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Introduction

There are two natural dualities for Boolean algebras. The first duality,
sometimes called the discrete duality, is algebraic in nature; it concerns
the duality between the category of all sets with mappings between sets
as the morphisms, and the category of all complete and atomic Boolean
algebras with complete homomorphisms between such algebras as the
morphisms. The second duality—the famous Stone duality—is topo-
logical in nature and much deeper; it concerns the duality between
the category of all Boolean spaces with continuous mappings between
such spaces as the morphisms, and the category of all Boolean alge-
bras with homomorphisms between such algebras as the morphisms.
Each of these two dualities can be extended to Boolean algebras with
normal operators, and in both cases the extensions are non-trivial, il-
luminating, and have important applications. There is a third duality
for Boolean algebras with normal operators—a hybrid between the
algebraic and the topological dualities—that seems not to have been
notice before, even in the case of Boolean algebras, and although it
may seem somewhat less natural than the other two dualities, it has
important applications.

In this monograph, we develop these three dualities for Boolean
algebras with normal operators (from now on called simply Boolean
algebras with operators, for brevity, the normality of the operators
being tacitly assumed).

The first chapter is concerned with algebraic duality. It begins by
reviewing the known duality between arbitrary relational structures
and arbitrary complete and atomic Boolean algebras with operators—
or, what amounts to the same thing, the duality between relational
structures and their complex algebras (up to isomorphism, complete

vii



viii Introduction

and atomic Boolean algebra with operators are just complex algebra
of relational structures—see Theorem 1.3 below). This duality dates
back to Jónsson-Tarski [21].

The duality between structures is accompanied by a correspond-
ing duality between morphisms. For relational structures U and V
with corresponding dual complex algebras Cm(U) and Cm(V ), every
bounded homomorphism from U to V has a dual that is a complete
homomorphism from Cm(V ) to Cm(U), and conversely, every complete
homomorphism from Cm(V ) to Cm(U) has a dual that is a bounded ho-
momorphism from U to V. The dual of an epimorphism is a monomor-
phism and conversely. Furthermore, if the notion of dual morphism
is defined carefully, then every bounded homomorphism between re-
lational structures is its own second dual, as is every complete homo-
morphism between complex algebras. In particular, the correspondence
between bounded homomorphisms from U to V and complete homo-
morphisms from Cm(V ) to Cm(U) is a (bijective) contravariant func-
tor that maps monomorphisms to epimorphisms, and epimorphisms to
monomorphisms. For the special case of frames and modal algebras—
that is to say, relational structures with a single binary relation, and
complete and atomic Boolean algebras with a single complete unary
operator—this duality of morphisms is stated in Thomason [39] with
a brief hint of the proof. For the general case of arbitrary relational
structures and arbitrary complete and atomic Boolean algebras with
complete operators, one half of the duality of morphisms is given in
Goldblatt [13] (and repeated in Blackburn-de Rijke-Venema [1] with a
credit to Goldblatt). The other half is implicit in Jónsson [19] (and re-
peated explicitly in [1]), but no proof is provided; we provide a proof.
Some related results are formulated at the end of Hansoul [16].

The duality between morphisms is exploited to establish, first of
all, a duality between inner subuniverses of a relational structure U
and complete ideals in the complex algebra of U; and second of all,
a duality between bounded congruence relations on U and complete
subuniverses of Cm(U). One aspect of these dualities is a dual lattice
isomorphism from the lattice of inner subuniverse of U to the lattice
of complete ideals in Cm(U), and a dual lattice isomorphism from the
lattice of bounded congruence relations on U to the lattice of complete
inner subuniverses of Cm(U). These dualities imply corresponding du-
alities between the inner substructures of U and the complete quotients
of Cm(U) on the one hand, and between bounded quotients of U and
complete subalgebras of Cm(U) on the other hand. For example, the
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dual complex algebra of each inner substructure V of U is isomorphic
to the quotient of Cm(U) modulo the complete ideal that is the dual of
the universe of V, and vice versa. Similarly, the dual complex algebra
of each quotient of U modulo a bounded congruence Θ is isomorphic
to the complete subalgebra of Cm(U) whose universe is the dual of the
congruence Θ, and vice versa.

