Lin Bai · Jinho Choi Quan Yu

Low Complexity MIMO Receivers

Low Complexity MIMO Receivers

Lin Bai · Jinho Choi · Quan Yu

Low Complexity MIMO Receivers

Lin Bai School of Electronic and Information Engineering Beihang University Beijing People's Republic of China Quan Yu Institute of China Electronic System Engineering Corporation Beijing People's Republic of China

Jinho Choi School of Information and Communications Gwangiu Institute of Science and Technology (GIST) Gwangiu Korea

ISBN 978-3-319-04983-0 ISBN 978-3-319-04984-7 (eBook) DOI 10.1007/978-3-319-04984-7 Springer Cham Heidelberg New York Dordrecht London

Library of Congress Control Number: 2014932216

© Springer International Publishing Switzerland 2014

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed. Exempted from this legal reservation are brief excerpts in connection with reviews or scholarly analysis or material supplied specifically for the purpose of being entered and executed on a computer system, for exclusive use by the purchaser of the work. Duplication of this publication or parts thereof is permitted only under the provisions of the Copyright Law of the Publisher's location, in its current version, and permission for use must always be obtained from Springer. Permissions for use may be obtained through RightsLink at the Copyright Clearance Center. Violations are liable to prosecution under the respective Copyright Law. The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use.

While the advice and information in this book are believed to be true and accurate at the date of publication, neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or omissions that may be made. The publisher makes no warranty, express or implied, with respect to the material contained herein.

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

To Sammy and our unborn child

Lin Bai

Preface

As an effective means to improve the spectral efficiency in wireless communications, multiple-input multiple-output (MIMO) systems equipped with multiple antennas at both transmitter and receiver sides have been well studied in recent years. In MIMO systems, more careful receiver design than in single-input singleoutput (SISO) systems is highly desirable in order to achieve good performances due to interfering signals by multiple antennas. To this end, we may consider joint detection and decoding. However, it leads to prohibitively high computational complexity, which grows exponentially with the number of equipped antennas and thus it becomes impractical for actual systems. Therefore, it is desirable to develop suboptimal MIMO receivers to provide good performances with reasonably low complexities, especially for large systems.

In the book entitled *Low Complexity MIMO Detection* published by Springer in 2012, a number of complexity-efficient MIMO detection methods and algorithms have been reviewed and studied. However, the MIMO detection was discussed only for uncoded systems. Since the separation of signal detection and decoding may lead to a performance degradation for coded MIMO systems, the MIMO detection has to be considered with decoding, which becomes the motivation of this book.

In this book, we focus on the design of low-complexity and high-performance MIMO receivers, where two techniques, successive interference cancellation (SIC) and lattice reduction (LR), become the key ingredients in deriving such receivers. In addition, in conjunction with the receiver design, other topics including the channel estimation, multiuser, and multicell systems, are further discussed in the later part of the book. Our book is summarized as follows.

We first present point-to-point MIMO systems and various low complexity detection methods. In order to provide a background, the detection theory is reviewed in Chap. 2, the signal detection in a vector space and principles of MIMO detection are introduced in Chap. 3, different computationally efficient SIC-based detection approaches are presented in Chap. 4, and the principles of LR and corresponding detection schemes are discussed in Chap. 5.

In the second part of this book, we focus on iterative detection and decoding (IDD) schemes in MIMO-bit interleaved coded modulation (MIMOBICM) systems. A background of MIMO iterative receivers is introduced in Chap. 6. Low

complexity iterative receivers using LR at bit-level are studied in Chap. 7. Randomized sampling-based IDD is presented in Chap. 8.

Other issues in conjunction with the LR-based detection schemes are presented in Chaps. 9 and 10. In particular, various channel estimation techniques are discussed in Chap. 9. Multiuser and multicell MIMO systems are considered in Chap. 10.

Our book is intended to introduce the low complexity receiver design in MIMO systems from fundamentals to practical applications. This book makes an easy-to-follow presentation from the elementary to the profound level and includes not only theories, but also updated research outcomes that could be useful for both graduate students and practicing engineers in wireless communications.

Beijing, January 2014 Gwangju Beijing Lin Bai Jinho Choi Quan Yu

Acknowledgments

We would like to thank many people for supporting this work, in particular: Wenyang Guan (Peking University), Chen Chen (Peking University), Jianhua He (Aston University), Weixi Xing (Swansea University), Ronghong Jin (Shanghai Jiao Tong University), Mingjian Zhao (Zhejiang University), and Yabo Li (Zhejiang University). They helped shape the structure of the book and had provided valuable comments and suggestions.

We want to specially thank our colleagues who provided generous helps to our research works, in particular: Jinpeng Huai, Guangjun Zhang, Jun Zhang, Jianwei Liu, and Feng Liu who are with Beihang University as senior professors; also including: Changxu Hu, Yi Zhang, Yan Zhuang, and Zhenyu Xiao.

