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Preface

This volume is about Petr Hájek’s contribution to Mathematical Fuzzy Logic. Petr
Hájek is not only a great scientist, but also a wonderful human being, and hence it
is a great honor for me to take care of this volume. However, commenting on his
scientific work is not an easy job: although his scientific contribution is by no
means limited to Mathematical Fuzzy Logic, his production in this field is so wide
and so important that it is almost impossible to present a complete description of it.
Hence, when I began to work on the volume, I started doubting about its success.
After Petr’s monograph Metamathematics of Fuzzy Logic and after the various
books on Fuzzy Logic, including Gottwald’s A Treatise on Many-Valued Logics,
two more books, one about the work of Petr Hájek, entitled Witnessed Years, and
one devoted to Mathematical Fuzzy Logic, the Handbook of Mathematical Fuzzy
Logic, in which Petr is one of the Editors and one of the main authors, have been
written. Moreover, when I told Hájek that we were going to write another volume
for him, he replied: Too many honors! And although he added no comments to his
response, I had the feeling that what he would really need now is not another
volume in his honor, but rather some more health for himself and for his wife.

However, I am absolutely convinced that a new volume on Petr Hájek’s work
will be very useful, if not for himself, at least for the scientific community. Indeed,
Petr’s influence on the community of Mathematical Fuzzy Logic was simply great,
and the best way we have to celebrate him is to continue his work writing good
new papers, possibly developing his ideas. The invited authors of this volume are
all prominent scientists, and spent many energies to make their papers as good as
possible. Moreover, all papers in this volume discuss some problems that have
been previously discussed by Petr and offer original contributions to them. These
considerations make me optimistic about the success of the volume.

The volume begins with an Introduction, in which Esteva, Godo, Gottwald, and
myself present and comment on Hájek’s contribution to Mathematical Fuzzy
Logic, and by a scientific biography by Haniková. The remainder of the volume is
divided into five parts, with a final appendix containing a bibliography of Petr
Hájek.

The second part deals with foundations of many-valued logic, and contains three
papers, one by Běhounek and Haniková on Arithmetic and Set Theory over many-
valued logic, another by Gottwald on theories of Fuzzy Sets, and yet another by
Fermüller and Roschger about the connections between Fuzzy Logic and vagueness.
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The third part deals with semantics, and consists of three papers. The first one,
by Font, is about the semantics of preservation of truth degrees, which is alter-
native both to the algebraic semantics and to the standard semantics. With this new
semantics, validity remains unchanged, but the consequence relation changes in a
significant way. The second paper, by Mundici, proposes another alternative to the
standard semantics for which the author is able to prove strong standard com-
pleteness, a property which fails for the usual standard semantics. The third paper
on semantics, by Aguzzoli and Marra, discusses some general semantic principles
and characterizes the three main fuzzy logics, Łukasiewicz, Gödel, and product
logics, in terms of them.

The fourth part deals with the algebraic aspects of many-valued logics. In this
chapter, algebraic tools are used. This part consists of two papers. The first paper,
by Dvurečenskij, deals with the connections between many-valued logic and
‘-groups, and the second paper, by Ledda, Paoli and Tsinakis, deals with another
important property of algebras for many-valued logic, namely, prelinearity, and
relates varieties of algebras for substructural logics to varieties of algebras for
fuzzy logic.

The fifth part contains two papers, one by Bou, Esteva and Godo, and another
by Cintula, Horčik and Noguera, and deals with some more recent developments,
namely modal fuzzy logics and weak fuzzy logics. Modal fuzzy logics are
discussed in one of the last chapters of Hájek’s book, Metamathematics of Fuzzy
Logic, but although the book presents many very interesting general ideas, it does
not contain a complete development of this subject, which seems to be left to the
future research. The second subject, weak many-valued logics, was begun already
in Hájek’s book, in which the author proposed BL as the basic fuzzy logic.
But after the publication of the book, several weaker fuzzy logics (for instance, the
monoidal t-norm-based logic MTL by Esteva and Godo), were investigated, and
hence it makes sense to look for the really basic fuzzy logic.

I conclude this Preface by thanking several researchers, without whom this
volume would have not existed. First of all, Petr Hájek, the scientist to whom the
volume is dedicated; then Daniele Mundici, who suggested the idea for the first
time; then, all the authors of the volume, who accepted to present their results here
and to devote them to Petr Hájek; finally, special thanks are due to (in alphabetical
order) Libor Běhounek, Petr Cintula, Francesc Esteva, Lluis Godo, Siegfried
Gottwald, Zuzana Haniková, and Vincenzo Marra, who helped me either to collect
the scientific material of Petr Hájek or to improve the format of the volume.
In particular, Lluis Godo’s assistance with the LaTex was extremely useful.

All these people deserve special mention, and credits for this volume should be
given to them more than to myself.

Siena, Italy Franco Montagna
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Libor Běhounek and Zuzana Haniková

5 Bridges Between Contextual Linguistic Models of Vagueness
and T-Norm Based Fuzzy Logic . . . . . . . . . . . . . . . . . . . . . . . . . 91
Christian G. Fermüller and Christoph Roschger

Part III Semantics and Consequence Relation
in Many-Valued Logic

6 Consequence and Degrees of Truth in Many-Valued Logic . . . . . 117
Josep Maria Font

7 The Differential Semantics of Łukasiewicz
Syntactic Consequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143
Daniele Mundici

ix

http://dx.doi.org/10.1007/978-3-319-06233-4_1
http://dx.doi.org/10.1007/978-3-319-06233-4_2
http://dx.doi.org/10.1007/978-3-319-06233-4_3
http://dx.doi.org/10.1007/978-3-319-06233-4_4
http://dx.doi.org/10.1007/978-3-319-06233-4_5
http://dx.doi.org/10.1007/978-3-319-06233-4_5
http://dx.doi.org/10.1007/978-3-319-06233-4_6
http://dx.doi.org/10.1007/978-3-319-06233-4_7
http://dx.doi.org/10.1007/978-3-319-06233-4_7
http://dx.doi.org/10.1007/978-3-319-06233-4_7