In the final part of Chapter 1, sharper forms are established for two
theorems in Goldblatt [13] (see also Thomason [39] and Goldblatt [12]
for the special case of frames and modal algebras). First of all, it is
shown in [13] that the complex algebra of the disjoint union of a sys-
tem of relational structures is isomorphic to the (external, or Carte-
sian) direct product of the corresponding system of complex algebras.
The result is strengthened here to show that the complex algebra of
the disjoint union is actually equal to (and not just isomorphic to)
the internal direct product of the system of complex algebras. This
strengthened form plays an important role in the next chapter, on
topological duality. Secondly, it is shown in [13] (generalizing a result
of Monk [26]) that an ultraproduct of a system of complex algebras
modulo an ultrafilter D is embeddable into the complex algebra of
the ultraproduct of the corresponding system of dual relational struc-
tures modulo D. This result is strengthened here to show that the
complex algebra of the ultraproduct of relational structures is, up to
isomorphism, just the completion of the ultraproduct of the system of
complex algebras. In other words, the algebraic dual of an ultraprod-
uct of a system of relational structures is just the completion of the
corresponding ultraproduct of the system of dual complex algebras.

The second chapter is concerned with topological duality. It studies
the duality between arbitrary Boolean algebras with operators (not
just complete and atomic algebras) and arbitrary relational spaces,
that is to say, arbitrary relational structures endowed with the topol-
ogy of a Boolean space under which the fundamental relations of
the structure are continuous and clopen. This topological duality was
first investigated by Halmos [15] and Goldblatt [11, 12] for the case of
Boolean algebras with a single unary operator, and by Goldblatt [13]
for arbitrary Boolean algebras with operators. (Both authors build on
early work of Jónsson-Tarski [21], but Goldblatt is in fact concerned
with the duality between bounded distributive lattices with operators
and Priestley spaces, so he also builds on the work of Priestley [30].
The reports [12] are published versions of Goldblatt’s doctoral dis-
sertation [11], so we shall always refer to them instead of to [11].)
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Hansoul [16] and Sambin-Vaccaro [32] contain related developments.
Our approach is different from that of Goldblatt. We show, however,
that our approach (which seems closer to the standard treatment of
topological algebraic structures) is equivalent to his approach.

The duality between structures is accompanied by a corresponding
duality between morphisms. For Boolean algebras with operators A
and B, and corresponding dual relational spaces U and V, every ho-
momorphism (not necessarily complete) from A to B has a dual that
is a continuous bounded homomorphism from V to U, and conversely,
every continuous bounded homomorphism from V to U has a dual
that is a homomorphism from A to B. The dual of an epimorphism is a
monomorphism and conversely. Furthermore, if the notion of dual mor-
phism is defined carefully, then every homomorphism between Boolean
algebras with operators is its own second dual, as is every continuous
bounded homomorphism between relational spaces. In particular, the
correspondence between homomorphisms from A to B and continu-
ous bounded homomorphisms from V to U is a (bijective) contravari-
ant functor that maps monomorphisms to epimorphisms, and epimor-
phisms to monomorphisms. For the special case of Boolean algebras
with a single unary operator and relational spaces with a single binary
relation, versions of this duality of morphisms are stated in Halmos [15]
and Goldblatt [12]. A general version of the duality of morphisms for
arbitrary relational spaces and arbitrary Boolean algebras with oper-
ators is given in Goldblatt [13] (and repeated in [1] with a credit to
Goldblatt). See also Hansoul [16] and Sambin-Vaccaro [32] for related
developments.

This duality is exploited here to show that there is, first of all, a dual-
ity between ideals (not necessarily complete) in an arbitrary Boolean
algebra with operators A and special open subsets of the dual rela-
tional space U; and second of all, a duality between subuniverses (not
necessarily complete) of A and (bounded) relational congruences on U.
One aspect of these dualities is a lattice isomorphism from the lattice
of ideals in A to the lattice of special open subsets of U, and a dual
lattice isomorphism from the lattice of subuniverses of A to the lattice
of relational congruences on U. These dualities imply corresponding
dualities between the structures themselves. For example, if U is a re-
lational space and A the dual Boolean algebra with operators, then
the dual relational space of the quotient of A modulo an ideal is, up
to homeo-isomorphism, the inner subspace of U whose universe is the
complement of the special open set that is the dual of the ideal; and
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vice versa. Similarly, the dual relational space of a subalgebra B of A
is, up to homeo-isomorphism, the quotient of U modulo the relational
congruence that is the dual of the universe of B.

Next, we take up the problem of describing the dual relational
space U of a Boolean algebra with operators A that satisfies some
completeness condition. It is shown, for example, that A is complete
as an algebra if and only if U is complete as a relational space. This
result can be extended to weaker forms of completeness. For exam-
ple, A is countably complete as an algebra if and only if U is countably
complete as a relational space.

