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Preface

This volume represents presentations given at the 78th annual meeting of the
Psychometric Society, organized by Cito and held at the Musis Sacrum in Arnhem,
the Netherlands, during July 22–26, 2013. The meeting attracted 334 participants
from 28 countries, with 242 papers being presented, along with 49 poster pre-
sentations, five pre-conference workshops, three keynote presentations, six invited
presentations, six state-of-the-art lecturers, and three invited symposia. We thank
the local organizer Anton Béguin and his staff and students for hosting this very
successful conference.

After the 77th meeting in Lincoln, Nebraska, the idea was presented to publish a
proceedings volume from the conference so as to allow presenters to quickly make
their ideas available to the wider research community, while still undergoing a thor-
ough review process. Because the first volume was received successfully, it was sug-
gested that we publish proceedings more regularly. Hence, this is the second volume,
and a third volume following the 79th meeting in Madison, Wisconsin, is expected.

We asked authors to use their presentation at the meeting as the basis of their
chapters, possibly extended with new ideas or additional information. The result is a
selection of 29 state-of-the-art chapters addressing a diverse set of topics, including
classical test theory, item response theory, factor analysis, measurement invariance,
test equating and linking, mediation analysis, cognitive diagnostic models, marginal
models, and multi-level models.

The joy of editing these proceedings was overshadowed by the tragic news
that Roger E. Millsap had passed away suddenly on May 9, 2014. As editor of
Psychometrika and former president, Roger played an important role in the Psy-
chometric Society. He was also the initiator and principal editor of the proceedings.
He passed away shortly after finalizing these proceedings. We will always remember
him fondly as the driving force of this project, and we will miss the friendly, helpful,
and competent advice of this well-seasoned editor. May you rest in peace Roger.

Amsterdam, The Netherlands L. Andries van der Ark
Madison, WI, USA Daniel M. Bolt
Hong Kong Wen-Chung Wang
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Chapter 1
What Do You Mean by a Difficult Item?
On the Interpretation of the Difficulty
Parameter in a Rasch Model

Ernesto San Martín and Paul De Boeck

Abstract Three versions of the Rasch model are considered: the fixed-effects
model, the random-effects model with normal distribution, and the random-effects
model with unspecified distribution. For each of the three, we discuss the meaning of
the difficulty parameter starting each time from the corresponding likelihood and the
resulting identified parameters. Because the likelihood and the identified parameters
are different depending on the model, the identification of the parameter of interest is
also different, with consequences for the meaning of the item difficulty. Finally, for
all the three models, the item difficulties are monotonically related to the marginal
probabilities of a correct response.

1.1 Introduction

In the Rasch model, the probability of success in an item is defined on the basis of a
contribution from the part of the person (person ability) and a contribution from the
part of the item (item difficulty), while the contribution from the part of the persons
does not depend on the item and neither does the effect of the items depend on the
person. The Rasch model is, therefore, a main-effect model. The basic formula is
the following:

Ypi ∼ Bern [Ψ(θp −βi)], (1.1)
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2 E. San Martín and P. De Boeck

whereΨ(x) = exp(x)/(1+exp(x)), θp is the effect of the person on the probability,
also called ability, and βi is the effect of the item on the probability, also called the
difficulty.

Different choices can be made for how the effects of the persons are considered.
Either the persons are modeled with fixed-effects (FE) or with random-effects (RE),
and for these random-effects one can either specify the distribution, for example,
the normal distribution (RE-N), or one can leave the distribution unspecified
(RE-U). The three models have led to three different likelihood functions (or
sampling probabilities) and, accordingly, to three different ways to estimate the
corresponding parameters: joint maximum likelihood (JML) in the case of the FE
model, parametric marginal maximum likelihood (MML) in the case of the RE-N
model, and semi-parametric MML in the case of the RE-U model.

It is our purpose to infer the consequences these choices have for the meaning of
the other parameter of the model, βi, the item difficulty. We will make this inference
from the likelihood for each of the three types of models. This approach is justified
by the fact that the likelihood function is supposed to generate the responses patterns
and, therefore, it provides the statistical meaning of the parameters indexing it; for
details, see Bamber and Van Santen (2000), Cox and Hinkley (1974), Fisher (1922),
and McCullagh (2002). Consequently, the inference proceeds in two steps:

1. One step for the identified parameterization, which is the parameterization as far
as possible on the basis of the likelihood.

2. Another step for the further identification of the parameter of interest, which
will require to establish an injective relationship (under constraints, if necessary)
between the parameter of interest and the identified parameterization.

It will be shown that the βi parameters have a different meaning in the three Rasch
models. The identified parameterization differs and also the identification of the
parameter of interest is different. Furthermore, we will also discuss a condition
based on marginal probabilities under which the difficulty of an item i is larger
than the difficulty of an item j; this empirical condition can also be related to the
empirical difficulty of an item (that is, the proportion of persons correctly answering
the item).

In order to differentiate between the three models, item difficulty parameters of
the three models will be denoted with different symbols: β FE

i , β RE-N
i , and β RE-U

i . It will
be shown that the meaning of these three parameters depends on the choice that is
made for how to treat the effects from the part of the persons and the assumptions
one is making regarding these effects.

