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Foreword

It is my great pleasure to welcome a new book on ‘‘Scalable Pattern Recognition
Algorithms: Applications in Computational Biology and Bioinformatics’’ by
Prof. Pradipta Maji and Dr. Sushmita Paul.

This book is unique in its character. Most of the methods presented in it are
based on profound research results obtained by the authors. These results are
closely related to the main research directions in bioinformatics. The existing
conventional/traditional approaches and techniques are also presented, wherever
necessary. The effectiveness of algorithms that are proposed by the authors is
thoroughly discussed along with both quantitative and qualitative comparisons
with other existing methods in this area. These results are derived through
experiments on real-life data sets. In general, the presented algorithms display
excellent performance. One of the important aspects of the methods proposed by
the authors is their ability to scale well with the inflow data. It shall be mentioned
that the authors provide in each chapter the directions for future research in the
corresponding area.

The main aim of bioinformatics is the development and application of com-
putational methods in pursuit of biological discoveries. Among the hot topics in
this field are: sequence alignment and analysis, gene finding, genome annotation,
protein structure alignment and prediction, classification of proteins, clustering and
dimensionality reduction of gene expression data, protein–protein docking or
interactions, and modeling of evolution. From a more general view, the aim is to
discover unifying principles of biology using tools of automated knowledge
discovery. Hence, knowledge discovery methods that rely on pattern recognition,
machine learning, and data mining are widely used for analysis of biological data,
in particular for classification, clustering, and feature selection.

The book is structured according to the major phases of a pattern recognition
process (clustering, classification, and feature selection) with a balanced mixture
of theory, algorithms, and applications. Special emphasis is given to applications
in computational biology and bioinformatics.

The reader will find in the book a unified framework describing applications of
soft computing, statistical, and machine learning techniques in construction of
efficient data models. Soft computing methods allow us to achieve high quality
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solutions for many real-life applications. The characteristic features of these
methods are tractability, robustness, low-cost solution, and close resemblance with
humanlike decision making. They make it possible to use imprecision, uncertainty,
approximate reasoning, and partial truth in searching for solutions. The main
research directions in soft computing are related to fuzzy sets, neurocomputing,
genetic algorithms, probabilistic reasoning, and rough sets. By integration or
combination of the different soft computing methods, one may improve the
performance of these methods.

The authors of the book present several newly developed methods and
algorithms that combine statistical and soft computing approaches, including:
(i) neural network tree (NNTree) used for identification of splice-junction and
protein coding region in DNA sequences; (ii) a new approach for selecting
miRNAs from microarray expression data integrating the merit of rough set-based
feature selection algorithm and theory of B. 632? bootstrap error rate; (iii) a robust
thresholding technique for segmentation of brain MR images based on the fuzzy
thresholding technique; (iv) an efficient method for selecting set of bio-basis
strings for the new kernel function, integrating the Fisher ratio and a novel concept
of degree of resemblance; (v) a rough set-based feature selection algorithm for
selecting sets of effective molecular descriptors from a given quantitative structure
activity relationship (QSAR) data set.

Clustering is one of the important analytic tools in bioinformatics. There are
several new clustering methods presented in the book. They achieve very good
results on various biomedical data sets. That includes, in particular: (i) a method
based on Pearson’s correlation coefficient that selects initial cluster centers, thus
enabling the algorithm to converge to optimal or nearly optimal solution and
helping to discover co-expressed gene clusters; (ii) a method based on Dunn’s
cluster validity index that identifies optimal parameter values during initialization
and execution of the clustering algorithm; (iii) a supervised gene clustering
algorithm based on the similarity between genes measured with use of the new
quantitative measure, whereby redundancy among the attributes is eliminated;
(iv) a novel possibilistic biclustering algorithm for finding highly overlapping
biclusters having larger volume and mean squared residue lower than a predefined
threshold.

The reader will also find several other interesting methods that may be applied in
bioinformatics, such as: (i) a computational method for identification of disease-
related genes, judiciously integrating the information of gene expression profiles,
and the shortest path analysis of protein–protein interaction networks; (ii) a method
based on f-information measures used in evaluation criteria for gene selection
problem.

This book will be useful for graduate students, researchers, and practitioners in
computer science, electrical engineering, system science, medical science, bioin-
formatics, and information technology. In particular, researchers and practitioners
in industry and R&D laboratories working in the fields of system design, pattern
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recognition, machine learning, computational biology and bioinformatics, data
mining, soft computing, computational intelligence, and image analysis may
benefit from it.

The authors and editors deserve the highest appreciation for their outstanding
work.

Warsaw, Poland, December 2013 Andrzej Skowron
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Preface

Recent advancement and wide use of high-throughput technologies for biological
research are producing enormous size of biological data distributed worldwide.
With the rapid increase in size of biological data banks, understanding
the biological data has become critical. Such an understanding could lead us to the
elucidation of the secrets of life or ways to prevent certain currently non-curable
diseases. Although laboratory experiment is the most effective method for
investigating the biological data, it is financially expensive and labor intensive.
A deluge of such information coming in the form of genomes, protein sequences,
and microarray expression data has led to the absolute need for effective and
efficient computational tools to store, analyze, and interpret these multifaceted data.