More importantly, we would like to acknowledge our students for their contributions to this book, especially: Qiaoyu Li, Shengyue Dou, Ming Zhang, and Jindong Xie for proofreading and constructive comments.

We then want to express our very special appreciation to our parents, families, and friends, in particular: Kan Wang, Xiaoyu Guo, Zhaohua Yang, Qingfei Huang, and Feng Wang for long-term friendship. Without their supports, we could barely make this achievement.

Finally, we deeply thank Editor Brett Kurzman and Rebecca R. Hytowitz at Springer, who were always there with us, for their wonderful help during the completion of the book.

This work was supported by the National Natural Science Foundation of China (Grant nos. 91338106, 61231011, and 61231013).

Contents

1	Intro	duction	1			
2	Signa	al Processing at Receivers: Detection Theory	5			
	2.1^{-}	Principles of Hypothesis Testing	5			
	2.2	Maximum a Posteriori Probability Hypothesis Test.	6			
	2.3	Baysian Hypothesis Test	11			
	2.4	Maximum Likelihood Hypothesis Test	12			
	2.5	Likelihood Ratio-Based Hypothesis Test	13			
	2.6	Neyman–Pearson Lemma	15			
	2.7	Detection of Symmetric Signals	17			
		2.7.1 Error Probability.	18			
		2.7.2 Bound Analysis	19			
	2.8	Binary Signal Detection	22			
	2.9	Detection of <i>M</i> -ary Signals	26			
	2.10	Concluding Remarks	28			
3	MIM	MO Detection: Vector Space Signal Detection				
	3.1	Signals in Vector Space	29			
	3.2	Vector Space Signal Detection	31			
	3.3	Random Signal Detection	33			
		3.3.1 Likelihood Ratio Based Random Signal Detection	33			
		3.3.2 Signal Detection with Random				
		Amplitude and Phase	34			
		3.3.3 Random Gaussian Vector Signal Detection	37			
		3.3.4 Pairwise Error Probability	39			
	3.4	MIMO Detection	41			
		3.4.1 ML Detection	43			
		3.4.2 Linear Detection.	44			
		3.4.3 Performance Analysis	46			
	3.5	Concluding Remarks	49			
4	Succ	essive Interference Cancellation-Based MIMO Detection	51			
	4.1	SIC Detection	51			
		4.1.1 QR Factorization	51			

		4.1.2	ZF-SIC	52
		4.1.3	MMSE-SIC	55
		4.1.4	Ordering	56
		4.1.5	Performance Analysis	58
	4.2	List-Ba	ased Detection.	62
		4.2.1	Detection Algorithms	63
		4.2.2	Ordering	65
		4.2.3	Sub-detectors	68
		4.2.4	Performance Analysis	71
	4.3	SIC-Ba	ased MAP Detection	73
		4.3.1	Partial MAP Detection	75
		4.3.2	Partial MAP-Based List Detection	80
		4.3.3	Performance Analysis	88
	4.4	Conclu	Iding Remarks	90
5	Latti	ce Redu	ction-Based MIMO Detection	91
•	5.1	Lattice	Reduction-Based Detection	91
		5.1.1	MIMO Systems with Lattice	91
		5.1.2	Lattice Reduction-Based MIMO Detection	93
		5.1.3	Two-Basis Lattice Reduction	99
		5.1.4	Two-Basis Gaussian Lattice Reduction	104
		5.1.5	LLL and CLLL Algorithms	109
		5.1.6	Performance Analysis	115
	5.2	Lattice	Reduction-Based SIC-List Detection	123
		5.2.1	Detection Algorithm	124
		5.2.2	Lattice Reduction-Based Subdetection	126
		5.2.3	List Generation in the LR Domain	127
		5.2.4	Impact of List Length	129
		5.2.5	Column Reordering Criteria	132
		5.2.6	Performance Analysis	135
	5.3	Lattice	Reduction-Based Partial MAP-List Detection	137
		5.3.1	Detection Algorithm	138
		5.3.2	Performance Analysis	139
	5.4	Conclu	Iding Remarks	141
6	MIM	O Itera	tive Receivers	143
	6.1	Convo	lutional Codes	143
		6.1.1	Convolutional Encoders.	144
		6.1.2	Decoding Approaches for Convolutional Codes	146
	6.2	Turbo	Principle and BICM-ID	150
		6.2.1	Structure and Operation of BICM-ID	150
		6.2.2	Performance Analysis of BICM-ID	
			Using EXIT Chart	152