1.2 Fixed-Effects Specification

1.2.1 Assumptions

The specification of a Rasch model rests on the following two assumptions:
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Assumption 1: {Ypi : p = 1, . . . ,N; i = 1, . . . , I} are mutually independent.

Assumption 2: For each person p and each item i, Ypi ∼ Bern(πpi), where πpi =
Ψ(θp −β FE

i ) andΨ(x) = exp(x)/(1+ exp(x)).

1.2.2 Likelihood and Identified Parameters

These assumptions induce the following likelihood function:

P(θ1:N ,β FE
1:I)(Y1 = y1 . . .YN = yN) =

N

∏
p=1

I

∏
i=1

πypi
pi (1−πpi)

1−ypi

=
N

∏
p=1

I

∏
i=1

exp[ypi (θp −βi)]

1+ exp(θp −βi)
,

where Yp = (Yp1, . . . ,YpI)
� ∈ {0,1}I , θ 1:N = (θ1, . . . ,θN), and similarly for β 1:I .

The parameter of a Bernoulli distribution is identified. This fact, together with
Assumption 1, implies that the identified parameters are {πpi : p = 1, . . . ,P; i =
1, . . . , I}.

1.2.3 Parameters of Interest

The problem now is to identify the parameter of interest (θ 1:N ,β FE
1:I), which means to

write them as functions of the identified parameters. From Assumption 2, it follows
that

θp −β FE
i = ln

[
πpi

1−πpi

]
, p = 1, . . . ,N; i = 1, . . . , I;

βi −β j = ln

[
1−πpi

πpi

πp j

1−πp j

]
, for all person p and i �= j.

These relationships show that {θp − β FE
i : p = 1, . . . ,N; i = 1, , . . . , I} as well as

{β FE
i − β FE

j : i = 1, . . . , I, j = i, . . . , I} are identified since they are written as
functions of identified parameters. Therefore, the parameters of interest (θ 1:N ,β FE

1:I)
are identified if one identification restriction is imposed. Two possibilities can be
considered:

1. To restrict one person parameter, namely θ1 = 0. Under this restriction, the
difficulty parameter becomes
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β FE
i = ln

(
1−π1i

π1i

)
,

that is, the logarithm of the ratio between the probability that person 1 incorrectly
answers item i and the probability that person 1 correctly answers the item.

2. To restrict one item parameter, namely β FE
1 = 0. Under this restriction, the

difficulty parameter becomes

β FE
i = ln

(
1−πpi

πpi

πp1

1−πp1

)
, (1.2)

that is, the logarithm of the odd ratio between item 1 and item i for each person p.

The first restriction depends on a specific person who is present in one application
of the test. Therefore, the second identification restriction is more convenient since
we may apply the same test to various sets of persons; see Andersen (1980).

1.2.4 Relationship of Item Difficulty with Empirical Difficulty

Regarding the relationship between item difficulty and empirical difficulty, from
(1.2) it follows that

β FE
i > β FE

j ⇐⇒ P(θp,β FE
1:I)(Ypi = 1)< P(θp,β FE

1:I)(Yp j = 1) for all persons p. (1.3)

Thus, item i is more difficult than item j if the probability that the person correctly
answers item i is less than the probability that a person correctly answers item j.

1.2.5 Comments

The previous considerations lead to the following comments:

1. The fixed-effects specification of the Rasch model is a rather easy model from
the perspective of identification, easier than the other two specifications, and it is
therefore often implicitly used to interpret the parameters of the Rasch model,
even when one is interesting in is the random-effects specification; for more
discussion, see San Martín and Rolin (2013).

2. On the other hand, for an estimation of the model, mostly the assumption of a
random-effects model is made, because the maximum likelihood estimator of
the difficulty parameters is inconsistent due to the presence of the incidental
parameters. For details, see Andersen (1980), Ghosh (1995), and Lancaster
(2000).
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1.3 Random-Effects Specification

The random-effects assumption for the persons leads to consider the ability
parameters as realizations of an iid process. Using the statistical jargon, the person’s
abilities are now considered as random-effects.

1.3.1 Assumptions

A random-effects specification rests on the following assumptions:

Assumption 1: {Yp : p = 1, . . . ,N} are mutually independent conditionally on
θ 1:N .

Assumption 2: For each person p, the conditional distribution of Yp given θ 1:N

only depends on θp and it is parameterized by β RE-N
1:I .

Assumption 3: For each person p, {Ypi : i = 1, . . . , I} are mutually independent
conditionally on θp. This is the so-called axiom of local independence.

Assumption 4: For each item i, (Ypi | θp)∼ Bern [Ψ(θp −β RE-N
i )].

Assumption 5: θp’s are mutually independent and identically distributed, with a
common distribution N (0,σ2).