Bioinformatics is the conceptualizing biology in terms of molecules and
applying informatics techniques to understand and organize the information
associated with the molecules, on a large scale. It involves the development and
advancement of algorithms using techniques including pattern recognition,
machine learning, applied mathematics, statistics, informatics, and biology to solve
biological problems usually on the molecular level. Major research efforts in this
field include sequence alignment and analysis, gene finding, genome annotation,
protein structure alignment and prediction, classification of proteins, clustering and
dimensionality reduction of microarray expression data, protein–protein docking or
interactions, modeling of evolution, and so forth. In other words, bioinformatics can
be described as the development and application of computational methods to make
biological discoveries. The ultimate attempt of this field is to develop new insights
into the science of life as well as creating a global perspective, from which the
unifying principles of biology can be derived. As classification, clustering, and
feature selection are needed in this field, pattern recognition tools and machine
learning techniques have been widely used for analysis of biological data as they
provide useful tools for knowledge discovery in this field.

Pattern recognition is the scientific discipline whose goal is the classification of
objects into a number of categories or classes. It is the subject of researching object
description and classification method. It is also a collection of mathematical,
statistical, heuristic, and inductive techniques of the fundamental role in executing
the tasks like human beings on computers. In a general setting, the process of
pattern recognition is visualized as a sequence of a few steps: data acquisition; data
preprocessing; feature selection; and classification or clustering. In the first step,
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data are gathered via a set of sensors depending on the environment within which
the objects are to be classified. After data acquisition phase, some preprocessing
tasks such as noise reduction, filtering, encoding, and enhancement are applied on
the collected data for extracting pattern vectors. Afterward, a feature space is
constituted to reduce the space dimensionality. However, in a broader perspective
this stage significantly influences the entire recognition process. Finally, the
classifier is constructed, or in other words, a transformation relationship is
established between features and classes.

Pattern recognition, by its nature, admits many approaches, sometimes
complementary, sometimes competing, to provide the appropriate solution for a
given problem. For any pattern recognition system, one needs to achieve robust-
ness with respect to random noise and failure of components and to obtain output
in real time. It is also desirable for the system to be adaptive to the changes in the
environment. Moreover, a system can be made artificially intelligent if it is able to
emulate some aspects of the human reasoning system. Soft computing and
machine learning approaches to pattern recognition are attempts to achieve these
goals. Artificial neural network, genetic algorithms, fuzzy sets, and rough sets are
used as the tools in these approaches. The challenge is, therefore, to devise
powerful pattern recognition methodologies by symbiotically combining these
tools for analyzing biological data in more efficient ways. The systems should have
the capability of flexible information processing to deal with real-life ambiguous
situations and to achieve tractability, robustness, and low-cost solutions.

Various scalable pattern recognition algorithms using soft computing and
machine learning approaches, and their real-life applications, including those in
computational biology and bioinformatics, have been reported during the last
5–7 years. These are available in different journals, conference proceedings, and
edited volumes. This scattered information causes inconvenience to readers,
students, and researchers. The current volume is aimed at providing a treatise in a
unified framework describing how soft computing and machine learning techniques
can be judiciously formulated and used in building efficient pattern recognition
models. Based on the existing as well as new results, the book is structured
according to the major phases of a pattern recognition system (classification, feature
selection, and clustering) with a balanced mixture of theory, algorithm, and
applications. Special emphasis is given to applications in computational biology
and bioinformatics.

The book consists of 11 chapters. Chapter 1 provides an introduction to pattern
recognition and bioinformatics, along with different research issues and challenges
related to high-dimensional real-life biological data sets. The significance of
pattern recognition and machine learning techniques in computational biology and
bioinformatics is also presented in Chap. 1. Chapter 2 presents the design of a
hybrid learning model, termed as neural network tree (NNTree), for identification
of splice-junction and protein coding region in DNA sequences. It incorporates the
advantages of both decision tree and neural network. An NNTree is a decision tree,
where each non-terminal node contains a neural network. The versatility of this
method is illustrated through its application in splice-junction and gene
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identification problems. Extensive experimental results establish that the NNTree
produces more accurate classifier than that previously obtained for a range of
different sequence lengths, thereby indicating a cost-effective alternative in
splice-junction and protein coding region identification problem.

The prediction of protein functional sites is an important issue in protein
function studies and drug design. In order to apply the powerful kernel-based
pattern recognition algorithms such as support vector machine to predict functional
sites in proteins, amino acids need encoding prior to input. In this regard, a new
string kernel function, termed as the modified bio-basis function, is presented in
Chap. 3. It maps a nonnumerical sequence space to a numerical feature space using
a bio-basis string as its support. The concept of zone of influence of bio-basis
string is introduced in the new kernel function to take into account the influence of
each bio-basis string in nonnumerical sequence space. An efficient method is
described to select a set of bio-basis strings for the new kernel function, integrating
the Fisher ratio and the concept of degree of resemblance. The integration enables
the method to select a reduced set of relevant and nonredundant bio-basis strings.
Some quantitative indices are described for evaluating the quality of selected
bio-basis strings. The effectiveness of the new string kernel function and bio-basis
string selection method, along with a comparison with existing bio-basis function
and related bio-basis string selection methods, is demonstrated on different protein
data sets using the new quantitative indices and support vector machine.