In the final part of Chapter 2, the duality between morphisms is
used to describe the dual spaces of direct and subdirect products
of systems of Boolean algebras with operators. Consider a disjoint
system (Ui : i ∈ I) of relational spaces, and suppose U is the union
of this system. Let (Ai : i ∈ I) be the corresponding system of dual
Boolean algebras with operators, and let A be the internal direct prod-
uct of this system, and D the internal weak direct product. If the sys-
tems in question are finite (that is to say, if the index set I is finite),
then the dual algebra of the relational space U is just A; put another
way, the dual of the direct product of finitely many Boolean algebras
with operators is the disjoint union of the corresponding dual rela-
tional spaces. When the systems in question are infinite, the situation
becomes more complicated to describe. The dual of every compacti-
fication of U is isomorphic (via relativization) to a subalgebra of the
direct product A, and in fact to a subalgebra that includes the weak
direct product D; moreover, every subalgebra of A that includes D
is the isomorphic image (via relativization) of some compactification
of U. Compactifications of U are mapped via this duality correspon-
dence to the same subalgebra of A if and only if the compactifications
are equivalent in the sense that they are homeo-isomorphic over U,
so one may speak with some justification of the dual Boolean alge-
bra with operators of an equivalence class of compactifications of U.
The function that maps each such equivalence class to the isomorphic
copy (via relativization) of its dual Boolean algebra with operators is
a lattice isomorphism from the lattice of equivalence classes of com-
pactifications of U to the lattice of subalgebras of the direct product A
that include the weak direct product D.

The preceding lattice isomorphism implies that the union space U
has a maximum compactification, and the dual Boolean algebra
with operators of this maximum compactification is isomorphic (via



xii Introduction

relativization) to the direct product A. We prove that this maximum
compactification of U is just the Stone-Čech compactification of U.
There are several different ways in which this result may be inter-
preted, and they all turn out to be true.

While the first chapter is concerned with the algebraic duality be-
tween relational structures and complete, atomic Boolean algebras
with operators (that is to say, complex algebras of relational struc-
tures), and the second chapter is concerned with the topological du-
ality between relational spaces and arbitrary Boolean algebras with
operators, the third chapter is concerned with a hybrid duality that
combines aspects of the algebraic and the topological dualities. Every
weakly bounded homomorphism from a relational structure U into a
relational space V has a dual homomorphism from the Boolean alge-
bra with operators that is the topological dual of V to the complete
and atomic Boolean algebra with operators that is the algebraic dual
of U—namely the complex algebra Cm(U)—and vice versa; and each
of these morphisms is its own second dual. The epi-mono duality no
longer holds: duals of epimorphisms are monomorphisms, but duals of
monomorphisms may fail to be epimorphisms.

An arbitrary relational structure U may be turned into a locally
compact relational space (as opposed to a compact relational space, as
considered in Chapter 2) by endowing U with the discrete topology in
which every subset of U is simultaneously open and closed. We refer to
such a discretely topologized relational structure as a discrete space.
The hybrid duality mentioned above allows us to characterize the dual
relational spaces (in the sense of Chapter 2) of all those subalgebras
of Cm(U) that contain the singleton subsets (or what amounts to the
same thing, that contain the finite subsets) of U: they are just the weak
compactifications of the discrete space U. Weak compactifications of U
are mapped via this duality correspondence to the same subalgebra
of Cm(U) if and only if the weak compactifications are equivalent in
the sense that they are homeo-isomorphic over U, so one may speak
with some justification of the dual Boolean algebra with operators
of an equivalence class of weak compactifications of U. The function
that maps each such equivalence class to the isomorphic copy (via
relativization) of its dual Boolean algebra with operators is shown
to be a lattice isomorphism from the lattice of equivalence classes of
weak compactifications of U to the lattice of subalgebras of Cm(U) that
contain the singleton subsets of U.
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By restricting this result to the special case where there are no oper-
ators, we obtain the corollary—apparently new for Boolean algebras—
that the function mapping each compactification of a discrete topolog-
ical space U to the isomorphic copy (via relativization) of its dual
Boolean algebra is an isomorphism from the lattice of equivalence
classes of compactifications of U to the lattice of subalgebras of Sb(U)
(the Boolean algebra of subsets of U) that include the finite-cofinite
subalgebra.