8 Two Principles in Many-Valued Logic. . . . . . . . . . . . . . . . . . . . . 159
Stefano Aguzzoli and Vincenzo Marra

Part IV Algebra for Many-Valued Logic

9 How Do ‘-Groups and Po-Groups Appear in Algebraic
and Quantum Structures?. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177
Anatolij Dvurečenskij
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Olomouc, Czech Republic

Francesc Esteva Artificial Intelligence Research Institute, IIIA-CSIC, Bellaterra,
Spain

Christian G. Fermüller Theory and Logic Group, Vienna University of
Technology, Vienna, Austria

Josep Maria Font Departament de Probabilitat, Lògica i Estadística, Universitat
de Barcelona (UB), Barcelona, Spain

Lluís Godo Artificial Intelligence Research Institute, IIIA-CSIC, Bellaterra,
Spain

Siegfried Gottwald Abteilung Logik und Wissenschaftstheorie am Institut für
Philosophie, Universität Leipzig, Leipzig, Germany

Zuzana Haniková Institute of Computer Science, Academy of Sciences of the
Czech Republic, Prague, Czech Republic
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Chapter 1
Introduction

Francesc Esteva, Lluís Godo, Siegfried Gottwald and Franco Montagna

1.1 Mathematical Fuzzy Logic

Since Petr Hájek, the scientist we are going to celebrate, is the main contributor to
Mathematical Fuzzy Logic, we will first spend a few words about this subject.

Mathematical Fuzzy Logic is amathematical study of logical systemswhose alge-
braic semantics involve some notion of truth degree. The origins of the discipline
are both philosophical (modeling correct reasoning in some particular contexts like
the treatment of vague predicates, for which classical logic may appear not ade-
quate), as well as more technical: Zadeh’s Fuzzy Set Theory, which has been widely
applied, and many-valued logics, which are logics with intermediate truth degrees,
whose order is often assumed to be linear. Unlike Fuzzy Set Theory, which is mainly
devoted to concrete applications, Mathematical Fuzzy Logic is a subdiscipline of
Mathematical Logic, and hence it aims at a mathematical treatment of reasoning
with intermediate truth degrees. Hence, as all known logics, Mathematical Fuzzy
Logic deals with propositional and first-order formulas (and, in some cases, even
with second-order formulas), and it has several semantics, an algebraic semantics, a
semantics given by chains, a semantics based on [0, 1], and also a game-theoretical
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4 F. Esteva et al.

semantics. It also deals with such problems as (un)decidability and computational
complexity. Although it is questionable whether or not Mathematical Fuzzy Logic
can satisfactorily capture vague concepts (and we tend to believe that it is not the
case), for their treatment it seems at least more suitable than classical logic and than
other non-classical logics. Finally, although Fuzzy Logic is different from probabil-
ity, it is formally possible to treat probability (and hence, uncertainty) inside Fuzzy
Logic enriched with a modality representing Probably. Hence, Mathematical Fuzzy
Logic is a very beautiful mathematical theory with concrete applications. For more
information, one can consult the Handbook of Mathematical Fuzzy Logic (Cintula
et al. 2011).

1.2 The Beginning

When Petr Hájek begun his work on Mathematical Fuzzy Logic, he and his collab-
orators immediately realized that several important fuzzy logics, like Łukasiewicz
logic and Gödel logic, were already present in the literature. At the same time, the
wide literature on t-norms suggested to him to associate to each continuous t-norm
a logic, in which conjunction and implication are interpreted as the t-norm and its
residuum, respectively. In particular, his attention was attracted by the logic of a very
natural continuous t-norm, namely, the product t-norm. With F. Esteva and L. Godo,
in the paper A complete many-valued logic with product-conjunction (Hájek et al.
1996), the authors offered an axiom system for this product logic and proved that
it is (sound and) complete with respect to the standard semantics on [0, 1]. To get
this completeness result they introduced an algebraic semantics based upon product
algebras in a way similar to the completeness proof which C. C. Chang gave for (the
infinite valued) Łukasiewicz logic via MV-algebras (Chang 1959).

The interest of product logic is also emphasized in the paper Embedding logics
into product logic (Baaz et al. 1998). In that paper, the authors construct a faithful
interpretation of Łukasiewicz’s logic in product logic (both propositional and pred-
icate), as well as a faithful interpretation of Gödel logic into product logic with the
Monteiro-Baaz projection connective Δ. As a consequence, they prove that the set
of standard first-order product tautologies is not recursively axiomatizable, and that
the set of propositional formulas satisfiable in product logic (resp., in Gödel logic),
is NP-complete.

A controversial problem in fuzzy logic is the notion of negation. Indeed, in the
theory of fuzzy sets negation is always involutive. But if one defines ¬ϕ as ϕ → ⊥,
as in intuitionistic logic, then the negation of several fuzzy logics like Gödel and
product logic, is not involutive: over [0, 1] it is a function which exchanges 0 and
1 and sends to 0 any other value. Hence, in the paper Residuated fuzzy logics with
an involutive negation (Esteva et al. 2000) by Esteva, Godo, Hájek and Navara, the
authors describe the logic arising from a residuated fuzzy logic with such a kind
of negation by the addition of an involutive negation. In these logics, one has two
negations: a classical (involutive) negation and the (strict) negation arising from
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residuation. Interestingly, for the case of usual product logic, while one has standard
completeness with respect to the product usual connectives on [0, 1] and the class of
all involutive negations, we do not have standard completeness with respect to the
usual negation 1 − x alone.

1.3 The Monograph “Metamathematics of Fuzzy Logic”

All the above mentioned logics are treated in Hájek’s monograph Metamathematics
of Fuzzy Logic (Hájek 1998). This book has played a fundamental role in the recent
development of Mathematical Fuzzy Logic.

