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   Foreword       

 The use of mass spectrometry is becoming increasingly important for biomedical 
research and for clinical applications. Detection of exogenous substances, such as 
toxins, can be performed by mass spectrometry and was perhaps the initial use of 
this technology in biomedicine. However, identifi cation of endogenous, disease- 
related molecules is also possible. With the advent of the genetic revolution, the 
proteomic revolution has followed in close succession. Mass spectrometers are 
essential for proteomic discovery, and other “omic” fi elds (such as glycomics, 
metabolomics, lipidomics, and many more) are exploding with new information. 
The sensitivity of mass spectrometers and increasingly more sophisticated bioinfor-
matics tools are opening up this fi eld to untold possibilities for biomedical research-
ers and clinicians. 

 In the spirit of this revolution in biomedicine, we have assembled this comprehen-
sive work, which largely focuses on the application of mass spectrometry to “omics” 
analysis in biomedicine. We start with broad descriptions of the fi eld, defi nitions of 
the machinery, and then delve into the various methods and approaches that can be 
utilized.    We consider aspects of molecular analysis and then discuss how mass spec-
trometry can be applied to our understanding of specifi c diseases and disorders. 

 Numerous MS-based methodologies are now available to researchers, and this 
text reviews many cutting-edge and relevant technologies. Dudley focuses on the 
application of matrix-assisted laser desorption/ionization (MALDI) in biomedicine, 
while colleagues from Waters Corporation examine how peak capacity can be best 
maximized. Brown describes quantitative shotgun proteomics with data- independent 
acquisition and traveling wave ion mobility spectrometry as a versatile life-science 
tool, while Hoedt and coworkers explore the use of stable isotope labeling by amino 
acids in cell culture (SILAC) for protein quantifi cation using mass spectrometry. 
A chapter by Roy and coworkers discusses the complementary use of computational 
structural biology in mass spectrometry. 

 Different aspects of proteins and other molecules can be studied using MS. Petre 
explores protein structures and interactions, while Zamfi r has tackled the use of 
mass spectrometry to understand gangliosides. Ngounou Wetie et al. examine the 



viii

analysis of protein posttranslational modifi cations and protein–protein interactions, 
and Samways focuses on mass spectrometry-based analysis of ion channel structure 
and function. Budayeva and Cristea further expand upon how protein–protein inter-
actions can be understood via mass spectrometry, while Ferguson et al. focus on its 
use for understanding small molecules. Ckless elucidates how redox proteomics can 
be studied in the lab, for eventual application to clinical uses, and Luck looks at 
fl uorinated proteins. Baral et al. explore mass spectrometry analysis using a model 
animal system, the zebrafi sh, while Miller and Spellman describe the workfl ow for 
biomarker discovery in a pharmaceutical company. 

 Focusing on health promotion, Andrei and colleagues examine how mass spec-
trometry can be used to analyze biomedically relevant stilbenes from wine. With 
regard to increased understanding of diseases and disorders, chapters by Monien, 
Schneider, Patel, and Sandu describe the use of mass spectrometry for analysis in 
cancer. Topics covered include quantifying DNA adducts, analysis of breast milk, 
apoptosis and cancer secretome analysis as identifi cation of heat shock response. 
In the fi eld of infectious disease, Branza-Nichita and colleagues use mass spectrom-
etry to study the HBV life cycle, while Marrakchi et al. look at oxidative stress and 
antibiotic resistance in bacterial pathogens. 

 Deinhardt examines how mass spectrometry can be used to understand neuronal 
signaling, which could apply to numerous neurological and psychiatric conditions, 
while Woods et al. study how mass spectrometry can facilitate the understanding of 
a novel central nervous system protein. We then explore more applied uses of mass 
spectrometry in the central nervous system: specifi cally, how biomarker discovery 
may be directly performed for neurodevelopmental disorders and be used to under-
stand and potentially diagnose depression. 