Quantitative structure activity relationship (QSAR) is one of the important
disciplines of computer-aided drug design that deals with the predictive modeling
of properties of a molecule. In general, each QSAR data set is small in size with a
large number of features or descriptors. Among the large amount of descriptors
present in the QSAR data set, only a small fraction of them is effective for
performing the predictive modeling task. Chapter 4 presents a rough set-based
feature selection algorithm to select a set of effective molecular descriptors from a
given QSAR data set. The new algorithm selects the set of molecular descriptors
by maximizing both relevance and significance of the descriptors. The perfor-
mance of the new algorithm is studied using the R2 statistic of support vector
regression method. The effectiveness of the new algorithm, along with a
comparison with existing algorithms, is demonstrated on several QSAR data sets.

Microarray technology is one of the important biotechnological means that
allows to record the expression levels of thousands of genes simultaneously within
a number of different samples. An important application of microarray gene
expression data in functional genomics is to classify samples according to their
gene expression profiles. Among the large amount of genes present in microarray
gene expression data, only a small fraction of them is effective for performing a
certain diagnostic test. In this regard, mutual information has been shown to be
successful for selecting a set of relevant and nonredundant genes from microarray
data. However, information theory offers many more measures such as the
f-information measures that may be suitable for selection of genes from microarray
gene expression data.
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Chapter 5 presents different f-information measures as the evaluation criteria
for gene selection problem. The performance of different f-information measures is
compared with that of mutual information based on the predictive accuracy
of naive Bayes classifier, k-nearest neighbor rule, and support vector machine.
An important finding is that some f-information measures are shown to be effective
for selecting relevant and nonredundant genes from microarray data. The effec-
tiveness of different f-information measures, along with a comparison with mutual
information, is demonstrated on several cancer data sets.

One of the most important and challenging problems in functional genomics is
how to select the disease genes. In Chap. 6, a computational method is reported to
identify disease genes, judiciously integrating the information of gene expression
profiles and shortest path analysis of protein–protein interaction networks. While
the gene expression profiles have been used to select differentially expressed genes
as disease genes using mutual information-based maximum relevance-maximum
significance framework, the functional protein association network has been used
to study the mechanism of diseases. Extensive experimental study on colorectal
cancer establishes the fact that the genes identified by the integrated method have
more colorectal cancer genes than the genes identified from the gene expression
profiles alone. All these results indicate that the integrated method is quite
promising and may become a useful tool for identifying disease genes.

The microRNAs or miRNAs regulate expression of a gene or protein. It has
been observed that they play an important role in various cellular processes and
thus help in carrying out normal functioning of a cell. However, dysregulation of
miRNAs is found to be a major cause of a disease. Various studies have also
shown the role of miRNAs in cancer and utility of miRNAs for the diagnosis of
cancer. In this regard, Chap. 7 presents a new approach for selecting miRNAs from
microarray expression data. It integrates the merit of rough set-based feature
selection algorithm reported in Chap. 4 and theory of B. 632? bootstrap error rate.
The effectiveness of the new approach, along with a comparison with other
algorithms, is demonstrated on several miRNA data sets.

Clustering is one of the important analyses in functional genomics that
discovers groups of co-expressed genes from microarray data. In Chap. 8, different
partitive clustering algorithms such as hard c-means, fuzzy c-means, rough-fuzzy
c-means, and self-organizing maps are presented to discover co-expressed gene
clusters. One of the major issues of the partitive clustering-based microarray data
analysis is how to select initial prototypes of different clusters. To overcome this
limitation, a method is reported based on Pearson’s correlation coefficient to select
initial cluster centers. It enables the algorithm to converge to an optimum or near
optimum solutions and helps to discover co-expressed gene clusters. In addition, a
method is described to identify optimum values of different parameters of the
initialization method and the clustering algorithm. The effectiveness of different
algorithms is demonstrated on several yeast gene expression time-series data sets
using different cluster validity indices and gene ontology-based analysis.

In functional genomics, an important application of microarray data is to
classify samples according to their gene expression profiles such as to classify
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cancer versus normal samples or to classify different types or subtypes of cancer.
Hence, one of the major tasks with the gene expression data is to find groups of
co-regulated genes whose collective expression is strongly associated with the
sample categories or response variables. In this regard, a supervised gene
clustering algorithm is presented in Chap. 9 to find groups of genes. It directly
incorporates the information about sample categories into the gene clustering
process. A new quantitative measure, based on mutual information, is reported that
incorporates the information about sample categories to measure the similarity
between attributes. The supervised gene clustering algorithm is based on
measuring the similarity between genes using the new quantitative measure. The
performance of the new algorithm is compared with that of existing supervised and
unsupervised gene clustering and gene selection algorithms based on the class
separability index and the predictive accuracy of naive Bayes classifier, k-nearest
neighbor rule, and support vector machine on several cancer and arthritis micro-
array data sets. The biological significance of the generated clusters is interpreted
using the gene ontology.

The biclustering method is another important tool for analyzing gene expression
data. It focuses on finding a subset of genes and a subset of experimental conditions
that together exhibit coherent behavior. However, most of the existing biclustering
algorithms find exclusive biclusters, which is inappropriate in the context of
biology. Since biological processes are not independent of each other, many genes
may participate in multiple different processes. Hence, nonexclusive biclustering
algorithms are required for finding overlapping biclusters. In Chap. 10, a novel
possibilistic biclustering algorithm is presented to find highly overlapping biclus-
ters of larger volume with mean squared residue lower than a predefined threshold.
It judiciously incorporates the concept of possibilistic clustering algorithm into
biclustering framework. The integration enables efficient selection of highly
overlapping coherent biclusters with mean squared residue lower than a given
threshold. The detailed formulation of the new possibilistic biclustering algorithm,
along with a mathematical analysis on the convergence property, is presented.
Some quantitative indices are reported for evaluating the quality of generated
biclusters. The effectiveness of the algorithm, along with a comparison with other
algorithms, is demonstrated on yeast gene expression data set.