The lattice isomorphism mentioned above implies that there is a
maximum weak compactification of a discrete space U, and the dual
Boolean algebra with operators of this maximum weak compactifica-
tion is isomorphic (via relativization) to the complex algebra Cm(U). It
is shown that this maximum weak compactification is in fact the Stone-
Čech weak compactification of U. There are several ways in which this
result may be interpreted, and all of them turn out to be true. This
theorem may be viewed as a generalization of the well-known theorem
in Boolean algebra that the dual of the Boolean algebra of all subsets
of a set U is, up to homeomorphism, the Stone-Čech compactification
of the discretely topologized space U .

The notions and results in this work not explicitly credited to oth-
ers are due to the author. Many of them are extensions to Boolean
algebras with operators of known notions and results for Boolean al-
gebras (without operators). This applies in particular to the notions
and results in Chapter 2 (see, for example, Chapters 34–38 and 43
in [10], or Chapter 3 in Koppelberg [23]). The notions and results in
Chapter 3 appear to be new not only for Boolean algebras with oper-
ators, but also for Boolean algebras themselves. As mentioned above,
some aspects of the duality theories discussed here have been extended
to distributive lattices with operators. In this connection, the reader
is referred to Goldblatt [13] and to the work of Mai Gehrke and her
collaborators (see, for example, Gehrke [7], where further references to
the literature may be found).

An understanding of the basic arithmetic and algebraic theory of
Boolean algebras—say, along the lines developed in Chapters 6–8, 11,
12, 14, 17, 18, 20, and 26 of [10]—is assumed in this monograph. In par-
ticular, familiarity with fundamental laws of Boolean algebra and the
algebraic notions of subuniverse, subalgebra, homomorphism, direct
product, congruence, ideal, filter, and atom is helpful. In Chapter 2,
some knowledge of basic topology (not too much) is also assumed. In
particular, familiarity with the notions of open set, closed set, dense
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set, closure of a set, compact space, Hausdorff space, quotient topology,
subspace topology, and continuous function is helpful. The necessary
algebraic and topological notions and results (for the most part, with
proofs) can all be found, for example, in [10]. We shall use that work
as our standard reference on Boolean algebra and topology.

The author wishes to acknowledge his indebtedness to Professors
Johan van Benthem, Robert Goldblatt, and Ian Hodkinson for reading
through portions of the manuscript and providing him with encour-
agement and references to the literature; and to Professor Mai Gehrke
for pointing out additional references to the literature.



Chapter 1

Algebraic Duality

In this chapter we study the algebraic duality that exists between
relational structures and complete and atomic Boolean algebras with
operators. The duality between the structures and algebras carries
with it a corresponding duality between morphisms: every bounded
homomorphism between relational structures corresponds to a dual
complete homomorphism between the dual algebras, and conversely.
The duality between the morphisms implies other dualities as well.
Here are some examples. Every inner subuniverse of a relational struc-
ture corresponds to a complete ideal in the dual algebra, and vice versa.
Every bounded congruence on a relational structure corresponds to a
complete subuniverse of the dual algebra, and vice versa. The disjoint
union of a system of relational structures corresponds to the direct
product of the system of dual algebras, and vice versa.

1.1 Algebraic Duality for Boolean Algebras

In order to motivate the subsequent development, it is helpful to review
some important aspects of the algebraic duality that exists between
sets and complete, atomic Boolean algebras (without operators). The
reader can find a more detailed presentation in [10].

Every set U is naturally correlated with a complete and atomic
Boolean algebra, namely the Boolean algebra of all subsets of U . This
algebra is denoted by Sb(U) and is called the (first) dual of the set U .
Inversely, every complete and atomic Boolean algebra A is naturally
correlated with a set, namely the set of atoms in A. This set is called
the (first) dual of the algebra A. If one starts with a set U , forms

S. Givant, Duality Theories for Boolean Algebras with Operators,
Springer Monographs in Mathematics, DOI 10.1007/978-3-319-06743-8 1,
© Springer International Publishing Switzerland 2014
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2 1 Algebraic Duality

its dual complete and atomic Boolean algebra A, and then forms the
dual set of A, the result is the set V of all singletons of elements in U .
Obviously, U and V are isomorphic (in the sense of being bijectively
equivalent) via the mapping that takes each element in U to its sin-
gleton. Similarly, if one starts with a complete and atomic Boolean
algebra A, forms its dual set U of atoms, and then forms the dual
complete and atomic Boolean algebra of U , the result is a complete
and atomic Boolean algebra B in which the elements are the subsets
of the set of atoms in A. The function that maps each element r in A
to the set of atoms that are below r is a Boolean isomorphism from A
to B. This state of affairs is expressed by saying that each set and
each complete and atomic Boolean algebra is isomorphic to its second
dual. In practice, every set is identified with its second dual, and every
complete and atomic Boolean algebra is also identified with its second
dual. This means that every element u in a set U is identified with its
singleton {u}, and every element r in a Boolean algebra A is identified
with the set of atoms in A that are below r. Consequently, instead of
speaking about U and its second dual V , and A and its second dual B,
we may speak just of U and B = Sb(U). This simplifies and clarifies
the presentation quite a bit.