 In the realm of therapeutics, Heckman and coworkers have used mass spectrom-
etry to localize and analyze the effi cacy of nanoceria, a potential delivery system for 
a variety of medical conditions. We fi nally end with a particularly important chapter 
on bottlenecks in proteomics, topics that are encountered by almost all researchers 
but that are almost never discussed in publications. 

 We thus present to the reader a comprehensive text, examining the many uses of 
mass spectrometry in biomedicine, with the hope that this will be useful to both 
researchers and clinicians. As this exciting fi eld further expands, so will the potential 
applications for using mass spectrometry to understand medical issues and to address 
them through exploration, as well as eventual clinical prognosis, diagnosis, and moni-
toring. We look forward to an exciting era of MS-based discovery and application.  

    Potsdam, NY Alisa     G.     Woods   
   Costel     C.     Darie    

Foreword
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    Abstract     Within the past years, we have witnessed a great improvement in mass 
spectrometry (MS) and proteomics approaches in terms of instrumentation, protein 
fractionation, and bioinformatics. With the current technology, protein identifi ca-
tion alone is no longer suffi cient. Both scientists and clinicians want not only to 
identify proteins but also to identify the protein’s posttranslational modifi cations 
(PTMs), protein isoforms, protein truncation, protein–protein interaction (PPI), and 
protein quantitation. Here, we describe the principle of MS and proteomics and 
strategies to identify proteins, protein’s PTMs, protein isoforms, protein truncation, 
PPIs, and protein quantitation. We also discuss the strengths and weaknesses within 
this fi eld. Finally, in our concluding remarks we assess the role of mass spectrom-
etry and proteomics in scientifi c and clinical settings in the near future. This chapter 
provides an introduction and overview for subsequent chapters that will discuss 
specifi c MS proteomic methodologies and their application to specifi c medical con-
ditions. Other chapters will also touch upon areas that expand beyond proteomics, 
such as lipidomics and metabolomics.  

    Chapter 1   
 Mass Spectrometry for Proteomics-Based 
Investigation 
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  Abbreviations 

   BN-PAGE    Blue native PAGE   
  CI    Chemical ionization   
  CN-PAGE    Colorless native PAGE   
  DIGE    Differential gel electrophoresis   
  EI       Electron ionization   
  ESI    Electrospray ionization   
  ESI-MS    Electrospray ionization mass spectrometry   
  FT    Fourier transform   
  IT    Ion trap   
  LC–MS/MS    Liquid chromatography–mass spectrometry   
   m / z     Mass/charge   
  MALDI    Matrix-assisted laser desorption ionization   
  MALDI-MS    MALDI mass spectrometry   
  MS    Mass spectrometry   
  Mw    Molecular weight   
  Q    Quadrupole   
  SDS-PAGE    Sodium dodecyl sulfate-polyacrylamide gel electrophoresis   
  TIC    Total ion current/chromatogram   
  TOF    Time of fl ight   

1.1           Introduction 

 Proteomics is the large scale study of the protein complement, also known as the 
proteome. Proteomics is studied through mass spectrometry (MS) [ 1 – 8 ]. MS can be 
used to investigate a large variety of chemical and biological molecules, including 
products of chemical synthesis or degradation, biological molecules such as pro-
teins, nucleic acids, lipids, or glycans, or various natural compounds of either large 
or small molecular mass. Depending on what type of molecule is being analyzed, 
there are various types of MS focus, such as small-molecule MS, large-molecule 
MS, and biological MS (when the molecules investigated are biomolecules). Within 
biological MS, there are also different MS subfi elds, such as proteomics, lipido-
mics, glycomics, and metabolomics. The focus of proteomics is to analyze proteins 
and protein derivatives (such as glycoproteins), peptides, posttranslational modifi -
cations (PTMs) within proteins, or protein–protein interactions (PPIs). 