	6.3	MIMO	Iterative Receivers with Optimal MIMO Detection	157
		6.3.1	BICM for MIMO Channels	158
		6.3.2	Structure of Iterative Receivers	158
	6.4	MIMO	Iterative Receivers with Suboptimal	
		MIMO	Detection	161
		6.4.1	List-Sphere Decoding	161
		6.4.2	Monte Carlo Markov Chain Sampling	166
		6.4.3	MMSE-SC	170
		6.4.4	Numerical Results	171
		6.4.5	BER Performance	174
	6.5	Conclu	ding Remarks	174
7	Bit-	Wise MI	MO-BICM-ID Using Lattice Reduction	175
	7.1	LR-Bas	sed IDD Using Bit-Wise Filtering	175
		7.1.1	LR-Based Detection	176
		7.1.2	LR-Based Bit-Wise MMSE Filtering	178
		7.1.3	List Generation Using Integer Perturbation	181
		7.1.4	List Generation Using Quantization	183
	7.2	Channe	el Decomposition for Large Systems	183
	7.3	Comple	exity Analysis	186
		7.3.1	Detection Complexity	186
		7.3.2	Reduction Complexity	187
		7.3.3	Decomposition Complexity	188
	7.4	Numer	ical Results	188
		7.4.1	Comparison of Bit-LR 1 and Bit-LR 2	189
		7.4.2	Complexity Comparison	190
		7.4.3	Convergence Analysis	191
		7.4.4	BER Performance	192
	7.5	Conclu	ding Remarks	193
8	Ran	domized	Sampling-Based MIMO Iterative Receivers	195
	8.1	System	Model	195
	8.2	LR-Bas	sed SIC Detection	197
	8.3	LR-Bas	sed IDD Using Randomized Sampling	198
		8.3.1	Gaussian Approximation in the LR Domain.	198
		8.3.2	Randomized List Generation	199
		8.3.3	Complex-Valued List Generation	204
	8.4	Comple	exity Analysis	205
	8.5	Numer	ical Results	207
	8.6	Conclu	ding Remarks	213
9	Itera	ative Cha	nnel Estimation and Detection	215
	9.1	EM Al	gorithm	216
	9.2	Iterativ	e Channel Estimation and Detection	218

		9.2.1 System Mo	del	218
		9.2.2 EM-Based	Semi-blind Channel Estimation	219
		9.2.3 EM-Based	ICED Algorithm	220
	9.3	LR-Based ICED.		220
		9.3.1 LR-Based I	Detection within ICED.	220
		9.3.2 Complexity	-Efficient LR-ICED	222
	9.4	LR-ICED Over Slov	w Fading Channels	225
	9.5	Numerical Results		228
	9.6	Concluding Remark	S	230
10	Multi	user and Multicell]	MIMO Systems.	
10	The l	lse of I attice Redu	etion	233
	10.1	Single User Selection		233
	10.1	10.1.1 Maximum	Mutual Information	234
		10.1.1 Maximum	ion for MI Detection	235
		10.1.2 User Select	ion for Linear Detection	230
		10.1.5 User Select	ion for L P. Pased Detection	231
		10.1.4 User Select	Analysis	230
	10.2	Multiple User Selec	tion	241
	10.2	10.2.1 Combinator	riol User Selection	240
		10.2.1 Combinator		240
		10.2.2 Greedy Use		251
	10.2	10.2.5 Periorinance		238
	10.3	Lattice-Based Interi	erence Alignment	200
		for Multiuser MIMO		268
		10.3.1 System Mo		269
		10.3.2 Lattice-Bas	ed Interference Alignment	269
		10.3.3 Joint Signa	I Detection and Precoder	071
		Design with	n IA-L	271
	10.4	10.3.4 Numerical	Results	273
	10.4	Multichannel Sharir	ig and Joint Detection in Downlink	
		Multicell OFDMA	Systems	274
		10.4.1 System Mo	dels	275
		10.4.2 Joint Detec	tion LR-Based Detectors	277
		10.4.3 LR-Based J	loint Detection Over Subspace	278
		10.4.4 Numerical	Results	281
	10.5	Concluding Remark	S	282
Abo	out the	Authors		285
Ref	erence	5		287
Ind	ex			293

Figures

Fig. 1.1	An M by N MIMO system	2
Fig. 1.2	Wireless channel from the <i>m</i> -th transmit antenna	
•	to the <i>n</i> -th receive antenna	2
Fig. 2.1	Block diagram for hypothesis testing	6
Fig. 2.2	Balls drawn from two boxes	7
Fig. 2.3	The pdf of the hypothesis pair	9
Fig. 2.4	The relationship of different decision rules	14
Fig. 2.5	Receiver operating characteristics (ROCs)	
•	of the NP decision rule	17
Fig. 2.6	An illustration of step function	21
Fig. 2.7	Correlator detector using binary signalling	25
Fig. 2.8	A bank of correlator modules using <i>M</i> -ary signals	28
Fig. 3.1	ML correlator detector for binary signal	32
Fig. 3.2	PEP's of $S_{m \to m'}$ using a 4-ary signaling	40
Fig. 3.3	BER performance of conventional detectors	
	in 16-QAM 2×2 and 4×4 MIMO systems	50
Fig. 4.1	BER performance of ML, MMSE, and MMSE-SIC	
	in 2×2 and 4×4 MIMO systems, where 16-QAM	
	is used for signalling	62
Fig. 4.2	BER performance of different detectors in 16-QAM 2×2	
	and 4×4 MIMO systems	73
Fig. 4.3	The lower bound of P_{cond}	80
Fig. 4.4	Bounds of P_{cond} for different list lengths with $N_1 = 2, 4 \dots$	87
Fig. 4.5	BER performance of various detection methods	
	for 16-QAM 2×2 and 4×4 MIMO systems	89
Fig. 5.1	The decision boundaries of ZF detection with a lattice	
	generated by the bases H and G	96
Fig. 5.2	BER performance of various detectors in 16-QAM 2×2	
	and 4×4 MIMO systems	123
Fig. 5.3	BER versus E_b/N_o of different MIMO detectors	
	in a 4 × 4 MIMO system with $N_1 = N_2 = 2$	
	using 16-QAM for signaling	137