1.3.2 Likelihood and Identified Parameters

These assumptions imply that the response patterns Yp’s are mutually independent
and identically distributed. To describe the likelihood function, it is enough to
describe the probability of each of the 2I response patterns, namely

q12···I = P(βRE-N
1:I ,σ)(Yp1 = 1,Yp2 = 1, . . . ,Yp,I−1 = 1,YpI = 1),

q12···I = P(βRE-N
1:I ,σ)(Yp1 = 1,Yp2 = 1, . . . ,YpI,−1 = 1,YpI = 0),

...
... (1.4)

q12···I = P(βRE-N
1:I ,σ)(Yp1 = 0,Yp2 = 0, . . . ,YpI,−1 = 0,YpI = 0),

and

P(βRE-N
1:I ,σ)(Yp = y) =

∫ ∞

−∞

I

∏
i=1

exp[yi (σθ −β RE-N
i )]

1+ exp(σθ −β RE-N
i )

φ(θ)dθ ,
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with φ(·) as the density of a standard normal distribution. Therefore, the
likelihood function corresponds to a multinomial distribution Mult(2I ,q), where
q = (q12···I ,q12···I−1,I , · · · ,q12···I). Consequently, the parameter q is the identified
parameter.

1.3.3 Parameters of Interest

It is possible to prove that βRE−N
1:I and σ can be written in terms of the identified

parameter q without restrictions on the item parameters. The proof rests on the
following arguments:

1. Let

αi
.
= P(βRE-N

1:I ,σ)(Ypi = 1) =
∫ ∞

−∞
Ψ(σθ −β RE-N

i )φ(θ)dθ .
= p(σ ,β RE-N

i ).

The parameter αi is an identified parameter because it is a function of q.
2. The function p(σ ,β RE-N

i ) is a strictly decreasing continuous function of β RE-N
i .

Therefore it is invertible and consequently

β RE-N
i = p−1(σ ,αi). (1.5)

3. For i �= j, let

αi j
.
= P(βRE-N

1:I ,σ)(Ypi = 1,Yp j = 1) =
∫ ∞

−∞
Ψ(σθ −β RE-N

i )Ψ(σθ −β RE-N
j )φ(θ)dθ .

The parameter αi j is also an identified parameter because it is a function of q.
Using (1.5), it follows that

αi j =
∫ ∞

−∞
Ψ(σθ − p−1(σ ,αi))Ψ(σθ − p−1(σ ,α j))φ(θ)dθ .

.
= r(σ ,αi, ,α j).

It can be shown that r(σ ,αi,α j) is a strictly increasing continuous function of σ ;
for details, see San Martín and Rolin (2013). It follows that

σ = r−1(αi j,αi,α j). (1.6)

1.3.4 Relationship of Item Difficulty with Empirical Difficulty

Regarding the relationship between item difficulty and empirical difficulty, from
(1.5) it follows that
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β RE-N
i > β RE-N

j ⇐⇒ P(βRE-N
1:I ,σ)(Ypi = 1)< P(βRE-N

1:I ,σ)(Yp j = 1) for all person p. (1.7)

Thus, item i is more difficult than item j if probability that a person correctly
answers item i is less than the probability that the person correctly answers item j.

1.3.5 Comments

The previous considerations lead to the following comments:

1. For each person p, the responses are positively correlated, that is,

cov(β
RE-N
1:I ,σ)(Ypi,Yp j)> 0

for i �= j. This is a marginal correlation and it follows from both Assumption 3
and the strict monotonicity ofΨ(θp −β RE-N

i ) as a function of θp for all β RE-N
i .

2. According to equality (1.6), σ represents the dependency between items i and
j induced by both the marginal probabilities αi and α j and the joint marginal
probability αi j. Furthermore, this dependency is the same for all pairs of items
since equality (1.6) is valid for all pairs of items i and j.

3. The item difficulty β RE-N
i is not only a function of the marginal probability αi of

correctly answering the item i, but also of terms of the common dependency.
4. The previous identification analysis is valid in the case πpi = Φ(θp − β RE-N

i ),
where Φ is the distribution function of a standard normal distribution; see San
Martín and Rolin (2013). In this case, it is possible to show that

αi =Φ
(
− β RE-N

i√
1+σ2

)
.

Therefore, the difficulty parameter β RE-N
i can be written as

β RE-N
i =−

√
1+σ2Φ−1 (αi). (1.8)

It follows that the difficulty parameter β RE-N
i is decreasing with σ . In other words,

the larger the individual differences, the more extreme the difficulty parameters
become.

5. There is not an explicit function as (1.8) for the logistic model, but approxi-
mately the same equation applies with σ2 premultiplied by 16

√
3/(15π); see

Molenberghs et al. (2010), Zeger et al. (1988).
6. The distribution of θp can be specified as a N (μ ,σ2). In this case, the identified

parameters are (β̃
RE-N

1:I , σ), where β̃ RE-N
i

.
= β RE-N

i − μ . In order to identify the
difficulty parameters β RE-N

1:I and the scale parameter μ , it is enough to introduce a
linear restriction on the item parameters β RE-N

1:I .
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1.4 Semiparametric Specification

As pointed out by Woods and Thissen (2006) and Woods (2006), there exist
specific fields, such as personality and psychopathology, in which the normality
assumption of θp is not realistic. For instance, psychopathology and personality
latent variables are likely to be positively skewed, because most persons in the
general population have low pathology, and fewer persons have severe pathology.
However, the distribution G of θp is unobservable and, consequently, though a
researcher may hypothesize about it, it is not known in advance of an analysis.
Therefore, any a priori parametric restriction on the shape of the distribution G could
be considered as a mis-specification.