 The standard workfl ow in a proteomics experiment starts with sample fraction-
ation, involving the separation of proteins prior to their analysis by MS [ 9 – 17 ]. This 
can be done by one or more biochemical fractionation methods. For example, a one-
dimensional separation can be achieved by sodium dodecyl sulfate- polyacrylamide 
gel electrophoresis (SDS-PAGE); a two-dimensional separation can be performed 
by two-dimensional electrophoresis or by affi nity purifi cation followed by 

A.G. Woods et al.
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SDS-PAGE. Biochemical fractionation is then followed by enzymatic digestion 
(usually trypsin), peptide extraction, and peptide fractionation by HPLC and MS 
analysis [ 1 ]. Data analysis leads to identifi cation of one or more proteins and further 
simultaneous investigation or re-investigation of the results can extract additional 
information from the same MS experiment, such as PTMs and interaction partners 
of some proteins (PPIs) [ 18 – 26 ]. A schematic of a proteomics workfl ow is shown in 
Fig.  1.1  and a schematic of a proteomics experiment is shown in Fig.  1.2a .

    Proteomic analysis can be performed using samples from various sources such as 
supracellular, subcellular, intracellular, or extracellular, as well as at the peptide 
level (peptidomics), protein (regular proteomics), PTMs (“PTM-omics”), or protein 
complex level (interactomics). Proteomics can also be classifi ed as classical or 
functional, when one analyzes protein samples from two different conditions (for 
example, normal and cancer), and targeted proteomics, when one focuses on a par-
ticular sub-proteome, such as phosphoproteomics or glycoproteomics. Proteomics 
can also be classifi ed based on the protein complement from a set of samples that is 
being analyzed such as proteomes (i.e., all proteins) or sub-proteomes (i.e., just the 
nuclei or mitochondria). A schematic of such classifi cation is shown in Fig.  1.2b . 

General proteomics experiment
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  Fig. 1.1    General proteomic experiment workfl ow schematic. Reprinted and adapted with permis-
sion from the  Australian Journal of Chemistry CSIRO Publishing    http://www.publish.csiro.
au/?paper=CH13137     [ 15 ]       
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  Fig. 1.2    General proteomics experiment. ( a ) Proteomics experiment workfl ow schematic. ( b ) 
Proteomics and applications schematic. ( c ) Mass spectrometer schematic. Reprinted and adapted 
with permission from the  Oxidative Stress :  Diagnostics ,  Prevention ,  and Therapy , S. Andreescu 
and M. Hepel, Editors. 2011, American Chemical Society: Washington, D.C [ 16 ]       
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 Proteomic analysis can also focus on quality such as for protein identifi cation, or 
the determination of protein amounts by quantitative proteomics. These analyses 
are usually performed using a mass spectrometer, the “workhorse” in a proteomics 
experiment. A mass spectrometer has three main components: the ionization source, 
a mass analyzer, and a detector (Fig.  1.2c ). There are primarily two types of ioniza-
tion sources on mass spectrometers: matrix-assisted laser desorption ionization 
(MALDI) and electrospray ionization (ESI). The mass spectrometers are conse-
quently named MALDI mass spectrometry (MALDI-MS) and electrospray ioniza-
tion mass spectrometry (ESI-MS). Here, we describe a proteomics experiment, 
specifi cally how proteins and peptides are analyzed by MS. We also describe the 
type of information that can be obtained from such an experiment.  

1.2     Biochemical Fractionation 

 The fi rst step in a proteomics experiment is biochemical fractionation, in which 
various proteins are separated from each other using their physicochemical proper-
ties. Biochemical fractionation usually depends on the goal of the experiment and it 
is perhaps the most important step in a proteomics experiment. A good sample frac-
tionation usually leads to a good experimental outcome. A proteomics experiment 
can still be performed without biochemical fractionation, for example, when one 
analyzes the full proteome of a cell at once. However, without biochemical fraction-
ation, the results in a proteomics experiment may not necessarily be optimal. 

 The physicochemical properties of proteins (or compounds of interest) that are 
used to achieve biochemical fractionation are, among others, molecular mass, iso-
electric point, charge at various pH, and the protein’s affi nity to other compounds. 
These properties of the proteins are well exploited by biochemical fractionations 
such as electrophoresis, centrifugation, and chromatography. Types of chromatog-
raphy can include affi nity chromatography, ion exchange chromatography, and size- 
exclusion chromatography. 

