer International Publishing Switzerland 2015



2 1 Introduction: Work Around Moore’s Law

250

200
. Solutions??
<9
=
E
g 150
=N
L:n = Saturation
£ g 12 nm
2
2 100
3
; 22 nm

50 32nm
45nm
0.18um  90nm 65“"‘____,_——
0 — B
2000 2003 2006 2010 2013 2015 2017 2020
Year

Fig. 1.1 Technology trends show saturation in transistor scaling at 12 nm and the need for work-
ing around Moore’s law [1]
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Fig. 1.2 Gate delay, interconnect delay, and sum of delay at different technology nodes, which
shows the fast increase in delay time caused by the interconnect [1]
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Table 1.1 Interconnects dominate with scaling [1]

90 nm 45 nm 22 nm 12 nm
Transistor delay (ps) 1.6 0.8 0.4 0.2
Delay of 1 mm interconnect (ps) 5% 102 2x10? 1x10% 6x10*
Ratio 3x10? 3x10° 4x10% 3x10°

Table 1.2 Physical limitations of silicon-based ICs

Manufacturing limitations

Lithography Lithography technology seems unfit for precise manufacturing
beyond 7 nm
Transistor dimensions Transistor dimensions are approaching a hard limit that cannot

be overcome That limit is the size of the atom and molecule.
Clearly, devices cannot be fabricated smaller than the dimension
of a single molecule [5]
Material limitations
SiO If silicon dioxide insulators are reduced to just a few atomic layers,
electrons can tunnel directly through the gate

2

Design limitations
Interconnects bottleneck Interconnect delay dominates over gate delay

Evading Moore's Law

. ™

0.001 1
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Year
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>

Fig. 1.3 Evading Moore’s law: / “More Moore,” 2 “More than Moore,” and 3 “Beyond CMOS”
(4]

tion techniques (in SoC or SIP), various technologies (not exclusively electronic) in
order to meet certain needs and challenging specifications of advanced applications.
The “Beyond CMOS” domain deals with new technologies and device principles
(i.e., from charge-based to non-charge-based devices, from semiconductor to mo-
lecular technologies).
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Fig. 1.4 Summary of solutions on the technology level to work around Moore’s law, where it
presents new architectures, materials, interconnect schemes, and devices

This chapter introduces ongoing trends to work around Moore’s law limitations
[1-4]. Moreover, it focuses on technology level trends (Fig. 1.4), where it presents
new architectures, materials, interconnect schemes, and devices.

1.1.1 More Moore: New Architectures

In this section, examples of the “More Moore: New Architectures” from Fig. 1.4 are
given. Silicon on insulator (SOI) is introduced in Sect. 1.1.1.1. FinFET is discussed
in Sect. 1.1.1.2. Twin-Well is discussed in Sect. 1.1.1.3.

1.1.1.1 SOI

The basic concept of SOI is fairly simple (Fig. 1.5). Rather than fabricating a tran-
sistor whose body is connected to the substrate, which is the normal method, an
insulating oxide is deposited on the Si substrate and then the transistor is fabricated
on top of that. By doing this, the body is then electrically isolated from its surround-
ings. This means that the bulk-to-source voltage is now floating which lowers the
threshold voltage and capacitance, resulting in a performance increase [5].

1.1.1.2 FinFET

FinFETs have their technology roots in the 1990s, when DARPA funded research
into possible successors to the planar transistor. FinFET, which is a double-gate field
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Fig. 1.5 SOI CMOS archi-
tecture, where rather than
fabricating a transistor whose
body is connected to the
substrate, which is the normal
method, an insulating oxide is
deposited on the Si substrate
and then the transistor is fab-
ricated on top of that [5] SIO,