Fig. 5.4	BER versus E_b/N_o of different MIMO detectors in a 4 \times 4	
•	MIMO system with $N_1 = N_2 = 2$ using 16-QAM signaling	140
Fig. 6.1	A $(2,1,3)$ convolutional encoder, where D stands for a	
	register that is a memory element	144
Fig. 6.2	The state diagram of a $(2, 1, 3)$ convolutional encoder	145
Fig. 6.3	The trellis diagram of a $(2, 1, 3)$ convolutional encoder	
•	(the solid line represents the branch due to input "1" and the	
	dashed line represents the branch due to input "0")	146
Fig. 6.4	Block diagram of the transmitter with BICM	150
Fig. 6.5	Block diagram of BICM-ID.	151
Fig. 6.6	EXIT charts of the iterative receiver with an MAP equalizer	
	and an MAP decoder. For channel coding, a rate-half	
	convolutional code with generator polynomial (7, 5) in octal	
	is used. For equalization, the EXIT chart is obtained using	
	16-QAM with the MSP mapping rule over AWGN channel	
	at $E_b/N_0 = 2$ dB. I_{in}^E and I_{in}^D = denote input extrinsic	
	information to the equalizer and decoder, respectively;	
	I_{out}^E and I_{out}^D = denote output extrinsic information to the	
	equalizer and decoder, respectively	155
Fig. 6.7	Block diagram of the transmitter with BICM	158
Fig. 6.8	Block diagram of BICM-ID	159
Fig. 6.9	The flops cdf of 4×4 and 8×8 MIMO systems	
-	at $E_b/N_0 = 5$ dB	172
Fig. 6.10	BER performance of the 4×4 MIMO system	173
Fig. 6.11	BER performance of the 8×8 MIMO system	173
Fig. 7.1	Performance comparison among Bit-LR 1 and Bit-LR	
	2, 4 \times 4 and 8 \times 8 MIMO channels are considered	
	at $E_b/N_0 = 5$ dB	190
Fig. 7.2	The flops cdf of the 8 \times 8 MIMO system	
	at $E_b/N_0 = 5$ dB	191
Fig. 7.3	EXIT chart of the 8 \times 8 MIMO system at $E_b/N_0 = 6 \text{ dB} \dots$	192
Fig. 7.4	BER performance of the 8 \times 8 MIMO system	193
Fig. 8.1	BER performance of various IDD receivers	
	with 4-QAM, $N_t = N_r = 4$, and $K = 10$	210
Fig. 8.2	BER versus K when $N_t = N_r = 4$, $M = 2$,	
	and $E_b/N_0 = 5 dB \dots \dots \dots \dots$	210
Fig. 8.3	BER performance of various IDD receivers	
	with 16-QAM, $N_t = N_r = 4$, and $K = 60$	211
Fig. 8.4	BER versus K when $N_t = N_r = 4$, $M = 4$,	
	and $E_b/N_0 = 10 dB$	212
Fig. 8.5	BER performance of various IDD receivers	
	with 4-QAM and $N_t = N_r = 8$	212
Fig. 8.6	BER versus K when $N_t = N_r = 8$, $M = 2$,	
	and $E_b/N_0 = 5 \text{ dB} \dots$	213