 To give one example, proteins can be separated by electrophoresis, usually SDS- 
PAGE, reduced and denatured, and then separated according to their molecular 
mass. If the reduction step is not used, the disulfi de bridges in a protein or between 
proteins remain intact, thus providing an additional fractionation principle: two pro-
teins with low molecular mass (such as haptoglobin subunits) are kept together 
through disulfi de bridges and are separated under SDS-PAGE under nonreducing 
conditions as a heterotetramer with a high molecular mass. In a different variant of 
SDS-PAGE, but not using the detergent (SDS), one may separate proteins under 
native conditions. Therefore, simply by adding one reagent (for example, SDS) or 
two (SDS and a reducing agent like dithiothreitol or DTT), separation of these pro-
teins may have a totally different outcome. A variant of SDS-PAGE is tricine-PAGE 
[ 27 ,  28 ], which has a principle of separation similar to the SDS-PAGE, but it has the 
highest separating resolution in the low molecular weight (Mw) proteins and pep-
tides (2–20 kDa), where SDS-PAGE has poor or very poor resolution. Therefore, 
SDS-PAGE and tricine-PAGE complement each other. 
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 Other types of electrophoresis are blue native PAGE (BN-PAGE), colorless 
native PAGE (CN-PAGE), and detergent-less SDS-PAGE (native PAGE) [ 1 ,  4 ,  6 , 
 18 – 22 ,  29 – 34 ], all native electrophoresis. BN-PAGE separates protein complexes 
by using the external charge induced by Coomassie dye; thus, the complexes will 
have the same charge and will separate according to their molecular weight. If the 
Coomassie dye is not used, the external charge is not induced and the separation 
does not take place according to the molecular weight of the complexes, but rather 
according to the internal charge of the protein complexes. This method, a variant on 
BN-PAGE, is named CN-PAGE. CN-PAGE is particularly useful when two protein 
complexes with identical mass must be separated from each other. 

 In addition to the techniques mentioned for biochemical fractionation, hyphen-
ated techniques may also be used. The classical example is two-dimensional elec-
trophoresis (2D-PAGE), which includes separation of proteins by isoelectric 
focusing and by SDS-PAGE [ 3 ,  7 ,  35 – 45 ], still used in some proteomics labs. In 
fact, a variant of 2D-PAGE is differential gel electrophoresis (DIGE), a powerful 
method for gel-based proteomics. Other fractionation methods such as pre-coated 
chips, centrifugal fi lters, and magnetic beads are also possible [ 46 ,  47 ].  

1.3     Mass Spectrometry 

 A mass spectrometer has three main parts: an ion source, a mass analyzer, and a 
detector. Initially, the sample is ionized and the ions produced by MALDI or ESI 
source are separated in the mass analyzer based on their mass-to-charge ( m / z ) ratio. 
The ions are then detected by the detector. The end product is a mass spectrum, 
which is a plot of ion abundance versus  m / z . 

  Ionization sources . Ionization of peptides is dependent on the electrical potential at 
the ion source and on the pH at which they are analyzed. At low pH, the peptides are 
protonated through the amino-containing amino acids such as Arg or Lys, while at 
high pH, the peptides are de-protonated through the carboxyl-containing amino 
acids such as Asp or Glu. When the electrical potential at the ion source is positive, 
ionization is in positive ion mode. Conversely, when the electrical potential is nega-
tive, ionization is in negative ion mode. Therefore, there are two types of ionization: 
positive, when peptides are analyzed at low pH and the Arg, Lys, and His are pro-
tonated, and negative ionization, when peptides are analyzed at high pH and the Asp 
and Glu are de-protonated. In the current chapter, we will focus only on positive 
ionization, because it is one of the most used ionization modes for analyzing pep-
tides and proteins.    In addition, the enzyme that is the most widely used in  proteomics 
is trypsin which cleaves conveniently at the C-terminus of Arg and Lys and pro-
duces peptides that are, upon ionization, at least doubly charged (the peptide and the 
C-terminal amino acid) and produces a y product ion series upon collision- induced 
fragmentation (described later). 