Silicon substrate

Fig. 1.6 FinFET architecture,
where it has two gates that
can be controlled indepen-
dently, usually, the second
gate of FinFETs is used to
dynamically control the
threshold voltage of the first
gate in order to improve cir-
cuit performance and reduce
leakage power [6]

effect transistor (DGFET), is more versatile than traditional single-gate field effect
transistors because it has two gates that can be controlled independently (Fig. 1.6).
Usually, the second gate of FinFETs is used to dynamically control the threshold
voltage of the first gate in order to improve circuit performance and reduce leak-
age power. Also, a FInFET can be considered a three-dimensional (3D) version of
metal-oxide—semiconductor field-effect transistor (MOSFET) that rises above the
planar substrate, giving them more volume than a planar gate for the same pla-
nar area. Given the excellent control of the conducting channel by the gate, which
“wraps” around the channel, very little current is allowed to leak through the body
when the device is in the off state. This allows the use of lower threshold voltages,
which results in optimal switching speeds and power [6].

1.1.1.3 Twin-Well

For high-performance chips, a low-doped substrate is used, on which two wells are
constructed at optimum doping levels. Since the substrate is lightly doped, there
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P Well N Well

Fig. 1.7 Twin-wells architecture, where the substrate is lightly doped, so there is less chance for
latch-up because of the high resistivity [6]

is less chance for latch-up because of the high resistivity (Fig. 1.7) [6]. Moreover,
it provides separate optimization of the n-type and p-type transistors and makes it
possible to optimize “threshold voltage,” “body effect,” and the “gain” of n-type
and p-type devices, independently. Therefore, balanced performance of n and p de-
vices can be constructed.

1.1.2 More Moore: New Materials

In this section, examples of the “More Moore: New Materials” from Fig. 1.4 are
given. High-K is introduced in Sect. 1.1.2.1. Meta gate is discussed in Sect. 1.1.2.2.
Strained Si is discussed in Sect. 1.1.2.3.

1.1.2.1 High-K Dielectric

The term high-K dielectric refers to a material with a high dielectric constant K (as
compared to silicon dioxide). High-K dielectrics are used in semiconductor manu-
facturing processes where they are usually used to replace a silicon dioxide gate
dielectric or another dielectric layer of a device. High-K dielectrics are designed to
address one particular aspect of off-state power consumptions: gate-tunneling cur-
rents, as it reduces gate leakage [4].

1.1.2.2 Metal Gate

The doped polycrystalline silicon used for gates has a very thin depletion layer, ap-
proximately 1 nm thick, which causes scaling problems for small devices. Others
metals are being investigated for replacing the silicon gates, including tungsten and
molybdenum to eliminate the polysilicon depletion limitation and also for better
thermal stability [4].
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Fig. 1.8 Strained Si is the process of introducing physical strain on the silicon lattice to help
improve electron and hole mobility [5]

1.1.2.3 Strained Si

If we cannot make MOSFETs yet smaller, instead move the electrons faster. Strained
Si is the process of introducing physical strain on the silicon lattice to help improve
electron and hole mobility (Fig. 1.8). This allows the holes and electrons to flow
more freely, reducing device resistance and other properties affected by electron/
hole mobility [5].

1.1.3 More than Moore (MTM): New Interconnects Schemes

In this section, concepts of “More Moore: New Interconnect Schemes” from Fig. 1.4
are listed. 3D interconnect is introduced in Sect. 1.1.3.1. Network on chip (NoC) is
discussed in Sect. 1.1.3.2. Optical interconnect is discussed in Sect. 1.1.3.3. Wire-
less interconnects are discussed in Sect. 1.1.3.4.

1.1.3.1 3D

Increasing drive for the integration of disparate signals (digital; analog; radiofre-
quency, RF) and technologies (SOI, SiGe heterojunction bipolar transistors (HBTs),
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Fig. 1.9 3D technology,
where an entire (3D) chip is
divided into a number of dif-
ferent blocks, and each one is
placed on a separate layer of
silicon that are stacked on top
of each other [7]

GaAs, strained silicon, and so on) results in introducing various design concepts,
for which existing planar technologies may not be suitable; hence, 3D-ICs are in-
troduced (Fig. 1.9).