The duality between sets and complete and atomic Boolean algebras
carries with it a corresponding duality between the functions on sets
and the complete Boolean homomorphisms on the algebras. If ϑ is a
mapping from a set U into a set V , then there is a natural mapping ϕ
from Sb(V ) into Sb(U) that is defined by

ϕ(X) = ϑ−1(X) = {u ∈ U : ϑ(u) ∈ X}
for subsets X of V , and ϕ proves to be a complete Boolean homomor-
phism from Sb(V ) into Sb(U). This complete homomorphism is called
the (first) dual of the mapping ϑ. Inversely, if ϕ is a complete homo-
morphism from Sb(V ) into Sb(U), then there is a natural mapping ϑ
from U into V that is defined by

ϑ(u) = r if and only if r ∈ ⋂{X ⊆ V : u ∈ ϕ(X)},
or, equivalently,

ϑ(u) = r if and only if u ∈ ϕ({r}),
for elements r in U . This mapping is called the (first) dual of the
complete homomorphism ϕ. If one starts with a complete homomor-
phism ϕ from Sb(V ) to Sb(U), forms the dual mapping ϑ from U to V ,
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and then forms the dual of ϑ, the result is the original complete homo-
morphism ϕ. Similarly, if one starts with a mapping ϑ from U to V ,
forms the dual complete homomorphism ϕ from Sb(V ) to Sb(U), and
then forms the dual of ϕ, the result is the original mapping ϑ. This
state of affairs is expressed by saying that every mapping between
sets U and V , and every complete homomorphism between the corre-
sponding Boolean algebras Sb(V ) and Sb(U) is its own second dual. A
mapping ϑ from U to V is one-to-one or onto if and only if the dual
complete homomorphism from Sb(V ) to Sb(U) is onto or one-to-one
respectively. Finally, if ϑ maps a set U to a set V , and δ maps V to
a set W , and if ϕ and ψ are the respective duals of ϑ and δ, then the
dual of the composition δ ◦ϑ is just the composition ϕ ◦ψ. The category
of sets with mappings as morphisms is therefore dually equivalent to
the category of complete and atomic Boolean algebras with complete
homomorphisms as morphisms.

1.2 Boolean Algebras with Operators

We begin our development by reviewing the basic definitions, notation,
and terminology that we shall use. In general, we shall use the
set-theoretical definition of a natural number n as the set of its
predecessors,

n = {0, . . . , n − 1}.
Consequently, the phrase “for i < n” means “for i = 0. . . . , n−1”, and
it is equivalent to the phrase “for i ∈ n”.

A Boolean algebra is an algebra of the form

(A , + , −),

where A is a non-empty set, + is a binary operation on A called
addition, and − is a unary operation on A called complement. Other
common Boolean operations, distinguished constants, and relations are
defined for A in the usual way. For instance, binary operations · of
multiplication and � of symmetric difference are defined on A by

r · s = −(−r +−s) and r � s = (r · −s) + (−r · s)
for elements r and s in A, distinguished constants zero and one are
defined in A by

0 = −(r +−r) and 1 = r +−r
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(where r is an arbitrary element in A), and a partial order ≤ is
defined on A by

r ≤ s if and only if r + s = s.

The class of Boolean algebra may be axiomatized in several different
ways. We assume that the reader is familiar with some axiomatization
and with the basic laws of Boolean algebra that are a consequence
of this axiomatization (see, for example, Chapters 2 and 6–8 in [10]).
In general, we shall rarely cite specific Boolean laws in our proofs, but
rather shall simply say that a certain conclusion follows “by Boolean
algebra”.