 In addition to ESI and MALDI, there are several additional ionization methods, 
such as chemical ionization (CI), electron ionization (EI), or atmospheric pressure 
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chemical ionization (APCI) [ 48 ,  49 ]. EI is used for analysis of organic compounds 
and can be used for all volatile compounds with a mass smaller than 1,000 Da. EI 
provides good structural information derived from fragmentation. However, molecu-
lar mass determination is rather poor (poor signal or the absence of M +  ions) [ 50 ]. 
Chemical ionization is the opposite: it is very good for the determination of the 
molecular mass of molecules, but it is not very good in providing structural informa-
tion due to reduced fragmentation in comparison to EI. Therefore CI and EI could 
complement each other. In CI experiments, ionized species are formed when the gas-
eous molecules to be analyzed collide with primary ions present in the source under 
a high vacuum [ 51 ]. A variant of CI is negative CI used only for volatile analytes with 
a mass of less than 1,000 Da [ 52 ,  53 ]. Another ionization technique, APCI, is an 
alternative for analysis of compounds that do not ionize in ESI. During APCI, gener-
ally only singly charged ions are formed and it is usually applied to compounds with 
a molecular weight of less than 1,500 Da [ 54 ]. 

  Mass analyzers . There are three main types of mass analyzers used for proteomics 
experiments: trapping type instruments (quadrupole ion trap—QIT, linear ion 
trap—LIT, Fourier transform ion cyclotron resonance—FT-ICR, and Orbitrap), 
quadrupole (Q), and time of fl ight (TOF) instruments. 

 Trapping type instruments fi rst accumulate ions and then allow for mass mea-
surement. The ion trap analyzers fi rst capture ions in three-dimensional space (trap), 
and then electrostatic gate pulses to inject ions into the ion trap. The ion trap-based 
analyzers are relatively inexpensive, sensitive, and robust. They have been exten-
sively used in proteomic analysis. However, a problem with these instruments is 
their accuracy for both precursor and product ions, partially overcome by an FT-ICR. 
Unfortunately, this instrument is not very often used in proteomics research because 
peptides do not fragment well and the instrument is expensive [ 55 ,  56 ]. 

 In quadrupole mass analyzers, ions constantly enter the analyzers, which are 
separated based on their trajectory in the electric fi eld applied to two pairs of charged 
cylindrical rods. There is an electric potential between each pair of rods drawing the 
ions towards one rod. These instruments provide good reproducibility and low cost, 
but their resolution and accuracy are limited [ 49 ,  57 ]. 

 Instruments with TOF mass analyzers are popular for sample analysis in pro-
teomics due to their high resolution and relatively low cost, speed of measurements, 
and high mass accuracy [ 49 ,  57 ]. In TOF mass analyzers, ions are accelerated by a 
known electric fi eld and then travel from the ion source to the detector. The instru-
ment measures the time it takes for ions with different masses to travel from the ion 
source to detector, 

 Mass spectrometers can have stand-alone analyzers or in combination, usually 
two or three analyzers within one instrument, thus taking advantage of the strength 
of all combined analyzers simultaneously. Examples of such instruments are Q-Trap, 
QQQ, Q-TOF, TOF–TOF, QQ-LIT; these instruments are also called hybrid mass 
spectrometers, and are highly sensitive and also have a high resolution [ 1 ,  57 – 59 ]. 