3D integration technology provides increased performance in many design cri-
teria as compared to the current 2D approaches. 3D-ICs, which contain multiple
layers of active devices, extensively utilize the vertical dimension to connect com-
ponents and are expected to address interconnect delay-related problems in planar
(3D) technologies, by the use of short wires in 3D designs. These shorter wires will
decrease the average load capacitance and resistance and decrease the number of
repeaters which are needed to regenerate signals on long wires; 3D technology also
enables the integration of heterogeneous technologies.

In the 3D design, an entire (3D) chip is divided into a number of different blocks,
and each one is placed on a separate layer of silicon that are stacked on top of each
other. This may be exploited to build a system on chip (SoC) by placing different
circuits with different performance requirements in different layers [7].

3D integration provides some unique benefits for processor design, such as pack-
ing density, interconnect bandwidth and latency, modularity, and heterogeneity. The
packaging density improvement provided by 3D can be used to continue improve-
ments in processing and storage capacity as well as enabling a gradual shift towards
integrating the full system in one stack.

3D enables modular design of a variety of systems from a shared set of subcom-
ponents through functional separation of the device layers. As a result, different
layers can be independently manufactured in the most cost-effective ways, which
can be stacked to compose a wide range of customized systems. Optimizing layer
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Switch

RE S

Fig. 1.10 NoC architecture. Instead of having a shared bus, a message passing approach is used [7]

interfaces and infrastructure components, such as power delivery and clocking, can
further enhance the inherent modularity advantages.

The system-level benefits of 3D will be determined, to a significant degree,
by the effectiveness of novel design methodologies that explore the new design
space introduced by the vertical dimension. Design flow optimization is essential
in achieving the highest performance gains as well as tackling the more prominent
interdependencies among performance, power dissipation, temperatures, intercon-
nectivity, and reliability in 3D.

1.1.3.2 NoC

The NoC is a promising solution to simplify and optimize SoC design. NoCs have
been introduced as a shared communication medium that is highly scalable and can
offer enough bandwidth to replace many traditional bus-based and point-to-point
links [8]. NoC is a communication infrastructure for complex SoC systems with
many IPs like a multiprocessor system. Instead of having a shared bus, a message
passing approach is used. In analogy to a computer network, each IP acts like a
processor, sending and receiving packets (flits) to and from the network. The basic
element of a NoC is the switch, which connected to the IP with a network interface
(ND), that is in charge of routing flits from the input ports to the output ports, from
the source IP to the destination IP (Fig. 1.10). When a flit reaches its destination,
it will have crossed several switches, i.e., hops. This kind of communication infra-
structure is scalable, making it possible to have a number of parallel communica-
tions between different cores.
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Fig. 1.11 Optical intercon-
nects as a promising solution
to reduce the overall power
budget [6]

Fig. 1.12 Wireless NoC
interconnects, where it can be
built using existing CMOS
technology [10]

|:| Embedded Cores . Wireless Base Stations

l Wireless NoC Switch T Antenna

1.1.3.3 Optical Interconnects

Thanks to the unique properties of optical communication, such as bit-rate transpar-
ency and low-loss optical waveguides, photonic NoCs have been introduced as a
promising solution to reduce the overall power budget (Fig. 1.11) [6].

1.1.3.4 Wireless Interconnects

Unlike 3D and photonic NoCs, NoC with RF interconnects can be built using ex-
isting CMOS technology (Fig. 1.12) [10]. Antennas are just on-chip interconnect
with transceivers also on-chip enabling full core-to-core communication as well
as wireless clocking. Table 1.3 summarizes the main differences between different
interconnect technologies.

1.1.4 Beyond CMOS: New Devices

In this section, examples of “Beyond CMOS: New Device Schemes” are dis-
cussed. CNT is introduced in Sect. 1.1.4.1. Biological computers are discussed in
Sect. 1.1.4.2. Quantum computers are discussed in Sect. 1.1.4.3.