It is impossible to summarize the whole content of this book without overlooking
something important. For example, the book contains an interesting preliminary
discussion about the motivations of fuzzy logic and about their general semantic
principles, which will not be reported here. However, in our opinion the main ideas
contained in the book are the following:

1. Fuzzy logics are presented as logics of continuous t-norms and their residuals.
2. Since every continuous t-norm is the ordinal sumof Łukasiewicz, Gödel and prod-

uct t-norms, the corresponding logics (Łukasiewicz, Gödel and product logics)
are of fundamental importance.

3. One can look for a common fragment of the three fundamental fuzzy logics, as
well as for the logic of all continuous t-norms. Then Hájek proposed a logic,
called Basic (Fuzzy) Logic (in symbols, BL), which later on turned out to be the
logic of all continuous t-norms and of their residuals.

4. Fuzzy logics are considered as logics of a comparatively graded notion of truth,
indeed a formula ϕ → ψ is 1-true whenever the degree of truth of ψ is greater or
equal to that ofϕ. The ability of explicitly reasoning about truth-degreesmotivates
the study of the so called Rational Pavelka Logic, which has constants for all
rational truth-values.

5. The general semantics of fuzzy logics is constituted by totally ordered commu-
tative, integral and divisible residuated lattices, BL-chains for short. As noted by
Baaz in his article in the volumeWitnessed years (Cintula et al. 2009),Hájek raised
the problem of the independence of the axiom (ϕ&(ϕ → ψ)) ↔ (ψ&(ψ → ϕ)),
corresponding to divisibility. This axiom turns out to be independent, but inter-
estingly, if we remove it, we get another interesting logic, namely, the Monoidal
T-norm-based Logic MTL of Esteva and Godo.

6. Every schematic extension L of BL has a first-order expansion L∀, which is
strongly complete with respect to the class of all safe interpretations on L-chains.
The idea is that the existential quantifier and the universal quantifier are interpreted
by suprema and infima, and an interpretation on an L-chain is said to be safe
when all suprema and infima needed to interpret quantifiers exist in the L-chain.
Interestingly, Hájek didn’t require the L-chains to be complete. Indeed, with
the remarkable exception of Gödel logic, for every continuous t-norm logic L,
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the set of first-order formulas which are valid in all complete L-chains is not
recursively axiomatizable, while the set of formulas which are valid in all safe
interpretation over arbitrary L-chains is axiomatizable over L by a finite set of
axiom schemata. Yet another interesting feature of this book is the discovery of
the axiom ∀x(ϕ(x) ∨ ψ) → ((∀xϕ(x)) ∨ ψ), which in the case of intuitionistic
first-order logic characterizes Kripke models with constant domain. It turns out
that in the case of fuzzy logic, this axiom characterizes the semantics by chains.

7. The last part of the book deals with application aspects: e.g., fuzzy modal logics,
a logical understanding of fuzzy if-then rules and fuzzy quantifiers like many and
probably are discussed. Interestingly, although Hájek emphasizes the differences
between fuzzy logic and probability theory (the former is truth functional, the
latter is not, the former deals with vague concepts that may have an intermediate
truth degree, while the latter deals with events which are unknown now but will
be either completely true or completely false later), the author introduces an inter-
pretation of the logic of probability into fuzzy logic enriched with the modality
Probably. In this way, the probability of an event ϕ becomes the truth value of
the sentence Probably ϕ.

Although the book is full of interesting results, it doesn’t exhaust Petr’s research in
Mathematical Fuzzy Logic. Here below, we list some problems which are somehow
addressed in the book and which have been further investigated by Petr and by his
coauthors:

1. First-order fuzzy logics, and in particular: supersound logics, complexity of stan-
dard tautologies or of standardly satisfiable formulas and witnessed models.

2. Computational complexity of propositional fuzzy logics.
3. Logics weaker than BL (MTL, hoop logics, ps-BL, flea-logics).
4. Logics with truth constants for the rationals.
5. Logics of probability, of possibility and of belief.
6. Logics with truth-hedges.
7. Fuzzy modal logics.
8. Fuzzy description logic.
9. Mathematical theories (arithmetic, set theory) over fuzzy logic.

1.4 First-Order Fuzzy Logics

As said before, an important contribution byPetrHájek to first-order fuzzy logic is the
discovery of the right semantics for it. Indeed, the first-order version of any schematic
extension L of BL (denoted in the sequel by L∀) is strongly complete with respect
to the class of all safe interpretations on L-chains (totally ordered models of L), and
the same can be easily proved, essentially by the same proof, for extensions of first-
order MTL. In general, we do not have completeness with respect to interpretations
over completely ordered L-chains. That is, the class of all structures on completely
ordered L-chains is a too narrow class to get completeness. One may try to do the
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opposite way, that is, to enlarge the class of interpretations, and to define a formula
valid if it is true in all (possibly unsafe) interpretations in L-chains in which its truth
value is defined. But in this way we may lose correctness. A predicate fuzzy logic
L∀ is said to be supersound if every theorem ϕ of L∀ is valid in all (possibly unsafe)
interpretations on any L-chain in which its truth-value is defined.

In the paper A note on the notion of truth in fuzzy logic (Hájek and Shepherdson
2001), Hájek and Shepherdson show that among the logics given by continuous
t-norms, Gödel logic is the only one that is supersound. All other continuous t-norm
logics are (sound but) not supersound. This supports the view that the usual restriction
of semantics to safe interpretations (in which the truth assignment is total) is very
natural.

Another semantics for first-order fuzzy logics for which completeness in general
fails is the standard semantics on [0, 1]. In some cases, the failure is obtained in a
very strong sense: for instance, for product logic, both the set of 1-tautologies and the
set of 1-satisfiable formulas are not arithmetical. The arithmetical complexity of the
standardly satisfiable formulas or of standard tautologies of themost prominent fuzzy
logics is summarized in P. Hájek’s paper Arithmetical complexity of fuzzy predicate
logics-a survey, II (Hájek 2009).