  MS detectors . The MS detectors are usually electron multipliers, photodiode arrays, 
microchannel plates, or image current detectors.  
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1.4     MALDI-TOF MS 

 MALDI-TOF MS or MALDI-MS (Fig.  1.3a ) is mostly used for determination of the 
mass of a peptide or protein and for identifi cation of a protein using peptide mass 
fi ngerprinting. In MALDI-MS, the peptide mixture is co-crystallized under acidic 
conditions with a UV-absorbing matrix (for example, dihydrobenzoic acid, sinapinic 
acid, alpha-hydroxycinnamic acid) and spotted on a plate. A laser beam (usually 
nitrogen; 337 nm) then ionizes the matrix and peptides, which desorb and start to fl y 
under an electrical fi eld. The matrix molecules transfer a proton to peptides, which 
then become ionized, fl y through the TOF tube, and are detected in the detector as a 
mass spectrum. Charged peptides fl y through the mass analyzer as ions according to 
their mass-to-charge ratio ( m / z ) and to the formula: [ M  +  zH ]/ z , where  M  is the mass 
of the peptide and  z  is the charge of the peptide;  H  is the mass of hydrogen 
(1.007825035 atomic mass units). In MALDI-MS analysis, the charge of peptides 
is almost always +1 and the peptides are mostly observed as singly charged; the 
formula is then [ M  + 1 × 1]/1 or [ M  + 1]/1 or [ M  + 1]. Therefore, the peptides are 
mostly detected as singly charged peaks or [MH]+ peaks (Fig.  1.3b ).

   In the MALDI-MS mass spectrum, one peak corresponds to one peptide and 
many peaks correspond to many peptides, either from one protein or from more 
proteins. Database search of the MALDI-MS spectra usually identifi es that single 
protein or those proteins through a process named peptide mass fi ngerprinting 
(Fig.  1.3c ).  

1.5     ESI-MS 

 In contrast to MALDI-MS, in which peptides are ionized with the help of a matrix 
(and are in the solid phase), in ESI-MS (Fig.  1.4a ) peptides are ionized in the liquid 
phase, under high electrical current. Also, while in MALDI-MS peptides are mostly 
singly charged, in ESI-MS peptides are mostly double or multiple charged. 
Regarding the ionization method, peptides fl y as ions according to  m / z  and calcula-
tion of the molecular mass of the peptide is performed according to the same 
[ M  +  z ]/ z  formula, where  z  is again the charge ( z  is 2 for doubly charged peptides, 3 
for triply charged peptides, etc.).

   When a peptide mixture is injected into the mass spectrometer, all or most pep-
tides that ionize under the experimental conditions are detected as ions in an MS 

Fig. 1.3 (continued) peptide mixture is analyzed by MALDI-MS and a spectrum is collected. 
A similar experiment is performed in silico (a theoretical experiment in computer), but the cleavage 
is performed in all proteins from a database. During the database search, the best match between 
the theoretical and the experimental spectra then lead to identifi cation of a protein. Reprinted and 
adapted with permission from the  Oxidative Stress :  Diagnostics ,  Prevention ,  and Therapy , S. 
Andreescu and M. Hepel, Editors. 2011, American Chemical Society: Washington, D.C [ 16 ]       
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  Fig. 1.3    MALDI-TOF MS. ( a ) MALDI-TOF mass spectrometer principle. An ion source, a mass 
analyzer, and detector are present on the instrument. At the detector the mass spectrum is detected/
recorded. The mass analyzer is a TOF and can be used in linear mode or refl ective mode. ( b ) A 
MALDI-MS spectrum primarily contains singly charged peaks; one example is shown (enlarged) 
to reveal the peak’s charged state (single charged or +1). ( c ) Protein identifi cation via MALDI-MS 
and peptide mass fi ngerprinting (PMF). A protein is digested into peptides using trypsin and the 

 