Finally, Chap. 11 reports a robust thresholding technique for segmentation of
brain MR images. It is based on the fuzzy thresholding techniques. Its aim is to
threshold the gray level histogram of brain MR images by splitting the image
histogram into multiple crisp subsets. The histogram of the given image is
thresholded according to the similarity between gray levels. The similarity is
assessed through a second-order fuzzy measure such as fuzzy correlation, fuzzy
entropy, and index of fuzziness. To calculate the second-order fuzzy measure, a
weighted co-occurrence matrix is presented, which extracts the local information
more accurately. Two quantitative indices are reported to determine the multiple
thresholds of the given histogram. The effectiveness of the algorithm, along with a
comparison with standard thresholding techniques, is demonstrated on a set of
brain MR images.
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The relevant existing conventional/traditional approaches or techniques are also
included wherever necessary. Directions for future research in the concerned topic
are provided in each chapter. Most of the materials presented in the book are
from our published works. For the convenience of readers, a comprehensive
bibliography on the subject is also appended in each chapter. It might have
happened that some works in the related areas have been omitted due to oversight
or ignorance.

The book, which is unique in its character, will be useful to graduate students
and researchers in computer science, electrical engineering, system science,
medical science, bioinformatics, and information technology both as a textbook
and as a reference book for some parts of the curriculum. The researchers and
practitioners in industry and R&D laboratories working in the fields of system
design, pattern recognition, machine learning, computational biology and bioin-
formatics, data mining, soft computing, computational intelligence, and image
analysis will also be benefited.

Finally, the authors take this opportunity to thank Mr. Wayne Wheeler and
Mr. Simon Rees of Springer-Verlag, London, for their initiative and encourage-
ment. The authors also gratefully acknowledge the support provided by
Dr. Chandra Das of Netaji Subhash Engineering College, Kolkata, India and the
members of Biomedical Imaging and Bioinformatics Lab, Indian Statistical
Institute, Kolkata, India for preparation of a few chapters of the manuscript.
The book has been written when one of the authors, Dr. S. Paul, held a CSIR
Fellowship of the Government of India. This work is partially supported by the
Indian National Science Academy, New Delhi (grant no. SP/YSP/68/2012).

Kolkata, India, January 2014 Pradipta Maji
Sushmita Paul
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Chapter 1
Introduction to Pattern Recognition
and Bioinformatics

1.1 Introduction

With the gaining of knowledge in different branches of biology such as molecular
biology, structural biology, and biochemistry, and the advancement of technologies
lead to the generation of biological data at a phenomenal rate [286]. The enormous
quantity and variety of information are being produced from the data of the myriad
of projects that study gene expression, determine the protein structures encoded by
the genes, and detail how these products interact with one another. This deluge of
biological information has, in turn, led to an absolute need for computerized databases
to store, organize, and index the data, and for specialized tools to view and analyze
the data. Hence, computers have become indispensable to biological research. Such
an approach is ideal due to the ease with which computers can handle large quantities
of data and probe the complex dynamics observed in nature.

Bioinformatics is a multidisciplinary research area that conceptualizes biology
in terms of molecules and applies information techniques to understand and orga-
nize the information associated with these molecules on a large scale. It involves
the development and advancement of algorithms using techniques including pat-
tern recognition, machine learning, applied mathematics, statistics, informatics, and
biology to analyze the complete collection of DNA (the genome), RNA (the tran-
scriptome), and protein (the proteome) of an organism [275]. Major research efforts
in this field include sequence alignment and analysis, gene finding, genome annota-
tion, protein structure alignment and prediction, classification of proteins, clustering
and dimensionality reduction of microarray expression data, protein–protein docking
or interactions, modeling of evolution, and so forth. In other words, bioinformatics
can be described as the development and application of computational methods to
make biological discoveries. The ultimate attempt of this field is to develop new
insights into the science of life as well as creating a global perspective, from which
the unifying principles of biology can be derived [20, 22, 209, 302, 377, 391].

Pattern recognition is the scientific discipline whose goal is the classification
of objects into a number of categories or classes. It is the subject of researching
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object description and classification method. It is also a collection of mathematical,
statistical, heuristic, and inductive techniques of fundamental role in executing the
tasks like human being on computers [209, 260, 263]. As classification, clustering,
and feature selection are needed in bioinformatics, pattern recognition and machine
learning techniques have been widely used for analysis of biological data as they
provide useful tools for knowledge discovery in this field. The massive biological
databases are generally characterized by the numeric as well as textual, symbolic,
and pictorial data. They may contain redundancy, errors, and imprecision. The pat-
tern recognition is aimed at discovering natural structures within such massive and
often heterogeneous biological data. It is visualized as being capable of knowledge
discovery using generalizations and magnifications of existing and new algorithms.
Therefore, pattern recognition plays a significant role in bioinformatics [20, 22, 209,
302, 377, 391]. It deals with the process of identifying valid, novel, potentially use-
ful, and ultimately understandable patterns in voluminous, possibly heterogeneous
biological data sets.