1.4.1 Assumptions

These considerations lead to extend parametric Rasch models by considering the
distribution G as a parameter of interest, and thus specifying semi-parametric Rasch
models. These models rest on the following assumptions:
Assumptions 1–4 as in the random-effects specification.

Assumption 5: θp’s are mutually independent and identically distributed, with a
common unspecified distribution G.

1.4.2 Likelihood and Identified Parameters

As in the random-effects specification, these assumptions imply that the response
patterns Yp’s are mutually independent and identically distributed, with a common
multinomial distribution Mult(2I ,q), with q = (q12···I ,q12···I−1,I , · · · ,q12···I), where

q12···I = P(βRE-U
1:I ,G)(Yp1 = 1,Yp2 = 1, . . . ,Yp,I−1 = 1,YpI = 1),

q12···I = P(βRE-U
1:I ,G)(Yp1 = 1,Yp2 = 1, . . . ,YpI,−1 = 1,YpI = 0),

...
...

q12···I = P(βRE-U
1:I ,G)(Yp1 = 0,Yp2 = 0, . . . ,YpI,−1 = 0,YpI = 0),

and

P(βRE-U
1:I ,G)(Yp = y) =

∫ I

∏
i=1

exp[yi (θ −β RE-U
i )]

1+ exp(θ −β RE-U
i )

G(dθ). (1.9)
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Therefore, the likelihood function is parametrized by q, which corresponds to the
identified parameter.

Following San Martín et al. (2011), Equation (1.9) can be rewritten as follows:
for all J ⊂ {1, . . . , I}\ /0,

P(βRE-U
1:I ,G)

⎛
⎝ ⋂

j∈J
{Yp j = 1}∩

⋂
j∈J c

{Yp j = 0}
⎞
⎠=

= exp

(
− ∑

j∈J
β RE-U

j

)
×

∫ ∞

−∞

e|J |θ

∏
1≤i≤I

(1+ eθ−βRE-U
i )

G(dθ). (1.10)

By taking (1.10) with J = {1} and after (1.10) with J = {i}, we identify (β RE-U
2 −

β RE-U
1 , . . . ,β RE-U

I −β RE-U
1 ) because

β RE-U
j −β RE-U

1 = ln

⎡
⎢⎢⎢⎢⎢⎣

P(βRE-U
1:I ,G)

(
{Yp1 = 1}∩

⋂
2≤i≤I

{Ypi = 0}
)

P(βRE-U
1:I ,G)

(
{Yp j = 1}∩

⋂
i �= j

{Ypi = 0}
)

⎤
⎥⎥⎥⎥⎥⎦
. (1.11)

Not only the item differences can be identified, but also some characteristics of the
distribution G. As a matter of fact, working with the identified parameters β RE-U

j −
β RE-U

1 leads to a shift of θ which we express with u = θ +β RE-U
1 . Thus, for all J ⊂

{1, . . . , I}, (1.9) can be rewritten as

P(βRE-U
1:I ,G)

⎛
⎝ ⋂

j∈J
{Yp j = 1}∩

⋂
j∈Jc

{Yp j = 0}
⎞
⎠=

= e[−∑ j∈J (βRE-U
j −βRE-U

1 )]
∫ ∞

−∞

e|J |u

∏
1≤i≤I

[
1+ eu−(βRE-U

i −βRE-U
1 )

] GβRE-U
1

(du),

where GβRE-U
1

((−∞,x]) .
= G((−∞,x+β RE-U

1 ]). Therefore, the functionals

mGβRE-U
1

(k) =
∫ ∞

−∞

eku

∏
1≤i≤I

[
1+ eu−(βRE-U

i −βRE-U
1 )

] GβRE-U
1

(du),

for k = 0,1, . . . , I, are identified. Note that mGβRE-U
1

(0) = mGβRE-U
1

(| /0|) corresponds

to P(βRE-U
1:I ,G)(Yp1 = 0, . . . ,YpI = 0). Summarizing, the following I + 1 relationships

follow: For all J ⊂ {1, . . . , I} such that |J |= k,



10 E. San Martín and P. De Boeck

mGβRE-U
1

(k) =

= P(βRE-U
1:I ,G)

⎛
⎝ ⋂

j∈J
{Yp j = 1}∩

⋂
j∈Jc

{Yp j = 0}
⎞
⎠× e[∑ j∈J (βRE-U

j −βRE-U
1 )] (1.12)

for k = 0,1, . . . , I. These I + 1 identified parameters will be used for an alternative
way to identify the difficulties and to derive an interesting difficulty ratio.