Among all logics of continuous t-norms, Gödel first-order logic is the only logic
which is complete with respect to the standard semantics on [0, 1]. However, Gödel
first-order logic is no longer complete if instead of [0, 1] we take an arbitrary closed
subset of [0, 1] containing 0 and 1. Now in P. Hájek’s paper A non-arithmetical
Gödel logic (Hájek 2005c), the following surprising result is proved: Let G↓ denote
the first-order Gödel logic with truth degree set V↓= {0} ∪ { 1

n : n = 1, 2, ...
}
. Then

the sets of satisfiable formulas as well as of tautologies of G↓ are non-arithmetical.
This is in contrast with the similar system G↑ with truth degree set V ↑= {1} ∪{

n
n+1 : n = 0, 1, ...

}
, whose set of tautologies is shown to be �2-complete.

Several new and original ideas about the semantics of first-order fuzzy logics are
presented in P.Hájek andP.Cintula’s paper On theories and models in fuzzy predicate
logics (Hájek and Cintula 2006b). There, a general model theory is presented for
predicate logics, and a more general version of the completeness theorem is proved,
using doubly Henkin theories. Moreover, the (very interesting) concept of witnessed
model is introduced. These are models in which suprema and infima used to interpret
existential and universal quantifiers are actually maxima and minima. The logic
of witnessed models is obtained by adding the axioms ∃x(P(x) ← ∀y P(y)) and
∃x(∃y P(y) → P(x)). Interestingly, although these axioms are valid in classical
logic, they are not intuitively valid. For instance, the first axiom says that there is an
individual x such that if x gets drunk, then everybody gets drunk.

Although the paper by P. Hájek and F. Montagna, A note on the first-order logic
of complete BL-chains (Hájek and Montagna 2008), is probably not one of the most
important papers by Petr, we will mention it because it has a nice story. The paper
discusses an error in another paper by Sacchetti and Montagna. The error was based
on the wrong assumption that in a complete BL-chain, the fusion operator distributes
over arbitrary infima. This property clearly holds in any standard BL-algebra, but is
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not true in general (Felix Bou found a counterexample). As a consequence of that
error, Montagna and Sacchetti claimed that the predicate logics of all complete BL-
chains and of all standard BL-chains coincide. During a meeting, Petr toldMontagna
that he was going to do the same error. Then Petr and Montagna discussed this
problembye-mail, and arrived to the following result: a completeBL-chainB satisfies
all standard BL-tautologies iff for any transfinite sequence (ai : i ∈ I ) of elements of
B, the condition

∨
i∈I a2

i = (
∨

i∈I ai )
2 holds inB. It is nice to observe thatMontagna

was going to repeat the error in another paper, but fortunately he noticed it before
submitting the paper for publication.

1.5 Computational Complexity of Fuzzy Logics

Propositional logics may have quite different complexities. For instance, classi-
cal logic is coNP-complete, intuitionistic logic is PSPACE-complete, as well as
many modal logics, and linear logic is even undecidable. The most important many-
valued logics extending BL are coNP-complete, and Hájek greatly contributed to the
proof of this general claim. The book Metamathematics of Fuzzy Logic already con-
tains a proof of coNP-completeness of Łukasiewicz, Gödel and product logics. The
first result has been proved by Mundici (1987), and then, by different techniques,
by (Hähnle 1994). The coNP-completeness of Gödel logic is easy and the coNP-
completeness of product logic follows from the above mentioned paper (Baaz et al.
1998).

Another important result about computational complexity of fuzzy logis is the
coNP-completeness of BL, which was proved by M. Baaz, P. Hájek, F. Montagna
and H. Veith in the paper Complexity of t-tautologies (Baaz et al. 2002).

In P. Hájek’s paper Computational complexity of t-norm based propositional
fuzzy logics with rational truth constants (Hájek 2006a), the author discusses the
complexity of Gödel logic, Łukasiewicz logic, and product logic added with con-
stants for the rational numbers in [0, 1] along with bookkeeping axioms. For these
logics the complexity remains the same as for their fragments without the constants.
However, there are t-norms such that the complexity when one adds the rational
constants may fall outside the arithmetical hierarchy.

Finally, in the paper Complexity issues in axiomatic extensions of Łukasiewicz
logic (Cintula and Hájek 2009) P. Cintula and P. Hájek show that all axiomatic
extensions of propositional Łukasiewicz logic are coNP-complete.

It is worth noticing that Zuzana Haniková in the paper A note on the complexity
of propositional tautologies of individual t-algebras (Haniková 2002) proved that all
logics of continuous t-norms on [0, 1] are coNP-complete.
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1.6 Logics Weaker than BL

There are three types of fragments of BL, namely, the logics in a weaker language
which are extended by BL conservatively, the logics in the language of BL whose
axiom set is properly included in the axiom set of BL, and the logics which have a
weaker language thanBLandare extendedbyBL, but not conservatively.Remarkable
examples of fragments in the first sense are the logic BH of basic hoops, which has
been investigated by F. Esteva, L. Godo, P. Hájek, and F. Montagna in the paper
Hoops and fuzzy logic (Esteva et al. 2003) and the logic BHBCK of basic hoop
BCK-algebras, investigated by Aglianò, Ferreirim and Montagna in Aglianò et al.
(2007). The first logic is the fragment of BL in the language {&,→,
}, while the
latter logic is the fragment of BL in the language {→,
}.