Fig. 9.1	BER versus SNR of LR-ICED and CE-LR-ICED over static	
	channels using OD criterion, when 16-QAM is used for	
	signaling and $M = N = 4$	227
Fig. 9.2	BER versus SNR of A-LR (perfect CSI), LR-ICED,	
	and CE-LR-ICED over slowly time-varying block-fading	
	channels using EP criterion, when 16-QAM is used	
	for signaling and $M = N = 4$	229
Fig. 9.3	BER versus SNR of LR-ICED and CE-LR-ICED over	
•	slowly time-varying block-fading channels using OD/EP	
	criterion, when 16-QAM is used for signaling,	
	M = N = 6, and SNR = 10 dB	230
Fig. 9.4	The average number of executions of LLL algorithms	
C	within 6 iterations for LR-ICED and CE-LR-ICED over	
	slowly time-varying block-fading channels using OD/EP	
	criterion, when 16-QAM is used for signaling, $M = N = 6$,	
	and $SNR = 10 \text{ dB} \dots \dots$	231
Fig. 10.1	Block diagram for multiuser MIMO uplink channels with	
C	one BS and multiple users	234
Fig. 10.2	Multicell MIMO systems: from "Competition"	
C	to "Cooperation"	234
Fig. 10.3	BER performance of various multiuser MIMO systems using	
•	16 and 64-QAM for signaling, where $M = N = 4$	
	and $K = 10$	245
Fig. 10.4	BER versus E_b/N_0 of the different multiuser MIMO systems	
•	for the case of $(M, P) = (4, 1)$ and $(M, P) = (2, 2)$	
	(16-QAM, K = 5, N = 4)	266
Fig. 10.5	BER versus K of different multiuser MIMO systems for the	
	case of $(M, P) = (4, 1)$ (16-QAM, $E_b/N_0 = 12$ dB, $N = 4$)	267
Fig. 10.6	BER performance for the LR-ZF detectors with IA-L	
	with precoder design 2 and IA-S ($M = 4$, 16-QAM)	274
Fig. 10.7	BER results of different multichannel sharing methods,	
	where $K = 3$, $L = 1$, and $M = 3$	281
Fig. 10.8	BER results of the conventional and studied multichannel	
	sharing methods for different values of L and M,	
	respectively when $K = 3 \dots \dots$	282
Fig. 10.9	BER performance of the studied multichannel sharing method	
	for different values of M when $K = 3$ and $E_b/N_0 = 15$ dB	283

Tables

MAP decision rule	10
The probabilities of type I and II errors	10
s , $d_{\rm ml}$ corresponding to s in (3.71)	44
Symbol-level hard decision of ZF detection	45
MMSE filtering	58
List generation	63
BLAST ordering.	67
APP generation of s_2	87
DRC verification	88
The average list length of the partial MAP-based list	
detector for 16-QAM 2×2 and 4×4 MIMO systems	90
Real-valued Gaussian LR algorithm	105
Complex-valued Gaussian LR algorithm	108
LLL algorithm	111
CLLL algorithm	113
The average value of column swapping per iteration	
in CLLL algorithm for different MIMO channels	
(N = 8 and M = 2, 3,, 8).	123
The average list length Q with different SNR	
in a 4 \times 4 MIMO system using 16-QAM for signaling	140
Randomized list generation	203
Average numbers of flops of different detectors for IDD	
in MIMO-BICM systems	208
The EM algorithm	218
The EM-based ICED algorithm	220
The algorithm of CE-LR-ICED using OD criterion	223
The algorithm of CE-LR-ICED over slowly time-varying	
block-fading channels using OD criterion	227
The UBLR (based on the CLLL) algorithm	
at the <i>m</i> th user selection	257
	MAP decision rule

Acronyms

API	A priori information
APP	A posteriori probability
APRP	A priori probability
AWGN	Additive white Gaussian noise
BCJR	Bahl, Cocke, Jelinek, and Raviv
BER	Bit error rate
BICM	Bit interleaved coded modulation
Bit-LR	Bit-level LR-aided
BLAST	Bell laboratories layered space time
BPSK	Binary phase shift keying
BS	Base station
cdf	Cumulative distribution function
CLLL	Complex-valued LLL
CLR-RLGA	Complex-valued LR-based list generation algorithm
CLT	Central limit theorem
CMs	Complex multiplications
CRC	Column reordering criteria
CRIS	Column reordering index set
CSCG	Circular symmetric complex Gaussian
CSI	Channel state information
DFE	Decision feedback equalizer
DMT	Diversity-multiplexing trade-off
DRC	Dimension reduction condition
EM	Expectation-maximization
EP	Error probability
EP-CRC	Error probability based CRC
EXIT	Extrinsic information transfer
FCA	Fixed candidate algorithm
flops	Floating point operation
FSM	Finite state machine
GAL	Genie-aided list
GLR	Generalized likelihood ratio
GLRT	Generalized likelihood ratio test
ICED	Iterative channel estimation and detection

ICI	Inter-cell interference
IDD	Iterative detection and decoding
iid	Independently and identically distributed
ISI	Inter-symbol interference
ITS	Iterative tree search
K–L	Karhunen–Loéve
LAPP	Log a posteriori probability
LAPPR	Logarithms of a posteriori probability ratios
LAPRP	Log-ratio of a priori probability
LBR	Lattice basis reduced
LLL	Lenstra–Lenstra–Lovász
LLR	Log-likelihood ratio
LR	Likelihood ratio or lattice reduction
LRG	LR-based greedy
LR-RLGA	LR-based randomized list generation algorithm
LSD	List-sphere decoding
MAP	Maximum a posteriori probability
MCMC	Monte Carlo Markov chain
MD	Max-min diagonal term
MDist	Max-min distance
ME	Max-min eigenvalue
MFB	Matched filter bound
MGF	Moment generating function
MIMO	Multiple-input multiple-output
ML	Maximum likelihood
MLE	Maximum likelihood estimate
MMI	Maximum mutual information
MMMSE	Min-max mean square error
MMSE	Minimum mean square error
MMSE-PIC	Minimum mean square error parallel interference cancellation
MSB	Most significant bit
MSE	Mean square error
OD	Orthogonal defect or orthogonality deficiency
OD-CRC	Orthogonality deficiency based CRC
ODR	Optimal decision region
OFDMA	Orthogonal frequency division multiple access
PAM	Pulse amplitude modulation
pdf	Probability density function
PDR	Probability of dimension reduction
PEP	Pairwise error probability
QAM	Quadrature amplitude modulation
Rand-SIC	Randomized SIC
RLR-RLGA	Real-valued LR-based randomized list generation algorithm
ROCs	Receiver operating characteristics
SC	Soft (interference) cancellation