1.4.3 Parameters of Interest

In order to identify the item parameters β RE-U
1:I , the previous equalities suggest to

introduce an identification restriction, namely β RE-U
1 = 0. Under this restriction, the

difficulty parameters β RE-U
i are given by Eq. (1.11) with β RE-U

1 = 0. Moreover, using
equalities (1.11) and (1.12) with β RE-U

1 = 0, the following relations follow:

β RE-U
j = ln

[
P(βRE-U

1:I ,G)(Yp1 = 1,Yp j = 0)

P(βRE-U
1:I ,G)(Yp1 = 0,Yp j = 1)

]
for all persons p; (1.13)

β RE-U
i

β RE-U
j

= ln

[
P(βRE-U

1:I ,G)(Ypi = 0,Yp j = 1)

P(βRE-U
1:I ,G)(Ypi = 1,Yp j = 0)

]
for all persons p. (1.14)

For a proof, see Appendix.

1.4.4 Relationship of Item Difficulty with Empirical Difficulty

Regarding the relationship between item difficulty and empirical difficulty, from
(1.14) it is possible to prove that

β RE-U
i > β RE-U

j ⇐⇒ P(βRE-U
1:I ,G)(Ypi = 1)< P(βRE-U

1:I ,G)(Yp j = 1) for all person p.
(1.15)

Thus, item i is more difficult than item j if probability that a person correctly
answers item i is less than the probability that the person correctly answers item j.

1.4.5 Comments

The previous considerations lead to the following comments:
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1. Equalities (1.13) and (1.14) apply independent of the distribution G.
2. Equality (1.13) shows that the difficulty of an item j essentially corresponds to

a ratio of probabilities involving two items: the item j itself and the item 1. This
ratio can be interpreted as a mirror property between items 1 and j.

3. Equality (1.14) can also be interpreted as a mirror property between items i and j.

1.5 Discussion

In the random-effects specification of the Rasch model, it is not possible to make
a distinction between a Rasch model with abilities distributed according to a
N (0,σ2) and a 2PL model with equal discriminations and abilities distributed
according to a N (0,1). Both models are identified and, therefore, this is an example
of equivalent models: the distribution generating the response patterns is not enough
to distinguish between these two equivalent models. Let us remark that for the 2PL
model with different discrimination parameters, the situation is different; for details
and a first interpretation of the parameters of interest, see San Martín et al. (2013,
Appendix B).

Relations (1.3), (1.7), and (1.15) suggest that the comparison between item
difficulties can empirically be interpreted in terms of the proportion of persons
answering correctly one or other item. This also suggests that the estimations of
the difficulty parameters in the three models will be (almost) perfectly correlated.
However, the meaning of these estimators is quite different. For the fixed-effects
specification, item difficulty is interpreted in terms of odd ratio [see equality (1.2)];
for the random-effects specification, item difficulty is interpreted as a function of
both the marginal probability of correctly answering the item and the dependency
common to all pairs of items [see equalities (1.5) and (1.6)]; and for the semi-
parametric specification, item difficulty is interpreted in terms of the mirror property
(1.13).

Appendix

Proof of Equality (1.13)

Consider the reparameterization ηi = exp(βi) and let

AJ =
⋂

j∈J
{Yp j = 1} ∩

⋂
j∈J c\{1,i}

{Yp j = 0}.

Let J ⊂ {2, . . . , I} and i /∈J . Using (1.12), it follows that
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mG(|J |+1) = P(βRE-U
1:I ,G)

⎛
⎝{Ypi = 1}∩

⋂
j∈J

{Yp j = 1}∩
⋂

j∈(J∪{i})c

{Yp j = 0}
⎞
⎠× ∏

j∈J
η j ×ηi

= P(βRE-U
1:I ,G)

⎛
⎝{Yp1 = 1}∩

⋂
j∈J

{Yp j = 1}∩
⋂

j∈J c\{1}
{Yp j = 0}

⎞
⎠× ∏

j∈J
η j.

It follows that

ηi =
P(βRE-U

1:I ,G)
({Yp1 = 1,Ypi = 0}∩AJ })

P(βRE-U
1:I ,G)

({Yp1 = 0,Ypi = 1}∩AJ }) . (1.16)

for all J ⊂ {2, . . . , I} and i /∈J . Therefore, using (1.16),

P(βRE-U
1:I ,G)(Ypi = 0,Yp j = 1)

P(βRE-U
1:I ,G)(Ypi = 1,Yp j = 0)

=

∑
{J⊂{2,...,I}:i/∈J }

P(βRE-U
1:I ,G)

({Yp1 = 1,Ypi = 0}∩AJ

)

∑
{J⊂{2,...,I}:i/∈J }

P(βRE-U
1:I ,G)

({Yp1 = 0,Ypi = 1}∩AJ

)

=

∑
{J⊂{2,...,I}:i/∈J }

ηi P(βRE-U
1:I ,G)

({Yp1 = 0,Ypi = 1}∩AJ

)

∑
{J⊂{2,...,I}:i/∈J }

P(βRE-U
1:I ,G)

({Yp1 = 0,Ypi = 1}∩AJ

)

= ηi.