One of the main problems in biological data analysis is uncertainty. Some of the
sources of this uncertainty include imprecision in computations and vagueness in
class definition. Pattern recognition, by its nature, admits many approaches, some-
times complementary, sometimes competing, to provide the appropriate solution of
a given problem. An efficient pattern recognition system for bioinformatics tasks
should possess several characteristics such as online adaptation to cope with the
changes in the environment, handling nonlinear class separability to tackle real-life
problems, handling of overlapping classes or clusters for discriminating almost sim-
ilar but different objects, real-time processing for making a decision in a reasonable
time, generation of soft and hard decisions to make the system flexible, verifica-
tion and validation mechanisms for evaluating its performance, and minimizing the
number of parameters in the system that have to be tuned for reducing the cost and
complexity. The property to emulate some aspects of the human processing system
can be helpful for making a system artificially intelligent.

Soft computing and machine learning approaches to pattern recognition are
attempts to achieve these goals. Artificial neural network, genetic algorithms, infor-
mation theory, fuzzy sets, and rough sets are used as the tools in these approaches.
The challenge is, therefore, to devise powerful pattern recognition methodologies by
symbiotically combining these tools for analyzing biological data in more efficient
ways. The systems should have the capability of flexible information processing
to deal with real-life ambiguous situations and to achieve tractability, robustness,
and low-cost solutions. Various scalable pattern recognition algorithms using soft
computing and machine learning approaches have been developed to successfully
address different problems of computational biology and bioinformatics [33, 56, 68,
83, 89, 98, 107, 131, 198, 210, 211, 318, 324, 350, 357, 363–365, 375, 376, 380].

The objective of this book is to provide some results of investigations, both theoret-
ical and experimental, addressing the relevance of information theory, artificial neural
networks, fuzzy sets, and rough sets to bioinformatics with real-life applications. Var-
ious methodologies are presented based on information theoretic measures, artificial
neural networks, fuzzy sets, and rough sets for classification, feature selection, and
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clustering. The emphasis of these methodologies is given on (a) handling biological
data sets which are large, both in size and dimension, and involve classes that are
overlapping, intractable, and/or having nonlinear boundaries, (b) demonstrating the
significance of pattern recognition and machine learning for dealing with the biolog-
ical knowledge discovery aspect, and (c) demonstrating their success in certain tasks
of bioinformatics and medical imaging as examples. Before describing the scope of
the book, a brief overview of molecular biology and pattern recognition is provided.

The structure of the rest of this chapter is as follows: Section 1.2 briefly presents
a description of the basic concept of molecular biology. In Sect. 1.3, several bioin-
formatics problems are reported, which are important to retrieve useful biological
information from large data sets using pattern recognition and machine learning
techniques. In Sect. 1.4, the pattern recognition aspect is elaborated, discussing its
components, tasks involved, and approaches, along with the role of soft computing
in bioinformatics and computational biology. Finally, Sect. 1.5 discusses the scope
and organization of the book.

1.2 Basics of Molecular Biology

The molecular biology deals with the formation, structure, and function of macro-
molecules essential to life, such as carbohydrates, nucleic acids, and proteins, includ-
ing their roles in cell replication and the transmission of genetic information [190].
This field overlaps with other areas of biology and chemistry, particularly genetics
and biochemistry. This section presents the basic concepts of nucleic acids and pro-
teins.

1.2.1 Nucleic Acids

The weakly acidic substance present inside a nuclei is known as nucleic acids. They
are large biological molecules essential for all known forms of life. They include
deoxyribonucleic acid (DNA) and ribonucleic acid (RNA) [190].

1.2.1.1 DNA

It contains the instructions needed by the cell to carry out its functions [190]. DNA
consists of two long interwoven strands that form the famous double helix. Each
strand is built from a small set of constituent molecules called nucleotides. The first
two parts of the nucleotides are used to form the ribbon-like backbone of the DNA
strand, and are identical in all nucleotides. These two parts are a phosphate group
and a sugar called deoxyribose. The third part of the nucleotide is the base. There
are four different bases, which define the four different nucleotides, namely, thymine
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(T), cytosine (C), adenine (A), and guanine (G). The base pair complementarity
makes a DNA molecule double stranded. If specific bases of one strand are aligned
with specific bases on the other strand, the aligned bases can hybridize via hydrogen
bonds, weak attractive forces between hydrogen and either nitrogen or oxygen. The
specific complementary pairs are A with T and G with C. Two hydrogen bonds occur
between A and T, whereas three bonds are formed between C and G. This makes
C–G bonds stronger than A–T bonds.

DNA is the genetic material, used in development and functioning of all known
living organisms and many viruses. It contains informations that are required to
construct other important components of a cell like protein and RNA molecules.
This biological information of DNA is decoded with the help of ribosomes, which
links amino acids in an order specified by messenger RNA (mRNA), using transfer
RNA molecules to carry amino acids and to read the mRNA three nucleotides at a
time. The genetic code is highly similar among all organisms, and can be expressed
in a simple table with 64 entries. These 64 codons code for 20 different amino acids.
The code defines how sequences of these nucleotide triplets, called codons, specify
which amino acid will be added next during protein synthesis. Amino acids play
central roles both as building blocks of proteins and as intermediates in metabolism.
The DNA sequences that code for protein are known as genes, other part of DNA is
known as junk DNA. Much of this DNA has no known biological function. However,
many types of it do have known biological functions, including the transcriptional and
translational regulation of protein coding sequences. A brief description of important
components and processes of DNA is as follows [190]:

• Gene is a molecular unit of heredity of a living organism. Living beings depend
on genes, as they specify all proteins and functional RNA chains. Genes hold the
information to build and maintain an organism’s cells and pass genetic traits to
offspring. All organisms have many genes corresponding to various biological
traits, some of which are immediately visible, such as eye color or number of
limbs, and some of which are not, such as blood type, increased risk for specific
diseases, or the thousands of basic biochemical processes that comprise life.