Successive interference cancellation
Signal to interference plus noise ratio
Single-input single-output or soft-input soft-output
Signal-to-noise ratio
Sum of squared error
Shortest vector problem
Updated basis LR
UBLR-based greedy
Zero forcing

Notations

A , a, <i>a</i>	(boldface upper, boldface lower, lower italic fonts) complex-
	valued matrix, vector, scalar
A, a, a	(boldface upper, boldface lower, lower sans-serif fonts) real-
	valued matrix, vector, scalar
$\mathbf{A}^{\mathrm{T}}, \mathbf{A}^{\mathrm{H}}, \mathbf{A}^{\dagger}$	Transpose, Hermitian transpose, Pseudo inverse, respectively
$[\mathbf{A}]_{p,q}$	The (p, q) th element of A
$[\mathbf{A}]_{a:b,c:d}$	A sub-matrix of A with the elements obtained from rows a, \ldots, a
	b and columns c, \ldots, d
[A]:, <i>n</i>	The <i>n</i> th column vector of A
[A] <i>n</i> ,:	The <i>n</i> th row vector of A
Tr(A)	Trace operation of a square matrix A
det(A)	Determinant of matrix A
adj(A)	Adjoint of matrix A
$\mathcal{D}(\mathcal{A})$	Length of the shortest nonzero vector of the lattice
	generated by A
$\lambda_{\min}(\mathbf{A})$	Minimum eigenvalue of A
$\mathcal{L}(\mathcal{A})$	Lattice generated by A
$\Pr(X)$	Probability of random event X
$E[\bullet]$	Statistical expectation
<a, b=""></a,>	Inner product of two vectors a and b
$\mathfrak{R}(\cdot), \mathfrak{F}(\cdot)$	Real and imaginary parts
$\mathcal{N}(m,C)$	Gaussian probability density function with mean m
	and covariance C
$\mathcal{CN}(m,C)$	Circularly symmetric complex Gaussian probability density
	function with mean m and covariance C
$\log(\bullet)$	Natural (base e) logarithm
$\ln(\bullet)$	Common (base 10) logarithm
0	Matrix with all entries of 0
·	2-norm
$\ \cdot\ _{\mathbf{F}}$	The Frobenius norm
$\lceil \beta \rfloor$	The nearest integer to β
$\lfloor \beta \rfloor$	The closest integer which is smaller than β
IβI	Absolute value of scalar β

/	Set minus
\mathbf{I}_n	An $n \times n$ identity matrix
$\{k_{(1)}, k_{(2)}, \ldots\}$	The collection set of $k_{(1)}, k_{(2)}, \ldots$
$\operatorname{erfc}(x)$	Complementary error function of x, i.e.,
	$\operatorname{erfc}(x) = \frac{2}{\sqrt{\pi}} \int_{x}^{+\infty^{23}} e^{-z^{2}} dz$
$\{\exists x: f(x)\}$	There is at least one x such that a function of x, $f(x)$, is true
Z	Set of integer numbers
\mathbb{R}^k	Real-valued k-dimensional vector space
\mathbb{C}^k	Complex-valued k-dimensional vector space

Chapter 1 Introduction

In wireless communications, the maximum achievable data rate of wireless channels is usually the most critical issue to be addressed for system design, which can be characterized by the channel capacity. The channel capacity represents the maximum reliable transmission rate of information over a given channel, which was first established by Claude E. Shannon, the father of information theory, and becomes the theoretical foundation of wireless communications. The channel capacity (in bits per second per Hz) of a single-input single-output (SISO) system can be given by

$$C_{\text{SISO}} = B \log_2 \left(1 + \text{SNR} \right), \tag{1.1}$$

where B and SNR denote the bandwidth and the signal-to-noise ratio (SNR), respectively. As we can see from (1.1) that either high SNR or wide bandwidth has to be required in order to achieve a high transmission rate.