Proof of Equality (1.14)

Let J such that |J | = I −2 and denote the label of two items excluded from J
as i and i′. Using (1.12), it follows that

mG(|J ∪{i}|) = P(βRE-U
1:I ,G)

⎛
⎝{Ypi = 1}∩

⋂
j∈J

{Yp j = 1}∩{Ypi′ = 0}∩
⋂

j∈J c\{i′}
{Yp j = 0}

⎞
⎠×

× ∏
j∈J

η j ×ηi,

mG(|J ∪{i′}|) = P(βRE-U
1:I ,G)

⎛
⎝{Ypi′ = 1}∩

⋂
j∈J

{Yp j = 1}∩{Ypi = 0}∩
⋂

j∈J c\{i}
{Yp j = 0}

⎞
⎠×

× ∏
j∈J

η j ×ηi′ .
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Therefore,

ηi

ηi′
=

P(βRE-U
1:I ,G)

⎛
⎝{Ypi = 0,Ypi′ = 1}∩

⋂
j∈J

{Yp j = 1}∩
⋂

j∈J c\{i}
{Yp j = 0}

⎞
⎠

P(βRE-U
1:I ,G)

⎛
⎝{Ypi = 1,Ypi′ = 0}∩

⋂
j∈J

{Yp j = 1}∩
⋂

j∈J c\{i′}
{Yp j = 0}

⎞
⎠

. (1.17)

Let J ⊂ {1, . . . , I} such that |J |= I −2 and take i, i′ /∈J . Denote

AJ =
⋂

j∈J
{Ypi = 1} ∩

⋂
j∈J c\{i}

{Ypi = 0},

BJ =
⋂

j∈J
{Ypi = 1} ∩

⋂
j∈J c\{i′}

{Ypi = 0}.

Then, using (1.17),

P(βRE-U
1:I ,G)(Ypi=0,Ypi′=1)

P(βRE-U
1:I ,G)(Ypi=1,Ypi′=0)

=

∑
{J⊂{1,...,I}:|J=I−2,i,i′ /∈J }

P(βRE-U
1:I ,G)({Ypi=0,Ypi′=1}∩AJ )

∑
{J⊂{1,...,I}:|J=I−2,i,i′ /∈J }

P(βRE-U
1:I ,G)({Ypi=1,Ypi′=0}∩BJ )

=
ηi

ηi′

∑
{J⊂{1,...,I}:|J=I−2,i,i′ /∈J }

P(βRE-U
1:I ,G)({Ypi=1,Ypi′=0}∩BJ )

∑
{J⊂{1,...,I}:|J=I−2,i,i′ /∈J }

P(βRE-U
1:I ,G)({Ypi=1,Ypi′=0}∩BJ )

=
ηi

ηi′
.

Proof of Relation (1.15)

Using the same notation introduced above and the ratio η ′
i/ηi′ , it follows that

P(βRE-U
1:I ,G)(Ypi′ = 1)

P(βRE-U
1:I ,G)(Ypi = 1)

=

∑
{J :|J |=I−2,i,i′ /∈J }

P(βRE-U
1:I ,G)({Ypi′ = 1,Ypi = 0}∩AJ )

∑
{J :|J |=I−2,i,i′ /∈J }

P(βRE-U
1:I ,G)({Ypi′ = 0,Ypi = 1}∩BJ )

=
ηi

ηi′
.
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Chapter 2
Thurstonian Item Response Theory
and an Application to Attitude Items

Edward H. Ip

Abstract The assessment of attitudes has a long history dating back at least to the
work of Thurstone. The Thurstonian approach had its “golden days,” but today it is
seldom used, partly because judges are needed to assess the location of an item, but
also because of the emergence of contemporary tools such as the IRT. The current
work is motivated by a study that assesses medical students’ attitudes toward obese
patients. During the item-development phase, the study team discovered that there
were items on which the team members could not agree with regard to whether they
represented positive or negative attitudes. Subsequently, a panel of n= 201 judges
from the medical profession were recruited to rate the items, and the responses to the
items were collected from a sample of n= 103 medical students. In the current work,
a new methodology is proposed to extend the IRT for scoring student responses, and
an affine transformation maps the judges’ scale onto the IRT scale. The model also
takes into account measurement errors in the judges’ ratings. It is demonstrated that
the linear logistic test model can be used to implement the proposed Thurstonian
IRT approach.

Keywords Item response theory • Likert scaling • Linear logistic test model
• Attitudes toward obese persons • Equal-appearing interval scaling

2.1 Introduction

Together with the Guttman scale, Thurstone and Likert scaling are perhaps the
most prominently featured and researched scaling techniques in the history of
psychological measurement, especially in the assessment of attitudes. Historically,
Thurstone was one of the first quantitative psychologists to set his sights on
the development of a theory for psychological scaling (Thurstone 1925, 1928).
Thurstone’s pioneer work on conception of attitude was based on the assessment of
subjective attitudinal responses. The covert responses—or a sample of them—are
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linguistically represented in the form of opinion statements, which can then
be located on a single evaluative dimension (Ostram 1989). Based on the principle
of comparative judgment, Thurstone developed several scaling methods, of which
the best known is the equal-appearing interval scale (Thurstone and Chave 1929).
Given a collection of items, each of which contains a statement concerning the
psychological construct of interest, the technique consists of two steps.