The supremum or sum of a set X of elements in a Boolean algebra is
the least upper bound r of X in the sense that r is above every element
in X (in the sense of the partial order defined above), and every other
upper bound of X is above r. If the supremum of X exists, then we
shall denote it by

∑
X. Notice that the supremum of the empty set

is 0, since 0 is obviously an upper bound, and in fact the least upper
bound, of the empty set. Dually, the infimum or product of a set X
of elements is the greatest lower bound s of X in the sense that s
is a lower bound of X, and every other lower bound of X is below s.
If the infimum of X exists, then we shall denote it by

∏
X. Notice that

the infimum of the empty set is 1, since 1 is obviously a lower bound,
and in fact the greatest lower bound, of the empty set. A Boolean
algebra is called complete if the supremum and infimum of every set
of elements in the algebra exists. A necessary and sufficient condition
for the algebra to be complete is that the supremum of every subset
exists. An atom in the algebra is defined to be a minimal non-zero
element (in the sense of the defined partial order), and the algebra is
called atomic if every non-zero element is above an atom.

A field of sets is a Boolean algebra in which the universe consists of
some (but not necessarily all) subsets of a set U , and the basic oper-
ations are the set-theoretic ones of forming unions and complements
with respect to U . The set-theoretic operations of union, intersection,
and complement are denoted respectively by ∪ , ∩ , and ∼ .

An ideal in a Boolean algebra with universe A is a subset M of A
that contains 0, that is closed under addition in the sense that r + s
belongs to M whenever r and s are both in M , and that contains r · s
whenever r is in M and s in A. The first condition is equivalent to the
condition that M be non-empty; the last condition is equivalent to the
condition that M be downward closed in the sense that if r is in M



1.2 Boolean Algebras with Operators 5

and if s ≤ r, then s is in M . An ideal M is said to be maximal if it
is a proper ideal—that is to say, if M is different from A—and if A is
the only ideal that properly includes M . The Maximal Ideal Theorem
for Boolean algebras says that every proper ideal can be extended to
a maximal ideal (see, for example, Theorem 12 in [10]).

Dually, a filter in the Boolean algebra is a subset N of A that
contains 1, that is closed under multiplication in the sense that r · s
belongs to N whenever r and s are both in N , and that contains r+ s
whenever r is in N and s in A. The first condition is equivalent to
the condition that N be non-empty; the last condition is equivalent to
the condition that N be upward closed in the sense that if r is in N
and if r ≤ s, then s is in N . A filter N is said to be maximal if it is
proper and if the only filter in the algebra that properly includes N
is the improper filter. A maximal Boolean filter is called an ultrafilter.
A proper filter N is an ultrafilter just in case, for every element r
in the algebra, N contains either r or −r. A subset X of the Boolean
algebra has the finite meet property if the product of any finite number
of elements in X is non-zero. For fields of sets, the terminology finite
intersection property is often employed. As is well known, every subset
with the finite meet property can be extended to an ultrafilter (see
Exercise 12 in Chapter 20 of [10]).

For an ideal M in a Boolean algebra A, the set of complements

−M = {−r : r ∈M}
is a filter in A, and conversely, for a filter N in A, the set of comple-
ments −N is an ideal in A. The set −M is called the dual (Boolean)
filter of M , and −N is called the dual (Boolean) ideal of N . An ideal
or a filter is proper or maximal if and only if its dual is proper or
maximal respectively. In fact, the function that maps each ideal to its
dual filter is a lattice isomorphism from the lattice of ideals in A to
the lattice of filters in A (see, for example, pp. 168–169 in [10]).

We turn now to the notion of a Boolean algebra with operators,
and related notions, which were introduced and studied for the first
time by Jónsson and Tarski in [21]. An operation f of rank n—that is
to say, an operation of n arguments—on the universe A of a Boolean
algebra is said to be distributive if it is distributive over addition in
each argument in the sense that for each index i < n and for each
sequence

r0, . . . , ri−1, ri+1, . . . , rn−1, s, t
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of elements in A,

f(r0, . . . , ri−1, s+ t, ri+1, . . . , rn−1)

= f(r0, . . . , ri−1, s, ri+1, . . . , rn−1)

+ f(r0, . . . , ri−1, t, ri+1, . . . , rn−1).

For example, a binary operation ◦ on A is distributive if

r ◦(s+ t) = (r ◦s) + (r ◦ t) and (s + t) ◦r = (s ◦r) + (t ◦r)

for all r, s, and t in A. A distributive operation on A is called an
operator (on A). Such an operator f always has the following general
distributivity property : for any sequence X0, . . . ,Xn−1 of finite, non-
empty subsets of A, writing ti =

∑
Xi, we have

f(t0, . . . , tn−1) =
∑{f(r0, . . . , rn−1) : ri ∈ Xi for i < n}. (1)

The proof by induction is straightforward and is left to the reader
(see Theorem 1.6 in [21]). An operator f of rank n is always mono-
tone in the sense that for all sequences r0, . . . , rn−1 and s0, . . . , sn−1

of elements in A, if ri ≤ si for each i < n, then

f(r0, . . . , rn−1) ≤ f(s0, . . . , sn−1).