• Gene expression is the process by which information from a gene is used in the
synthesis of a functional gene product. These products are often proteins, but in
nonprotein coding genes such as ribosomal RNA genes or transfer RNA genes, the
product is a functional RNA. The process of gene expression is used by all known
life—eukaryotes (including multicellular organisms), prokaryotes (bacteria and
archaea), and viruses—to generate the macromolecular machinery for life.

• Transcription is the process of making an RNA copy of a gene sequence. In
a eukaryotic cell, this copy, called mRNA molecule, leaves the cell nucleus and
enters the cytoplasm, where it directs the synthesis of the protein, which it encodes.
However, in a prokaryotic cell there is no nucleus, so the transcription as well as
translation take place in cytoplasm.

• Translation is the process of translating the sequence of a mRNA molecule to a
sequence of amino acids during protein synthesis. The genetic code describes the
relationship between the sequence of base pairs in a gene and the corresponding
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amino acid sequence that it encodes. In the cell cytoplasm, the ribosome reads the
sequence of the mRNA in groups of three bases to assemble the protein.

1.2.1.2 RNA

The mRNA and other types of RNAs are single-stranded nucleic acids made up of
ribose sugar, phosphate group, and nucleobases (G, A, uracil (U), C). The genetic
information stored in DNA is transferred into RNA through transcription by DNA
polymerase, and the information is decoded when RNA is translated into proteins.
The proteins largely constitute the machinery that makes life live. They carry out all
structural, catalytic, and regulatory functions. Hence, RNAs mostly play the passive
role of a messenger. RNAs can be divided into two classes, namely, coding RNA and
noncoding RNA.

The RNAs that code for proteins are known as coding RNA. The transcribed
coding RNAs, that is, mRNAs are further translated into proteins. The mRNA serves
as a template for protein synthesis. It is transcribed from a gene and then translated by
ribosomes in order to manufacture a protein. Hence, it is known as coding RNA. The
sequence of a strand of mRNA is based on the sequence of a complementary strand
of DNA. The RNAs those do not translated into proteins are known as noncoding
RNAs. The noncoding RNAs have been found to carry out very diverse functions,
from mRNA splicing and RNA modification to translational regulation. MicroRNA
(miRNA) is one type of noncoding RNAs. The miRNAs are small noncoding RNAs
of length around 22 nucleotides, present in animal and plant cell. They regulate the
expression of mRNAs posttranscriptionally, resulting in translational repression and
gene silencing. Hence, miRNAs are related to diverse cellular processes and regarded
as important components of the gene regulatory network [275].

1.2.2 Proteins

Proteins are organic compounds made of amino acids arranged in a linear chain
and folded into a globular or fibrous form [185]. The amino acids in a polymer are
joined together by the peptide bonds between the carboxyl and amino groups of adja-
cent amino acid residues. The sequence of amino acids in a protein is defined by the
sequence of a gene, which is encoded in the genetic code. Amino acids can be divided
into two groups, namely, essential amino acids and nonessential amino acids. The
liver, and to a much lesser extent the kidneys, can convert amino acids used by cells
in protein biosynthesis into glucose by a process known as gluconeogenesis. The
essential amino acids, which must be obtained from external sources such as food,
are leucine, isoleucine, valine, lysine, threonine, tryptophan, methionine, phenylala-
nine, and histidine. On the other hand, nonessential amino acids are synthesized in
our body from other amino acids. The nonessential amino acids are arginine, ala-
nine, asparagine, aspartic acid, cysteine, glutamine, glutamic acid, glycine, proline,
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serine, and tyrosine. In the form of skin, hair, callus, cartilage, muscles, tendons,
and ligaments, proteins hold together, protect, and provide structure to the body of a
multicelled organism. In the form of enzymes, hormones, antibodies, and globulins,
they catalyze, regulate, and protect the body chemistry. In the form of hemoglobin,
myoglobin, and various lipoproteins, they effect the transport of oxygen and other
substances within an organism.

1.3 Bioinformatics Tasks for Biological Data

This section presents the major biological problems and associated tasks involved in
computational biology and bioinformatics.

1.3.1 Alignment and Comparison of DNA, RNA,
and Protein Sequences

An alignment is a mutual placement of two or more sequences which exhibit where
the sequences are similar, and where they differ. These include alignment and predic-
tion of DNA, RNA, protein sequences, and fragment assembly of DNA. An optimal
alignment is the one that exhibits the most correspondences and the fewest differ-
ences. There are mainly two types of alignment methods, namely, global alignment
and local alignment. Global alignment [239] maximizes the number of matches
between the sequences along the entire length of the sequence, while local align-
ment [325] gives a highest scoring to local match between two sequences. Global
alignment includes all the characters in both sequences from one end to the other, and
is excellent for sequences that are known to be very similar. If the sequences being
compared are not similar over their entire lengths, but have short stretches within
them that have high levels of similarity, a global alignment may miss the alignment
of these important regions, and local alignment is then used to find these internal
regions of high similarity.