First, a panel of judges is recruited to rate the items in terms of their favorability
to the construct of interest. Thurstone suggested using integral values of 1–11 for
the rating scale. The 11-point scale then becomes the psychological continuum on
which the statements have been judged, and the distribution of judgments obtained
is used to calculate a typical value, which can then be taken as the scale-value of
the statement on the 11-point psychological continuum. The value could be the
median or the mean of the judgment distribution, and descriptive statistics such as
standard deviations and the interquartile range are then used to eliminate questions
that have overly dispersed judgment scores. Ideally, the equal-appearing interval
scale is established by a final collection of items with small dispersions so that the
scale-value of the statements on the psychological continuum are relatively equally
spaced. In the second step, the statements are presented to subjects with instructions
to indicate those with which they are willing to agree and those with which they
disagree. The attitude score for a subject is based on the mean or the median of
the scale-values of the statements agreed with. In other words, if the responses are
dichotomously coded as 1 for Agree and 0 for Disagree, then the attitude score is an
average of a weighted combination of the response categories, of which the weights
are the scale-score.

One of the most fascinating aspects of Thurstone’s scaling procedure is that
the scale is determined by expert judges on a unidimensional continuum and that
the operating characteristic of a Thurstone item may reflect either an underlying
dominant-response process or an ideal-point process (Coombs 1964; Roberts and
Laughlin 1996). In the most common form of the dominance mechanism, respon-
dents and items are represented by positions on a latent trait, and the responses
are determined by a comparison process: if the respondent’s trait value is greater
than the item-trait value, then the response to the item is positive; otherwise, the
response is negative. The item-characteristic curve (ICC) of the item response for
a dominant-response process is monotone and can be well captured by existing
item response theory (IRT; Lord 1980) models. An example of a monotone ICC for
equal-appearing interval scaling is the Sickness-Impact Profile (SIP; Bergner et al.
1981). Judges rated the SIP items on the severity of the dysfunction described in an
item on an equal-interval 11-point scale. The end points were labeled “minimally
dysfunctional” and “severely dysfunctional” to provide meaningful referents. An
item concerning how sickness impacts work is: “I act irritable and impatient with
myself—for example, talk badly about myself, swear at myself, blame myself for
things that happen.” A monotone ICC for this item implies that a respondent with
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a higher SIP trait value (more dysfunctional) is more likely to endorse this item
than someone with a lower SIP trait value (less dysfunctional). For an empirical
comparison between IRT scaling and Thurstone scaling in education, see Williams
et al. (1998).

The Thurstone scaling procedure could also be used to describe an ideal point-
response process, a model commonly used in attitudinal measurement of political
and social views. Like the dominant-response process, the ideal-point process
postulates that the individual’s response also depends on the relative position of
the person’s trait value and the position of the item on the scale. However, a
respondent in an ideal-point process is more likely to endorse statements that have
trait values close to the respondent’s. Thus, the ICC from an ideal-point process
is not monotonic with respect to the trait and typically has a single peak at the
location of the item. These models are often referred to as unfolding models in the
IRT literature. An example of an unfolding item is a well-known General Social
Survey (GSS) item on legalized abortion. The respondent in the GSS is asked when
legalized abortion is allowed on a collection of seven conditions such as: “The
family has a very low income and cannot afford any more children” and “The
woman wants it for any reason.” For respondents who hold a more centralist view
about legalized abortion, the likelihood of endorsing the former statement would be
higher than it would be for those who hold a liberal view about abortion as well as
those who are strong anti-abortion.

In this paper, we only focus on Thurstone’s equal-appearing scaling methods for
items that do not fold—or items that are supposed to follow a dominant-response
process so that their ICCs are monotonic. We argue that the equal-appearing scaling
method is a way to set scales according to experts’ views of the construct of interest
and that it could be operationalized through IRT models in which the location
parameter of an item can be obtained by careful scaling of the judges’ ratings. The
extent to which the judges disagree on the location of an item can be incorporated
into the IRT model by assuming that the rating scores from the sample of judges
are normally distributed with a mean m and a standard deviation σ , both of which
could be directly estimated from the judges’ data. As such, the proposed model can
be viewed as an IRT implementation for equal-appearing scaling, which is distinct
from the Thurstonian item response model proposed in Brown and Maydeu-Olivares
(2012). We further demonstrate that the uncertainty associated with the judges’
ratings would lead to an attenuation of the slope of the ICC, which, in modern IRT
language, means that the information contained in the item is less than 1 at the same
scale location but has a steeper slope. Also, we show that through a convolution
technique the proposed Thurstonian IRT model can be solved using the estimation
procedure for the linear logistic test model (LLTM; Fischer 1973).