1 Mass Spectrometry for Proteomics-Based Investigation



10

  Fig. 1.4    ESI-MS of peptides. ( a ) An ESI-MS mass spectrometer. The ESI-MS has an ion source, 
in which the ions are ionized, a mass analyzer that ions travel through, as well as an ion detector, 
which records the mass spectrum. In ESI-MS, the sample is liquid, under high temperature and 
high electric current. The sample dehydrates and becomes protonated for positive ionization. ( b ) 
TOF MS spectra example, in which two different peaks, one triply charged peak with  m / z  of 
736.81 ( left ) and one double charged with  m / z  of 785.81 ( right , both circled and zoomed in), are 
selected for fragmentation and produce the MS/MS spectra whose data analysis led to identifi ca-
tion of peptides with the amino acid sequence RESQGTRVGQALSFCKGTA ( left ) and 
EGVNDNEEGFFSAR ( right ). Note that when the protonation site (R) is on the N-terminus of the 
peptide, the quality of the MS/MS spectrum is not great and analysis of the b and y ions produced 
by the MS/MS fragmentation is diffi cult to interpret. However, when the protonation site is on the 
C-terminus of the peptide, the fragmentation produces a nice y ion series and the analysis of these 
ions can easily identify the amino acid sequence of the peptide. Reprinted and adapted with per-
mission from the  Oxidative Stress :  Diagnostics ,  Prevention ,  and Therapy , S. Andreescu and M. 
Hepel, Editors. 2011, American Chemical Society: Washington, D.C [ 16 ]       
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spectrum in a process called direct infusion (ESI-MS mode). For example, if one has 
10 peptides in an Eppendorf tube, one can identify all 10 peptides in one spectrum. 
However, in the MS one identifi es only the masses of the peptides. In order to iden-
tify the sequence information about one particular peptide, one must isolate one peak 
that corresponds to one of the 10 peptides (precursor ion), fragment it in the collision 
cell using a neutral gas (for example, Argon gas), and record a spectrum (a sum of 
spectra) of the product ions that resulted from fragmentation of the precursor ion 
called MS/MS (ESI-MS/MS mode). Data analysis of the MS and MS/MS spectra 
usually leads to identifi cation of the mass and sequence information about the pep-
tide of interest. Examples of ESI-MS and ESI-MS/MS spectra are shown in Fig.  1.4b . 
As observed, the quality of the MS/MS spectra is directly dependent on the amino 
acid sequence, but more important, by the position of the proton- trapping amino acid 
(R, H, or K, in this case, R). For example, if the proton-trapping amino acid is on the 
N-terminus, low intensity b and y ions are observed (Fig.  1.4b , left). However, when 
the proton-trapping amino acid is located on the C-terminus, the fragments produced 
are almost always y ions of high quality. This is also the main reason for which most 
proteomics experiments use trypsin as an enzyme, since it cleaves the C-termini of R 
and K and produces peptides with an R or a K at the C-terminus. 

 Sometimes, when a peptide has more than one proton accepting amino acid such 
as Arg or Lys, the peptide may be protonated by more than two or three protons. 
Therefore, the same peptide may be identifi ed with more than two or three charges. 
The advantage for these peptides is that if the precursor ion in a charge state of, e.g., 
2+ does not fragment well in MS/MS, then the peak that corresponds to the same 
peptide but in a different charge state (e.g., 3+ or 4+) may fragment very well. One 
drawback for the multiply charged peptides is that they are usually longer (2,500–
3,000 Da) than the regular peptides analyzed by MS (800–2,500 Da) and data analysis 
for these peptides may be more diffi cult than for regular peptides. However, overall, 
fragmentation of more than one peak corresponding to the same peptide but with dif-
ferent charge states may help in obtaining additional information about that peptide. 

 ESI-MS can be used not only for peptides but also for investigation of proteins 
and the information is particularly useful for determining the molecular mass of 
those proteins, of their potential PTMs, and of their conformation. In addition, the 
high molecular mass proteins can also be analyzed by ESI-MS in either positive 
mode (protonated) or negative mode (de-protonated), thus providing distinct, yet 
complementary, information regarding the distribution of charges on the surface of 
the protein investigated. Examples of MS spectra of a 16.9 kDa protein investigated 
by ESI-MS in both positive and negative mode are shown in Fig.  1.5 .