Pairwise comparison and alignment of protein or nucleic acid sequences is the
foundation upon which most other bioinformatics tools are built. Dynamic program-
ming is an algorithm that allows for efficient and complete comparison of two or more
biological sequences, and the technique is known as the Smith–Waterman algorithm
[325]. It refers to a programmatic technique or algorithm which, when implemented
correctly, effectively makes all possible pairwise comparisons between the charac-
ters (nucleotide or amino acid residues) in two biological sequences. Spaces may
need to be inserted within the sequences for alignment. Consecutive space is defined
as a gap. The final result is a mathematical, but not necessarily biological, optimal
alignment of the two sequences. A similarity score is also generated to describe how
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similar the two sequences are, given the specific parameters used. A few of the many
popular alignment techniques are BLAST [7], FASTA [272], and PSI-BLAST [8].

A multiple alignment [242] arranges a set of sequences in a manner that posi-
tions homologous sequences in a common column. There are different conventions
regarding the scoring of a multiple alignment. In one approach, the scores of all the
induced pairwise alignments contained in a multiple alignment are simply added. For
a linear gap penalty, this amounts to scoring each column of the alignment by the sum
of pair scores in this column [308]. Although it would be biologically meaningful,
the distinctions between global, local, and other forms of alignment are rarely made
in a multiple alignment. A full set of optimal pairwise alignments among a given set
of sequences will generally overdetermine the multiple alignment. If one wishes to
assemble a multiple alignment from pairwise alignments, one has to avoid closing
loops, that is, one can put together pairwise alignments as long as no new pairwise
alignment is included to a set of sequences which is already part of the multiple
alignment.

1.3.2 Identification of Genes and Functional Sites
from DNA Sequences

Gene finding is concerned with identifying stretches of sequence, usually genomic
DNA, that are biologically functional. This especially includes identification of pro-
tein coding genes, but may also include identification of other functional elements
such as noncoding RNA genes and regulatory regions. Since in human body the
protein coding regions account for only a few percent of the total genomic sequence,
identifying protein coding genes within large regions of uncharacterized DNA is a
difficult task. In bacterial DNA, each protein is encoded by a contiguous fragment
called an open reading frame, beginning with a start codon and ending with a stop
codon. In eukaryotes, especially in vertebrates, the coding region is split into several
fragments called exons, and the intervening fragments are called introns. So, finding
eukaryotic protein coding genes in uncharacterized DNA sequences is essentially
predicting exon–intron structures. Different works related to identification of protein
coding genes are discussed in [99, 101, 102, 348].

Another important problem in bioinformatics is the identification of several func-
tional sites in genomic DNA such as splice sites or junctions, start and stop codons,
branch points, promoters and terminators of transcription, polyadenylation sites,
topoisomerase II binding sites, topoisomerase I cleavage sites, and various tran-
scription factor-binding sites. Such local sites are called signals, and the methods
for detecting them are called signal sensors. Genomic DNA signals can be con-
trasted with extended and variable length regions such as exons and introns, which
are recognized by different methods called content sensors. Identification of splice
sites, introns, exons, start and stop codons, and branch points constitutes the major
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subtask in gene prediction and is of key importance in determining the exact structure
of genes in genomic sequences.

In order to study gene regulation and have a better interpretation of microarray
expression data, promoter prediction, and transcription factor-binding site’s (TFBS)
discovery have become important. A cell mechanism recognizes the beginning of
a gene or gene cluster with the help of a promoter and is necessary for the initia-
tion of transcription. The promoter is a region before each gene in the DNA that
serves as an indication to the cellular mechanism that a gene is ahead. There exist
a number of approaches that find differences between sets of known promoter and
nonpromoter sequences [171, 189]. Due to the lack of robust protein coding signa-
tures, current promoter predictions are much less reliable than protein coding region
predictions. Once regulatory regions, such as promoters, are obtained, finding the
TFBS motifs within these regions may proceed either by enumeration or by align-
ment to find the enriched motifs. Recognition of regulatory sites in DNA fragments
has become particularly popular because of the increasing number of completely
sequenced genomes and mass application of DNA chips. Experimental analyses
have identified fewer than 10 % of the potential promoter regions, assuming that
there are at least 30,000 promoters in the human genome, one for each gene.

1.3.3 Prediction of Protein Functional Sites

The prediction of functional sites in proteins is another important problem in bioin-
formatics. It is an important issue in protein function studies and hence, drug design.
The problem of functional sites prediction deals with the subsequences; each subse-
quence is obtained through moving a fixed length sliding window residue by residue.
The residues within a scan form a subsequence. If there is a match between a sub-
sequence and a consensus pattern of a specific function, a functional site is then
identified within the subsequence or the subsequence is labeled as functional, oth-
erwise nonfunctional. To analyze protein sequences, BLAST [7], FASTA [272],
PSI-BLAST [8], suffix-tree based algorithms [4], regular expression matching rep-
resentations [337], and finite state machines [304, 305] are a few of the many pattern
recognition algorithms that use characters or strings as their primitive type.