The remainder of this paper is organized as follows: first, we describe the
Thurston IRT model, then we illustrate the proposed model using a data set collected
from a study of attitudes. Finally, we conclude with a discussion.
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2.2 Thurstonian IRT: Method

We begin with a simple Rasch model:

P(Yi j = 1
∣∣∣θ j) =

exp(θ j +bi)

1+ exp(θ j +bi)
, (1)

where Yij is the binary response of individual j to item i, with 1 indicating a correct
or positive response; θ j is the latent trait for individual j; and bi is the intercept
parameter for item i or the individual. We further assume that the intercept parameter
bi is a function of item attributes w

¯ i
and the judge’s rating, which has a mean mi and

variance σ 2
i . Specifically, we write:

bi = ηT
1 w

¯ i
+η2 (mi + εi) , εi ∼ N

(
0,σ2

i

)
, (2)

where η denotes regression coefficients.

P
(

Yi j = 1
∣∣∣θ j,εi

)
=

exp

[
θ j +ηT

1 w
¯ i
+η2 (mi + εi)

]

1+ exp

[
θ j +ηT

1 w
¯ i
+η2 (mi + εi)

] , (3)

θ j ∼ N (0,1) , εi ∼ N
(
0,σ2

i

)
.

In other words, we have

P
(

Yi j = 1
∣∣∣θ j,εi

)
=

exp [θ j +b′i +η2εi]

1+ exp
[
θ j +b

′
i +η2εi

] , (4)

where b′i = ηT
1 w

¯ i
+η2mi.

By integrating out the error term η2ε i through a convolution technique (Zeger
et al. 1988; Caffo et al. 2007; Ip 2010), we now have

P
(

Yi j = 1
∣∣∣θ j

)
=

exp
[
a∗i θ j +b∗i

)]

1+ exp
[
a∗i θ j +b∗i

)] , (5)

where a∗i = λlogit(ai1 +
η2ρσi
σ1

), b*
i = λ logitb’

i , λ logit = [k2η2
2(1− ρ2)σ 2

i + 1]− 1/2, and

k = 16
√

3/(15π) = 0.588. The factor a*
i represents an attenuation factor for the

slope of θ , which is assumed to be 1.0 in a Rasch model, and ρ represents the
correlation between ε and θ , which is set to zero.

Figure 2.1 shows the change in attenuation as a function of the standard deviation
of the measurement error. Generally speaking, when the noise level (measurement
error) increases, the attenuation factor becomes smaller and varies almost linearly
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from no attenuation (=1.0) to a value of 0.5. Notably, the graphs show that
attenuation is approximately 0.8 when the noise level (SD= 1) reaches the level of
the signal (SD= 1). We call the model specified by Eqs. (4) and (5) the Thurstonian
LLTM model.

Fig. 2.1 Attenuation factor
as a function of the standard
deviation of the judges’
ratings

2.3 Real Data Example

2.3.1 Data

The data were a subset of data collected from a recent study on the development
of a curriculum for medical school students for counseling obese patients. The
Nutrition, Exercise, and Weight Management (NEW) study collected attitude data
using an instrument—the NEW Attitude Scale (Ip et al. 2013)—which comprises
31 items measuring attitudes across three domains: nutrition, exercise, and weight
management. Examples of items include “I do feel a bit disgusted when treating a
patient who is obese” (Item 23), and “The person and not the weight is the focus
of weight-management counseling” (Item 25). In the item-development process,
the study team had a consensus view for some items but divergent views for
others. An example of a consensus item was “Overweight individuals tend to be
lazy about exercise” (Item 13), which the team agreed represented an unfavorable
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attitude. An item that solicited divergent views was “Patients are likely to follow
an agreed-upon plan to increase their exercise” (Item 10). Some tended to feel that
an endorsement of the item suggested a favorable attitude because the physician
sounded positive about the outcome, but others argued that the item should be
viewed negatively because the physician might not appreciate the challenges that
an obese person encountered when prescribed an exercise program. The study
team decided to use the Thurstonian approach of soliciting judges’ opinions about
the positivity/negativity of the items. A total of 201 judges (approximately 50%
clinically focused and the remaining research focused) rated the items. A sample
of N= 103 medical students completed the instrument. Using the scores that
were derived from traditional Thurstone scaling, the test–retest reliability of the
instrument was 0.89 (N= 24). Pearson correlations between two other anti-obesity
measures were the Anti-Fat Attitudes Questionnaire (AFA; Lewis et al. 1997) and
the Beliefs About Obese Persons Scale (BAOP; Allison et al. 1991) were -0.47
and 0.23, respectively. This shows satisfactory convergent validity with existing
measures of attitudes toward obese individuals. A full report about the validation
of the instrument can be found in Ip et al. (2013).

To illustrate the range of concordance in judges’ ratings across items, we used
two items as examples. Figures 2.2 and 2.3 show, respectively, the distributions of
ratings for Item 23 and Item 25. The former item has a relatively high level of
consensus as being indicative of an unfavorable attitude, as demonstrated by the
small standard deviation (SD= 0.8). In contrast, Item 25 exhibits high variance in
the judges’ ratings (SD= 2.2).

Fig. 2.2 Distribution of
judges’ ratings for Item 23