Themost interesting fragment of the second type is probably theMonoidal t-norm
LogicMTL by Esteva andGodo (2001). These authors, having inmind that in t-norm
algebras the existence of the residual already yields the left continuity of the t-norm,
conjectured that deleting the essential part a ∧ b ≤ a ∗(a → b) of the continuity
condition, but maintaining the prelinearity condition, should yield the logic of all
left continuous t-norms.1 Although this interesting logic was not due to him, Hájek
showed interest in this logic and in his paper Observations on the monoidal t-norm
logic (Hájek 2002a), he investigates some extensions of MTL. The leading idea
was the following: BL has three well-known extensions: Łukasiewicz logic, Gödel
logic, and product logic, which are axiomatized over BL by the axioms ¬¬ϕ → ϕ,
ϕ → (ϕ&ϕ) and ¬ψ ∨ (((ψ → (ϕ&ψ)) → ϕ), respectively. Then it is natural to
investigate the analogous extensions ofMTL, namelyMTL plus¬¬ϕ → ϕ, denoted
by IMTL, MTL plus ϕ → (ϕ&ϕ) and MTL plus ¬ψ ∨ (((ψ → (ϕ&ψ)) → ϕ),
which is denoted by�MTL.WhileMTL plus ϕ → (ϕ&ϕ) is just Gödel logic, IMTL
is weaker that Łukasiewicz logic, and MTL plus ¬ψ ∨ (((ψ → (ϕ&ψ)) → ϕ) is
weaker than product logic.

While MTL is obtained from BL by removing divisibility, one may wonder what
happens if one removes commutativity of the conjunction. BL deprived of commuta-
tivity has been investigated e.g. by Georgescu and Iorgulescu (2001) and by Flondor
et al. (2001), see also the book by S. Gottwald, A treatise on many-valued logics
(Gottwald 2001). In his paperFuzzy logics with noncommutative conjunctions (Hájek
2003b), Hájek finds adequate axiomatizations for these logics and proves a complete-
ness theorem for them. Moreover in his paper Embedding standard BL-algebras
into non-commutative pseudo-BL-algebras (Hájek 2003a), Hájek proves that each
BL-algebra given by a continuous t-norm is a subalgebra of a non-commutative
pseudo-BL-algebra on a ‘non-standard’ interval [0, 1]∗.

The logic BLwas already an attempt to generalize the threemain fuzzy logics, that
is, Łukasiewicz, Gödel and product logics. Hence, probably Hájek didn’t imagine
such an amount of generalizations obtained by removing either connectives or the

1 Deleting even the prelinearity condition had given the monoidal logic of Höhle (1994, 1995).
This logic is characterized by the class of all residuated lattices, but seems to be too general as a
logic for t-norms.
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divisibility axiom, or the commutativity axiom. In his paper Fleas and fuzzy logic
(Hájek 2005a), Hájek finds a common generalization of the logic of basic hoops
and the logic psMTL of noncommutative pseudo-t-norms. He presents a general
completeness theorem and he discusses the relations to the logic of pseudo-BCK
algebras. The reference to fleas in the title is due to the following story:

Some scientists make experiments on a flea: they remove one of its legs and tell it:
Jump!. The flea can still jump. Then they repeat the experiment over and over again,
and, although with some difficulty, the flea still jumps. But once all legs are removed,
the flea is no longer able to jump. Then the doctors come to the conclusion that a
flea without legs becomes deaf. Now the attitude of logicians who remove more and
more axioms and symbols and still expect to be able to derive interesting properties,
is compared to the attitude of the scientists of the story.

Another interesting paper about fragments is the one by P. Cintula, P. Hájek,
R. Horčik, Formal systems of fuzzy logic and their fragments (Cintula et al. 2007).
There, the authors investigate expansions of the logic BCK with the axiom of prelin-
earity which come about by the addition of further connectives, which are chosen in
such a way that the resulting systems become fragments of well-known mathemat-
ical fuzzy logics. These logics are usually characterized by quasivarieties of lattice
based algebraic structures, and in some cases by varieties. The authors give adequate
axiomatizations for most of them.

1.7 Further Logics Related to BL

1.7.1 Rational Pavelka Logic

Besides the purely logical interest in mathematical fuzzy logics their consideration
is motivated by the problem to search for suitable logics for fuzzy sets.

In this context it is natural to ask whether it is possible to generalize the standard
entailment as well as provability considerations in logical systems to the case that
one starts from fuzzy sets of formulas, and that one gets from them as consequence
hulls again fuzzy sets of formulas. This problem was first treated by Jan Pavelka
in 1979 in his three papers On fuzzy logic I, II and III (Pavelka 1979). Accordingly
such approaches are sometimes called Pavelka-style, but they have also been coined
approaches with evaluated syntax.

Such an approach has to deal with fuzzy setsΣ∼ of formulas, i.e. besides formulas
ϕ also their membership degrees Σ∼(ϕ) in Σ∼. And these membership degrees are
just the truth degrees of the corresponding logic. This is an easy matter as long
as the entailment relationship is considered. An evaluation e is a model of Σ∼ iff
Σ∼(ϕ) ≤ e(ϕ) holds for each formula ϕ. Hence the semantic consequence hull of
Σ∼ should be characterized by themembership degreesC sem(Σ∼)(ψ) = ∧{e(ψ) |
e model of Σ∼}.
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For a syntactic characterization of this entailment relation it is necessary to treat
evaluated formulas, i.e. ordered pairs consisting of a truth degree symbol and a
formula in a logical calculusK. Also the rules of inference have to dealwith evaluated
formulas. Each derivation of an evaluated formula (a, ϕ) counts as a derivation of
ϕ to the degree a. The provability degree of ϕ from Σ∼ in K is the supremum
over all these degrees. The syntactic consequence hull of Σ∼ is the fuzzy set C syn

K

of formulas characterized by the membership function C
syn
K

(Σ∼)(ψ) = ∨{a |
K derives (a, ψ) out of Σ∼}.

Already Pavelka proved soundness and completeness saying C sem(Σ∼) =
C

syn
L (Σ∼), but only for the case that the many-valued logic under consideration

here is the (infinite valued) Łukasiewicz logic L. (This restriction comes from the
fact that the completeness proof needs the continuity of the residuation operation.)
Because the truth degree symbols have to be part of the derivations, here one needs to
refer to an uncountable language with constants for all the reals of the unit interval.