However, it has been found that the relation between functional sites and con-
sensus patterns may not be always simple and the development and the use of more
complicated and hence, more powerful pattern recognition algorithms is a neces-
sity. The artificial neural networks trained with backpropagation [55, 236, 280],
Kohonen’s self-organizing map [13], feedforward and recurrent neural networks
[19, 20], biobasis function neural networks [38, 338, 376, 378–380], and support
vector machine [56, 226, 375] have been widely used to predict different functional
sites in proteins such as protease cleavage sites of HIV (human immunodeficiency
virus) and Hepatitis C Virus, linkage sites of glycoprotein, enzyme active sites, post-
translational phosphorylation sites, immunological domains, Trypsin cleavage sites,
protein–protein interaction sites, and so forth.
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1.3.4 DNA and RNA Structure Prediction

DNA structure plays an important role in a variety of biological processes. Dif-
ferent dinucleotide and trinucleotide scales have been described to capture various
aspects of DNA structure including base stacking energy, propeller twist angle, pro-
tein deformability, bendability, and position preference [19]. Three dimensional DNA
structure and its organization into chromatin fibers are essential for its functions, and
are applied in protein binding sites, gene regulation, and triplet repeat expansion
diseases.

An RNA molecule is considered as a string of n characters R = r1r2 · · · rn such
that ri ∈ {A, C, G, U}. Typically, n is in the hundreds, but could also be in thousands.
The secondary structure of the RNA molecule is a collection S of a set of stems and
each stem consisting of a set of consecutive base pairs (rir j ) (for example, GU, GC,
AU). Here, 1 ≤ i ≤ j ≤ n and (ri and r j ) are connected through hydrogen bonds.
If (ri , r j ) ∈ S, in principle, we should require that ri be a complement to r j and that
j − i > t , for a certain threshold t as it is known that an RNA molecule does not
fold too sharply on itself.

Attempts to automatically predict the RNA secondary structure can be divided
in essentially two general approaches. The first involves the overall free energy
minimization by adding contributions from each base pair, bulged base, loop, and
other elements [1]. The second type of approach [360] is more empirical and it
involves searching for the combination of nonexclusive helices with a maximum
number of base pairings, satisfying the condition of a tree-like structure for the
biomolecule. Within the latter, methods using dynamic programming are the most
common [360, 395]. The methods for simulating the folding pathway of an RNA
molecule [312, 313, 366] and locating significant intermediate states are important
for the prediction of RNA structure [29, 127, 311] and its associated function.

1.3.5 Protein Structure Prediction and Classification

Identical protein sequences result in identical 3D structures. So, it follows that simi-
lar sequences may result in similar structures, and this is usually the case. However,
identical 3D structures do not necessarily indicate identical sequences as there is a
distinction between homology and similarity. There are a few examples of proteins in
the databases that have nearly identical 3D structures, and are therefore homologous,
but do not exhibit significant or detectable sequence similarity. Pairwise comparisons
do not readily show positions that are conserved among a whole set of sequences
and tend to miss subtle similarities that become visible when observed simultane-
ously among many sequences. Hence, one wants to simultaneously compare several
sequences. Structural genomics is the prediction of the 3D structure of a protein from
the primary amino acid sequence [21, 60, 70, 73, 112, 128, 150, 166, 175, 219,



10 1 Introduction to Pattern Recognition and Bioinformatics

220, 245, 268, 280, 287, 294, 295, 297, 329]. This is one of the most challenging
tasks in bioinformatics as a protein’s function is a consequence of its structure.

There are five levels of protein structure. While the primary structure is the
sequence of amino acids that compose the protein, the secondary structure of a
protein is the spatial arrangement of the atoms constituting the main protein back-
bone. The supersecondary structure or motif is the local folding pattern built up from
particular secondary structures. On the other hand, tertiary structure is formed by
packing secondary structural elements linked by loops and turns into one or sev-
eral compact globular units called domains, that is, the folding of the entire protein
chain. A final protein may contain several protein subunits arranged in a quaternary
structure.

Protein sequences almost always fold into the same structure in the same envi-
ronment. Hydrophobic interaction, hydrogen bonding, electrostatic, and other van
der Waals type interactions also contribute to determine the structure of the protein.
Many efforts are underway to predict the structure of a protein, given its primary
sequence. A typical computation of protein folding would require computing all the
spatial coordinates of atoms in a protein molecule, starting with an initial configura-
tion and working up to a final minimum-energy folding configuration [31, 74, 174,
176, 273, 284, 303, 349]. Sequence similarity methods can predict the secondary
and tertiary structures based on homology to known proteins. Secondary structure
prediction methods include the methods proposed by Chou and Fasmann [70], and
Garnier et al. [112]. Artificial neural networks [280, 287] and nearest neighbor meth-
ods [294, 295] are also used for this purpose. Tertiary structure prediction methods
[349] are based on energy minimization, molecular dynamics, and stochastic searches
of conformational space.

1.3.6 Molecular Design and Molecular Docking

When two molecules are in close proximity, it can be energetically favorable for them
to bind together tightly. The molecular docking problem is the prediction of energy
and physical configuration of binding between two molecules. A typical application
is in drug design, in which one might dock a small molecule that is a described drug
to an enzyme one wishes to target. For example, HIV protease is an enzyme in the
AIDS virus that is essential to its replication. The chemical action of the protease
takes place at a localized active site on its surface. HIV protease inhibitor drugs are
small molecules that bind to the active site in HIV protease and stay there, so that
the normal functioning of the enzyme is prevented. Docking software allows us to
evaluate a drug design by predicting whether it will be successful in binding tightly
to the active site in the enzyme. Based on the success of docking, and the resulting
docked configuration, designers can refine the drug molecule [63, 188, 232, 374].

On the other hand, quantitative structure–activity relationship deals with estab-
lishing a mathematical correlation between calculated properties of molecules and
their experimentally determined biological activity. These relationships may further