This is an immediate consequence of the general distributivity property
and the definition of ≤ . Note: operations of rank 0 are identified with
individual constants in A.

An operation f of rank n on the universe of a Boolean algebra A is
said to be completely distributive if it is completely distributive over
addition in each argument in the sense that for each index i < n, for
each sequence r0, . . . , ri−1, ri+1, . . . , rn−1 of elements in A, and for each
(finite or infinite) subset X of A, if the supremum t =

∑
X exists, then

the supremum

∑{f(r0, . . . , ri−1, s, ri+1, . . . , rn−1) : s ∈ X}

exists and

f(r0, . . . , ri−1, t, ri+1, . . . , rn−1)

=
∑{f(r0, . . . , ri−1, s, ri+1, . . . , rn−1) : s ∈ X}.
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For example, a binary operation ◦ on A is completely distributive if
for every subset X of A, if the supremum t =

∑
X exists, then the

suprema
∑{r ◦s : s ∈ X} and

∑{s ◦r : s ∈ X}
both exist, and

r ◦ t =
∑{r ◦s : s ∈ X} and t ◦r =

∑{s ◦r : s ∈ X}
for all r in A. A completely distributive operation on A is called a
complete operator. Such an operator f always has the following gen-
eral complete distributivity property : for any sequence X0, . . . ,Xn−1

of (finite or infinite) subsets of A, if the sum ti =
∑
Xi exists in A

for each i < n, then the sum on the right side of (1) exists and the
equation in (1) holds. The proof involves a straight-forward induction
on the rank n of the complete operator. For example, in the case of a
binary complete operator ◦ , we have

t0 ◦ t1 =
∑{r ◦ t1 : r ∈ X0}

=
∑{∑{r ◦s : s ∈ X1} : r ∈ X0}

=
∑{r ◦s : r ∈ X0 and s ∈ X1}.

In [21], a weaker notion of complete distributivity is used in which
the set X is always required to be non-empty. We shall refer to ope-
rators with this weaker property as quasi-completely distributive, or
simply quasi-complete. Such an operator f always satisfies a restricted
version of the general complete distributivity property in which each
of the sets in the sequence X0, . . . ,Xn−1 is assumed to be non-empty
(see Theorem 1.6 in [21]).

An operation f on A of rank n is called normal if it always assumes
the value 0 when at least one of its arguments is 0, that is to say, if
for each i < n and for each sequence

r0, . . . , ri−1, ri+1, . . . , rn−1 (2)

of elements in A,

f(r0, . . . , ri−1, 0, ri+1, . . . , rn−1) = 0.

Notice that a quasi-complete operator f is complete if and only if it is
normal. Indeed, if (2) is a sequence of elements in A, and if a set X is
empty, then

t =
∑
X =

∑
∅ = 0
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and
∑{f(r0, . . . , ri−1, s, ri+1, . . . , rn−1) : s ∈ X} =

∑
∅ = 0

(where ∅ denotes the empty set), so that

f(r0, . . . , ri−1, t, ri+1, . . . , rn−1)

=
∑{f(r0, . . . , ri−1, s, ri+1, . . . , rn−1) : s ∈ X}

if and only if

f(r0, . . . , ri−1, 0, ri+1, . . . , rn−1) = 0.

A Boolean algebra with operators is an algebra of the form

A = (A , + , − , fξ)ξ∈Ξ, (3)

where (A , + , −) is a Boolean algebra—called the Boolean part
of A—and fξ is an operator on A for each ξ in Ξ. The algebra is
called normal if each of its operators is normal. It follows from the
remark at the end of the preceding paragraph that a Boolean algebra
with complete operators is automatically normal. In this monograph,
all Boolean algebras with operators are assumed to be normal, so we
shall not bother to repeat this hypothesis. In other word, when we
speak of a Boolean algebra with operators, it will always be under-
stood that the algebra is assumed to be normal. We use upper case
German fraktur letters from the beginning of the alphabet to refer to
Boolean algebras with operators, and corresponding italic letters to
refer to the universes of these algebras. For example, A is assumed
to be the universe of a given algebra A. Such an algebra is said to
possess a certain Boolean property if the Boolean part of A possesses
this property. For instance, A is said to be atomic if the Boolean part
of A is atomic. An exception is made, however, for the notion of com-
pleteness: A is said to be complete if the Boolean part of A is complete
and if each of the operators is complete, that is to say, completely
distributive.