Petr Hájek realized the following important facts: (i) it is sufficient to have con-
stants for the rationals from the unit interval; (ii) instead of working with evaluated
formulas one can consider implications of the forms r → ϕ and ϕ → r ; (iii) the
semantic degree C sem(Σ∼)(ψ) is the infimum of all rationals r such that r → ψ is
satisfiable in all the models of Σ∼, and the provability degree C syn

L (Σ∼)(ψ) is the
supremum of all rationals r such that r → ψ is provable from Σ∼. All together this
led him to an expanded version of L, expanded by truth degree constants for the ratio-
nals from the unit interval and by corresponding bookkeeping axioms to treat these
constants well, which he coined Rational Pavelka Logic. Hence, in a certain sense,
Rational Pavelka Logic is equally powerful as the original Pavelka style extension
of Łukasiewicz logic.

One may wonder what is the relationship between the Rational Pavelka Logic and
other mathematical fuzzy logics, and in particular, whether Rational Pavelka Logic
is conservative over Łukasiewicz logic. In the paper Rational Pavelka Logic is a
conservative extension of Łukasiewicz logic by Hájek et al. (2000), this last question
is solved affirmatively. Besides this result, it is shown that the provability degree of a
formula can also be defined within the framework of Łukasiewicz logic, i.e. without
truth-constants in the language.

1.7.2 Logics of Probability, of Possibility and of Belief

Already in a 1994,Hájek andHarmancová (1995) noticed that one can safely interpret
a probability degree on a Boolean proposition ϕ as a truth degree, not of ϕ itself but
of another (modal) formula Pϕ, read as “ϕ is probable”. The point is that “being
probable” is actually a fuzzy predicate, which can be more or less true, depending
on how much probable is ϕ. Hence, it is meaningful to take the truth-degree of
Pϕ as the probability degree of ϕ. The second important observation is the fact
that the standard Łukasiewicz logic connectives provide a proper modelling of the
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Kolmogorov axioms of finitely additive probabilities. For instance, the following
axiom

P(ϕ ∨ ψ) ↔ ((Pϕ → P(ϕ ∧ ψ)) → Pψ)

faithfully captures the finite-additive property when→ is interpreted by the standard
Łukasiewicz logic implication. Indeed, these were the key issues that are behind the
first probability logic defined as a theory over Rational Pavelka logic in the paper by
Hájek, Esteva and Godo, Fuzzy Logic and Probability (Hájek et al. 1995). This was
later described with an improved presentation in Hájek’s monograph (Hájek 1998)
where P is introduced as a (fuzzy) modality. Exactly the same approach works to
capture uncertainty reasoning with necessity measures, replacing the above axiom
by Nϕ ∧ Nψ → N (ϕ ∧ψ). More interesting was the generalization of the approach
to deal with Dempster-Shafer belief functions proposed in the paper by Godo, Hájek
and Esteva, A fuzzy modal logic for belief functions (Godo et al. 2003). There, to get
a complete axiomatization, the authors use one of possible definitions of Dempster-
Shafer belief functions in terms of probability of knowing (in the epistemic sense),
and hence they combine the above approach to probabilistic reasoningwith themodal
logic S5 to introduce a modality B for belief such that Bϕ is defined as P�ϕ, where
� is a S5modality and ϕ is a propositional modality-free formula. The complexity of
the fuzzy probability logics over Łukasiewicz and Ł� logics was studied by Hájek
and Tulipani (2001).

This line of research has been followed in a number of papers where analogs
of these uncertainty logics have been extended over different fuzzy logics, mainly
Łukasiewicz and Gödel logics, see e.g. Flaminio and Godo (2007),Flaminio
et al. (2011),Flaminio and Montagna (2011),Flaminio et al. (2013). Hájek himself
wrote another very interesting paper (Hájek 2007a), generalising Hájek and Tulipani
(2001), about the complexity of general fuzzy probability logics defined over what
he calls suitable fuzzy logics, i.e. logics whose standard set of truth values is the
real unit interval [0, 1] and the truth functions of its (finitely many) connectives are
definable by open formulas in the ordered field of reals.

1.7.3 Fuzzy Modal Logics

Another related field where Petr Hájek has made significant contributions is on the
study of modal extensions of fuzzy logics and where he has also paved the way for
further studies in this field. Inspiredby thepioneerworkofFitting (1992a, b) onmany-
valuedmodal logic valued on finiteHeyting algebras, in a 1996 conference paperwith
Dagmar Harmancová (Hájek and Harmancová 1996) there is already a first study
of a generalization of the modal logic S5 over Łukasiewicz logic. This topic is
later developed in Hájek’s monograph (Hájek 1998), where he considers modal
logics S5(C ), where C stands for any recursively axiomatized fuzzy propositional
logic extending BL. The language of S5(C ) is that of fuzzy propositional calculus
(the language of C ) extended by modalities � and ♦. The semantics is given by
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Kripke models of the form K = (W, e, A) where W is a set of possible worlds, A
is a BL-chain and e(·, w) is an evaluation of propositional variables in A, for each
possible world w ∈ W . As usual, e(·, w) extends to arbitrary formulas interpreting
propositional connectives by the corresponding operations in A, and tomodal formu-
las as �ϕ and ♦ϕ as universal and existential quantifiers over possible worlds, that
is, e(�ϕ,w) = infv∈W e(ϕ, v), and e(♦ϕ,w) = supv∈W e(ϕ, v). This is clearly a
fuzzy variant of classical S5 modal semantics with total accessibility relations. In his
book Hájek (1998), Hájek proposes a set of axioms but leaves open the problem of
proving its completeness. This problem is positively solved in his 2010 paper (Hájek
2010) where he relates S5(C ) to the monadic fragment mC ∀ with just one variable
(but with possibly countably-many constants) of the first order logic C ∀, and shows
that the monadic axioms of C ∀ provide an axiomatization of mC ∀ that is strongly
complete with respect to the general semantics. In Hájek (1998) it is shown that, for
C being Łukasiewicz (Ł) or Gödel (G) logics, S5(C ) standard tautologies coincide
with the general tautologies. Therefore one gets as a direct consequence the stan-
dard completeness of the S5(Ł) and S5(G) logics (the problem is left open for other
choices of C ). In this paper Petr Hájek also considers other kinds of Kripke models,
namely witnessed and interval-valued models, besides some complexity results.