In wireless communications, since there are always limitations to increase the SNR due to the propagation loss with practical power amplifiers, the bandwidth has to be wide enough to support high data rate services. However, the scarce wireless spectrum has posed a huge challenge in designing wireless communication systems with increasing data rate demands. Fortunately, by employing multiple antennas at both transmitter and receiver, the multiple-input multiple-output (MIMO) system [1] has been developed to improve the spectral efficiency without unrealistic high SNR or extra bandwidth. In relation to the SISO capacity, the MIMO channel capacity [2] can be characterized as

$$C_{\text{MIMO}} \simeq \min(M, N) C_{\text{SISO}},$$
 (1.2)

where M and N are the numbers of equipped transmit and receive antennas, respectively. According to (1.2), the capacity grows linearly with the minimum of the numbers of transmit and receive antennas. Due to this linear scaling property, a higher spectral efficiency can be easily achieved by increasing the number of antennas.

1

A point-to-point MIMO system equipped with M transmit antennas and N receive antennas is illustrated in Fig. 1.1. Since each receive antenna is able to receive signals from all the transmit antennas, supposing that each transmit antenna transmits different symbols, the received signal of the nth antenna at the receiver is given by

$$y_n = h_{n1}s_1 + h_{n2}s_2 + \dots + h_{nM}s_M + n_n, \tag{1.3}$$

where s_m , h_{nm} , and n_n are the symbols transmitted by the *m*-th antenna, the channel gain from the *m*-th transmit antenna to the *n*-th receive antenna, and the additive noise at the *n*-th receive antenna, respectively. Figure 1.2 illustrates the channel from the *m*-th transmit antenna to the *n*-th receive antenna.

With all the received signals, we have

$$y_{1} = h_{11}s_{1} + h_{12}s_{2} + \dots + h_{1M}s_{M} + n_{1};$$

$$y_{2} = h_{21}s_{1} + h_{22}s_{2} + \dots + h_{2M}s_{M} + n_{2};$$

$$\vdots$$

$$y_{N} = h_{N1}s_{1} + h_{N2}s_{2} + \dots + h_{NM}s_{M} + n_{N},$$
(1.4)

or

$$\begin{bmatrix} y_1 \\ y_2 \\ \vdots \\ y_N \end{bmatrix} = \begin{bmatrix} h_{11} & h_{12} \cdots & h_{1M} \\ h_{21} & h_{22} & \cdots & h_{2M} \\ \vdots & \vdots & \ddots & \vdots \\ h_{N1} & h_{N2} & \cdots & h_{NM} \end{bmatrix} \begin{bmatrix} s_1 \\ s_2 \\ \vdots \\ s_M \end{bmatrix} + \begin{bmatrix} n_1 \\ n_2 \\ \vdots \\ n_N \end{bmatrix}.$$
(1.5)

1 Introduction

Letting the channel matrix be

$$\mathbf{H} = \begin{bmatrix} h_{11} & h_{12} & \cdots & h_{1M} \\ h_{21} & h_{22} & \cdots & h_{2M} \\ \vdots & \vdots & \ddots & \vdots \\ h_{N1} & h_{N2} & \cdots & h_{NM} \end{bmatrix},$$
(1.6)

the transmit signal vector be $\mathbf{s} = [s_1, s_2, \dots, s_M]^T$, the received signal vector be $\mathbf{y} = [y_1, y_2, \dots, y_N]^T$, and the additive noise vector be $\mathbf{n} = [n_1, n_2, \dots, n_N]^T$, (1.5) becomes

$$\mathbf{y} = \mathbf{H}\mathbf{s} + \mathbf{n},\tag{1.7}$$

where the superscript T denotes the transpose operation. The system model in (1.7) will be widely considered throughout this book. At the receiver, in order to detect the transmit signal **s** from the received signal **y** under the knowledge of estimated channel state information (CSI), efficient detection schemes in terms of performance and complexity have to be considered. According to (1.7), the CSI can be defined as the knowledge of **H** (under the assumption that the statistical properties of **n** are available), which can be estimated via some channel estimation schemes. For uncoded systems, the spatial diversity order can be used as a performance metric for various MIMO detection methods, where a full receive diversity gain is the same as the number of receive antennas in MIMO systems. Asymptotically, optimal detection schemes should achieve this full receive diversity gain.

The problem of MIMO detection is a joint detection problem as all the symbols in the signal vector **s** are to be jointly detected. Using exhaustive search, the maximum likelihood (ML) detection can be carried out to provide an optimal performance with a full receive diversity. However, the complexity to detect the M signals jointly grows exponentially with the number of transmit antennas, M, which easily becomes impractical in many applications, especially when large MIMO systems are considered. To reduce the computational complexity, various suboptimal approaches have been proposed. Linear detectors such as the zero-forcing (ZF) and minimum mean square error (MMSE) detectors can be considered, in which the signals from the other antennas are treated as interfering signals. Although they have low complexity, they cannot achieve reasonably good performance and a full receive diversity gain, in particular, at a high SNR. In order to achieve the two desirable features, i.e., low computational complexity and near optimal performance, simultaneously, successive interference cancellation (SIC) and lattice reduction (LR)-based approaches become quite attractive. In this book, we discuss various MIMO detectors based on SIC and LR in detail for point-to-point MIMO systems. Prior to discussing those detectors, however, the detection theory is first reviewed in Chap. 2 and the signal detection in a vector space and principles of MIMO detection are introduced in Chap. 3 in order to provide a background. Then, different computationally efficient

SIC-based detection approaches are presented in Chap. 4 and the principles of LR and corresponding detection schemes are discussed in Chap. 5.