1.6        LC–MS/MS 

 Analysis of peptide mixtures by ESI-MS for determination of the molecular mass 
of the peptides is usually a quick procedure. However if one wants to investigate 
the sequence information of more than one peptide, it is not the method of choice, 
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  Fig. 1.5    ESI-MS proteins: ESI-MS spectra of intact 17 kDa protein, myoglobin, analyzed under 
acidic conditions (pH ~ 2). ( a ) MS spectrum in positive ionization; ( b ) MS spectrum analyzed in 
negative ionization. The positive (A) and negative (−) charges are indicated. The peak with  m / z  of 
616.32 (1+) corresponds to the heme group, which is the prosthetic group of myoglobin. Reprinted 
and adapted with permission from the  Australian Journal of Chemistry CSIRO Publishing    http://
www.publish.csiro.au/?paper=CH13137     [ 15 ]       
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since fragmentation of the ions that correspond to peptides happens manually; one 
peptide at the time. For example, if one has 4 peptides in a mixture, we can deter-
mine the molecular mass of all peptides in minutes, but to determine their amino 
acid sequence, the peptides must be selected for fragmentation one at the time. 
Therefore, to automate this process, an alternative approach is necessary. One 
option is to fractionate the peptides by column chromatography coupled to an 
HPLC, i.e., reversed phase-based HPLC (reversed phase columns are particularly 
compatible with MS). The combination of HPLC and ESI-MS is named HPLC–
ESI-MS or LC–MS. In this setting, the peptides are fractionated by HPLC prior to 
MS analysis. They can also be selected for fragmentation and then fragmented by 
MS/MS. In a process called data-dependent analysis (DDA), usually 3–4 precursor 
peaks (which correspond to peptides) are selected for fragmentation from one MS 
scan and fragmented by MS/MS in a process called LC–MS/MS. In LC–MS/MS, 
the mass spectrometer analyzes fewer peptides per unit of time as compared with 
ESI-MS, simply because the HPLC fractionates the peptide mixture over a longer 
period of time (such as a 60 min gradient) and gives the mass spectrometer more 
time to analyze more peptides. A schematic of the LC–MS/MS is shown in Fig.  1.6a .

   Various types of improvements can be done to increase the number of MS/MS 
spectra with high quality data which can lead to identifi cation of additional proteins. 
One is at the fl ow rate of the HPLC. On a high fl ow rate, the mass spectrometer will 
have less time to analyze the peptide mixtures, as compared with lower fl ow rate. 
On a longer HPLC gradient (such as 120 min), the mass spectrometer will have 
more time to analyze more peptides, as compared with a shorted gradient. The num-
ber of MS/MS may also infl uence the number of peptides fragmented per minute. 
For example, a mass spectrometer has usually one MS survey followed by several 
MS/MS, for example, between 3 and 10 channels for MS/MS (newer instruments 
can be up to 30 MS/MS). If the method is set to have one MS survey scan and then 
to do MS/MS of the two most intense peaks, then the instrument will work as fol-
lows: one second MS survey, one second MS/MS (Peak 1), one second MS/MS 
(Peak 2), and then again one second MS survey (Fig.  1.6a ). 

 Assuming that a mass spectrometer has a cycle of one MS and two MS/MS (such 
as 0.1 s for an MS survey followed by selection of two precursor peaks for fragmen-
tation by MS/MS; 3 s per MS/MS), this means that in 1 min, the MS instrument can 
perform ~30 MS/MS that can lead to identifi cation of ~15 proteins. In a 120 min 
gradient, the possible number of proteins that can be identifi ed is ~15 × 120 = 1,800 
proteins, but keeping in mind that the real length of a 120 min gradient is about 
90 min (the rest of 30 min in washing with organic), this means that an MS run can 
identify ~15 × 90 = 1,350 proteins. If the length of an MS/MS decreases from 3 to 1 s 
and the number of precursors selected within MS survey for MS/MS increases to 6, 
then the number of proteins identifi ed increases by sixfold (~1,350 × 6 = 8,100 pro-
teins). Assuming that these results are at a fl ow rate of 0.5 μL/min, if we reduce the 
fl ow rate by ½, the number of proteins that can be identifi ed increases by a factor of 
2 (i.e., 8,100 × 2 = 16,200). 

 However, when we calculate the number of these proteins that can be identifi ed, 
our assumption is that all the steps mentioned work perfectly. In practice, this is often 
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