Petr Hájek has also studied other systems of fuzzy (or many-valued) modal
logic (Hájek et al. 1994, 1995; Hájek 2002). In particular, in Hájek et al. (1994)
a logic called MVKD45 is defined to provide a modal account of a certain notion
of necessity and possibility of fuzzy events. MVKD45 is developed over a finitely-
valued Łukasiewicz logic Łk expanded with some unary operators to deal with truth-
constants and its semantics is given by Kripke models of the form K = (W, e, π),
where W and e are as above (but evaluations are now over the (k + 1)-valued
Łukasiewicz chain Sk , and π : W → Sk is a possibility distribution on possible
worlds. This semantics can be thus considered as a many-valued variant of the clas-
sical KD45 modal semantics.

As it has happened in other areas, Hájek ideas have been the seed for further
investigations on fuzzy modal logics. Particular relevant are the papers by Caicedo
and Rodríguez (2010, 2012) and by Metcalfe and Olivetti (2011) on general modal
logics over Gödel logics, the paper by Hansoul and Teheux (2013) on modal logics
over Łukasiewicz logic, and the paper by Bou et al. (2011) on minimal modal logics
over a finite residuated lattice.

1.7.4 Fuzzy Description Logic

Computer scientists in Artificial Intelligence are interested in weakened but tractable
versions of first-order logics. Description Logics (DLs) (Baader et al. 2003) are
knowledge representation languages particularly suited to specify formal ontolo-
gies. DLs are indeed a family of formalisms describing a domain through a knowl-
edge base (KB) where relevant concepts of the domain are defined (terminology,
TBox) and where these defined concepts can be used to specify properties of cer-
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tain elements of the domain (description of the world, ABox). The vocabulary of
DLs consists of concepts, which denote sets of individuals, and roles, which denote
binary relations among individuals and could be interpreted both in a multi-modal
system and in first order logic: concepts as formulas and roles as accessibility rela-
tions in the modal setting and concepts as unary predicates and roles as binary
predicates in the first order setting. A first approach toward fuzzified versions of
description logics (FDLs from now on), i.e. versions referring to fuzzy logics instead
of classical logic, was introduced in several papers, for instance in Yen (1991),Tresp
and Molitor (1998),Straccia (1998),Stoilos et al. (2006),Sánchez and Tettamanzi
(2006),Łukasiewicz and Straccia 2008. However, the logic framework behind these
initial works is very limited. The fuzzy logic context consisted essentially only of
the min-conjunction, the max-disjunction, and the Łukasiewicz negation.

In his 2005 paper Making fuzzy description logic more general (Hájek 2005b),
Petr Hájek proposes to deal with FDLs taking as basis t-norm based fuzzy logics
with the aim of enriching their expressive possibilities (see also Hájek 2006a). This
change of view gives rise to a wide number of choices on which a FDL can be
based: for every particular problem we can consider the fuzzy logic that seems to
be more adequate. As an example, Hájek studies an ALC -style description logic
as a suitable fragment of BL∀. He proves, e.g. that the satisfiability of a concept
when taking Łukasiewicz infinite-valued logic as background logic is decidable.
The proof makes use of the fact that Łukasiewicz infinite-valued logic is complete
w.r.t. witnessed models and it is based on a reduction of the satisfiability problem
of a concept in description logic (or modal formula) to a satisfiability problem of
a family of formulas of propositional logic, which is a decidable problem. In fact
the result is valid for any description logic over any axiomatic extension of BL that
satisfies the witnessed axioms, which is proved to be equivalent to the finite model
property. But the main interest of Hájek’s work was to bring a new view into Fuzzy
description logics that took advantage of the recent advances of Mathematical Fuzzy
logic, giving birth to a large family of FDLs.

From then, several papers on FDLs have followed Hájek ideas, for instance,
García-Cerdaña et al. (2010),Bobillo et al. (2009),Borgwardt and Peñaloza (2011),
Cerami et al. (2010),García-Cerdaña et al. (2010),Cerami and Straccia (2013),
Borgwardt et al. (2012).

1.7.5 Logics with Truth Hedges

Truth hedges are clauses which directly refer to the truth of some sentence like it
is very true that, it is quite true that, it is more or less true that, it is slightly true
that, etc. In this formulation, after Zadeh, they have been represented in fuzzy logic
systems (in broad sense) as functions from the set of truth values (typically the real
unit interval) into itself, that modify the meaning of a proposition by applying them
over the membership function of the fuzzy set underlying the proposition. In the
setting of mathematical fuzzy logic, Petr Hájek proposes in a series of three papers
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Hájek (2001, 2002b),Hájek and Harmancová (2000) to understand them as truth
functions of new unary connectives called truth-stressing or truth-depressing hedges,
depending on whether they reinforce or weaken the meaning of the proposition they
apply over. The intuitive interpretation of a truth-stressing hedge on a chain of truth-
values is a subdiagonal non-decreasing function preserving 0 and 1.

In his paper On very true (Hájek 2001), Petr Hájek axiomatizes the truth-stresser
very true as an expansion of BL logic (and of some of their prominent extensions
like Łukasiewicz or Gödel logics) by a new unary connective vt satisfying the above
mentioned conditions together with the K-axiom vt (ϕ → ψ) → (vt ϕ → vt ψ) and
the rule of necessitation forvt . The logics he defines are shown to be algebraizable and
to be complete with respect to the classes of chains of their corresponding varieties,
and in the case of the logic over Gödel logic he proves standard completeness. This
approachwas later followed byVychodil (2006) in order to dealwith truth depressers
as well. Finally Esteva, Godo and Noguera have given in Esteva et al. (2013) a more
general approach containing as particular cases those of Hájek and Vichodyl.

1.8 Mathematical Theories Over Fuzzy Logic

Twoparticular elementary theories have found the interest of PetrHájek: an axiomatic
set theory FST for fuzzy sets, and formalized arithmetic.