The similarity type of a Boolean algebra with operators is the
sequence of ranks of its fundamental operations. If the algebra has the
form (3), then the similarity type is (2, 1, nξ)ξ∈Ξ, where nξ is the rank
of the operator fξ. Throughout this paper, all Boolean algebras with
operators will be assumed to have the same arbitrary but fixed similar-
ity type. In proofs, we will always deal with one exemplary operator ◦
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that is assumed to be binary. This will free the proofs from excessive
notation and hopefully make the main ideas of the proofs clearer to
the reader. The passage from the case of a binary operator to the case
of an operator of arbitrary rank n is always straightforward, and can
safely be left to the reader. Occasionally, the case of a constant—an
operator of rank 0—must be treated somewhat differently, and in these
cases we will point out the differences.

Another simplification of notation may be helpful as well. In order
to distinguish carefully between the operations of different Boolean
algebras with operators, say A and B, one should employ different not-
ations to distinguish the fundamental operations of the two algebras,
for example, by using superscripts to write

A = (A , +A , −A , fAξ )ξ∈Ξ and B = (B , +B , −B , fBξ )ξ∈Ξ.

In practice, the context usually makes clear when the operation
symbols in question refer to the operations of A and when they refer
to the operations of B; so we shall omit such superscripts when no
confusion can arise.

We shall need the following theorem, which characterizes when
a bijection between the sets of atoms of two complete and atomic
Boolean algebras with operators can be extended to an isomorphism.

Theorem 1.1. Suppose A and B are complete and atomic Boolean
algebras with operators . A bijection ϕ from the set of atoms in A to
the set of atoms in B can be extended to an isomorphism from A to B
if and only if the condition

t ≤ f(r0, . . . , rn−1) if and only if ϕ(t) ≤ f(ϕ(r0), . . . , ϕ(rn−1))

is satisfied for each operator f of rank n and for each sequence of atoms
r0, . . . , rn−1, t in A.

Proof. The necessity of the condition is obvious. To establish its suf-
ficiency, suppose that the condition holds. Write X for the set of all
atoms in A, and for each element u in A, write Xu for the set of
atoms in A that are below u. In both A and B, each element is the
supremum of the set of atoms that it dominates, distinct elements are
the suprema of distinct sets of atoms, and every set of atoms has a
supremum. One consequence of this observation and the assumption
that ϕ is a bijection between the sets of atoms is that the suprema

∑{ϕ(t) : t ∈ Xu} and
∑{ϕ(t) : t ∈ X ∼Xu}
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are disjoint and sum to the unit in B, so

∑{ϕ(t) : t ∈ X ∼Xu} = −(∑{ϕ(t) : t ∈ Xu}
)
. (1)

A second consequence is that the function ψ from A to B defined by

ψ(u) =
∑{ϕ(t) : t ∈ Xu} (2)

for each element u in A is a bijection from the universe of A to the
universe of B.

If Y is an arbitrary set of elements in A, then the set of atoms below
the sum u =

∑
Y is the union, over all v in Y , of the set of atoms

below v, that is to say,

Xu =
⋃
v∈Y Xv , (3)

so

ψ(u) =
∑{ϕ(t) : t ∈ Xu} =

∑
{ϕ(t) : t ∈ ⋃

v∈Y Xv}
=

∑
v∈Y

∑{ϕ(t) : t ∈ Xv} =
∑

v∈Y ψ(v)

by (2) and (3), the general associative law for Boolean addition, and (2)
(with v in place of u). Consequently, ψ preserves arbitrary sums. The
set of atoms below a complement −u is the complement in X of the
set of atoms below u, that is to say,

X−u = X ∼Xu, (4)

so

ψ(−u) =
∑{ϕ(t) : t ∈ X−u} =

∑{ϕ(t) : t ∈ X ∼Xu}
= −(∑{ϕ(t) : t ∈ Xu}

)
= −ψ(u),

by (2) (with −u in place of u), (4), (1), and (2). Consequently, ψ
preserves complements and is therefore a Boolean isomorphism.

It remains to check that ψ preserves each operator. Consider the
case of a binary operator ◦ . Let u and v be elements in A, and write
w = u ◦v. It is to be shown that ψ(w) = ψ(u) ◦ψ(v). Because A is
atomic, we have

u =
∑
Xu, v =

∑
Xv , w =

∑
Xw . (5)