A ZF-like axiomatic theory FST, based upon the first-order logic BL∀Δ, is dis-
cussed by Petr and Z. Haniková in the paper A development of set theory in fuzzy
logic (Hájek and Haniková 2003). Its first-order language has the equality symbol =
as a logical symbol, and ∈ as its only non-logical primitive predicate. The axioms are
suitable versions of the usual ZF-axioms together with an axiom stating the existence
of the support of each fuzzy set.

A kind of “standard” model V L = ⋃
α∈On V L

α for this theory FST is formed,
w.r.t. some complete BL-chain L, completely similar to the construction of Boolean
valued models for ZF, i.e. with the crucial iteration step V L

α+1 = {
f ∈ dom (u)L |

dom (u) ⊆ V L
α

}
.

For the primitive predicate ∈ the truth degree [[x ∈ y]] is defined as [[x ∈ y]] =
y(x) for x ∈ dom (y) and as 0 otherwise. And = has the truth degree [[x = y]] = 1
for x = y and 0 otherwise.

The main results are that the structure V L is a model of all of the authors’ axioms,
and that ZF is interpretable in FST.

Another generalized set theory Petr is interested in is Cantorian set theory CL0
over Łukasiewicz logic L∞. In the background there is an older approach toward
a consistency proof for naive set theory, i.e. set theory with comprehension and
extensionality only, via L∞ initiated by Skolem (1957). This approach resulted —
after a series of intermediate steps mentioned e.g. in Gottwald (2001)— in a proof
theoretic proof (in the realm of L∞) of the consistency of naive set theory with
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comprehension only by White (1979) (There are doubts whether this proof is fully
correct.).

In this context, Petr’s goal is to study the arithmetics of natural numbers. In his
paper On arithmetic in the Cantor-Łukasiewicz fuzzy set theory (Hájek 2005d), he
finds out that this is a rather delicate matter.

Two equality predicates come into consideration here—so called Leibniz equality
x =l y =de f ∀z(x ∈ z ↔ y ∈ z) and the usual extensional equality x =e y =de f

∀z(z ∈ x ↔ z ∈ y). Leibniz equality is shown to be a crisp predicate, but extensional
equality is not.

CL0 becomes inconsistent adding the coincidence assumption x =l y ↔ x =e y.
A constant ω can be introduced to denote a suitably defined crisp set of natural
numbers such that CL0(ω) is a conservative extension of CL0. Even a weak form of
induction might be added to CL0(ω) saving consistency, viz. the rule

ϕ(0) ∀x(ϕ(x)) ↔ ϕ(S(x))

(∀x ∈ ω)ϕ(x)

for formulas ϕ which do not contain the constant ω.
This restriction on the induction formulas is crucial, however: deleting this restric-

tion makes the system inconsistent.
Yet another approach toward arithmetics within mathematical fuzzy logic is

offered in Petr Hájek’s papers Mathematical fuzzy logic and natural numbers (Hájek
2007b), and Towards metamathematics of weak arithmetics over fuzzy logic (Hájek
2010). The starting point is a slightly modified form Q∼ of a weakened version Q−
of the Robinson arithmetic Q, designed byA. Grzegorczyk, and introducing addition
and multiplication as ternary relations. Seen as an elementary theory over BL∀ this
theory is denoted F Q∼. Themain results are that Q∼ as a theory over Gödel logic (or
also over intuitionistic logic) is essentially incomplete and essentially undecidable,
and that F Q∼ is essentially undecidable too.

1.9 Petr’s Failures

As noted by Matthias Baaz in the book Witnessed years (Cintula et al. 2009), Petr
Hájek had a special skill to obtain interesting results also from his failures. Here are
some examples. After he invented his logic BL, Petr tried to prove that it is standard
complete, that is, that BL is complete with respect to the class of continuous t-norms
and their residuals. He didn’t succeed (the result was proved by Cignoli, Esteva,
Godo and Torrens in the paper Basic fuzzy logic is the logic of continuous t-norms
and their residua (Cignoli et al. 2000), but he proved something which is very close
to the desired result. Namely, he proved that BL added with two axioms which are
sound in any continuous t-norm algebra is standard complete. Then Cignoli, Esteva,
Godo and Torrens proved that these axioms are redundant, i.e., they are provable in
BL, and got the result.
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Another example was Petr’s attempt to extend the Mostert and Shield’s
decomposition of a continuous t-norm as an ordinal sum of Łukasiewicz, Gödel
and product t-norms. In his paper Basic fuzzy logic and BL-algebras (Hájek 1998),
Petr did not get the full result, but he proposed a method which was crucial in the
proof of Aglianò-Montagna’s decomposition of a BL-chain as an ordinal sum of
MV-algebras and negative cones of abelian 
-groups. That is, he suggested to take
a maximal decomposition, that is, a decomposition in which each component can
no longer be decomposed as an ordinal sum. To conclude the proof of the Aglianò-
Montagna decomposition it is sufficient to prove that any indecomposable component
is either an MV-algebra or a negative cone of an abelian 
-group.

Finally, Petr failed to invent MTL-algebras, which are due to Esteva and Godo
(2001), but he conjectured the independence of the axiom (ϕ&(ϕ → ψ)) →
(ψ&(ψ → ϕ)), which separates BL from MTL, as an open problem. The indepen-
dence of this axiom from the other axioms ofBLmayhave suggested the investigation
of BL deprived of it (and with the obvious axioms for ∧), that is, of MTL.

Finally, Petr tried to prove the redundancy of the axiom ∀x(ϕ(x) ∨ ψ) →
((∀xϕ(x)) ∨ ψ). It turned out that this axiom is not redundant, for a proof see
for instance Esteva et al. (2003). However, a first-order fuzzy logic with this axiom is
sound and complete with respect to its chains, while first-order fuzzy logic deprived
of this axiom is sound and complete with respect to the class of its (possibly not
linearly ordered) algebras.
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