Since multiple antennas can be used either to improve the reliability of the system with respect to the spatial diversity or to increase the data rate with respect to the spatial multiplexing, it is not possible to increase both diversity and multiplexing gains simultaneously for given numbers of transmit and receive antennas. The spatial diversity gain *d* and the spatial multiplexing gain *r* can be used to characterize the performance of coded MIMO systems. Using the average error probability $P_e(SNR)$ and the data rate R(SNR), it can be shown that

$$d = -\lim_{\text{SNR}\to\infty} \frac{P_e(\text{SNR})}{\log \text{SNR}}$$
(1.8)

and

$$r = \lim_{\text{SNR}\to\infty} \frac{R(\text{SNR})}{\log \text{SNR}}.$$
(1.9)

If a system achieves a higher r, d becomes lower, vice versa. However, it is not possible to increase both r and d simultaneously for given numbers of transmit and receive antennas. This is called diversity-multiplexing trade-off (DMT) [3], which can be used as a performance measure for coded MIMO systems. Although the system design based on DMT is of paramount importance, we do not discuss this issue in this book. We rather focus on practical systems where MIMO-bit interleaved coded modulation (MIMO-BICM) is adopted over MIMO channels to obtain good performance at a data rate near to the channel capacity with a relatively simple structure for the transmitter. With a soft-input soft-output channel decoder in MIMO-BICM systems, iterative detection and decoding (IDD) can be employed to improve the performance with a reasonable complexity for the receiver based on the turbo principle for MIMO systems. These are the main topics in the second part of this book, where we focus on IDD schemes in MIMO-BICM systems. A background of MIMO iterative receivers is introduced in Chap. 6. Low complexity iterative receivers using LR at bit-level are studied in Chap. 7. Randomized sampling-based IDD is presented in Chap. 8.

In this book, aiming at providing a comprehensive view to low complexity MIMO receiver design, while we mainly focus on various MIMO detection and IDD approaches, where the two techniques, SIC and LR, play a key role in developing good-performance and low-complexity MIMO receivers, we also discuss other topics (e.g., the channel estimation, multiuser and multicell systems) that are equally important in designing MIMO receivers in the later part of the book. In particular, various channel estimation techniques are discussed in Chap. 9. Multiuser and multicell MIMO systems are considered in Chap. 10.

Chapter 2 Signal Processing at Receivers: Detection Theory

As an application of the statistical hypothesis testing, signal detection plays a key role in signal processing at receivers of wireless communication systems. To accept or reject a hypothesis based on observations, the hypotheses are possible statistical descriptions of observations using statistical hypothesis testing tools. As realizations of a certain random variable, observations can be characterized by a set of candidate probability distributions of the random variable.

In this chapter, based on the statistical hypothesis testing, we introduce the theory of signal detection and key techniques for performance analysis. We focus on the fundamentals of signal detection in this chapter, while the signal detection over multiple-antenna systems will be considered in the following parts of the book.

2.1 Principles of Hypothesis Testing

Three key elements are carried out in the statistical hypothesis testing, including

- (1) Observations.
- (2) Set of hypotheses.
- (3) Prior information.

The decision process or hypothesis testing is illustrated in Fig. 2.1. In Fig. 2.1, is shown that observations and prior information are taken into account to obtain the final decision. However, considering the cases that no prior information is available or prior information could be useless, the hypothesis test can also be developed with observations only.

Under the assumption that there exist $M (\geq 2)$ hypotheses, we can have an *M*-ary hypothesis testing in which we need to choose one of the *M* hypotheses that explains observations and prior information best. In order to choose a hypothesis, different criteria can be considered. According to these criteria, different hypothesis tests are

5

available. Based on the likelihood ratio $(LR)^1$ hypothesis test; three well-known hypothesis tests are given as follows:

- (1) Maximum a posteriori probability (MAP) hypothesis test.
- (2) Baysian hypothesis test.
- (3) Maximum likelihood (ML) hypothesis test.

In the following section, the hypothesis tests in the above are illustrated respectively.

2.2 Maximum a Posteriori Probability Hypothesis Test

Let us first introduce the MAP hypothesis test or MAP decision rule. Consider that there are different balls contained in two boxes (A and B), where a certain number is marked on each ball. Under the assumption that the distribution of the numbers on balls is different for each box, as a ball is drawn from one of the boxes, we want to determine the box where the ball is drawn from based on the number of the ball. Accordingly, the following two hypotheses can be founded:

 $\begin{cases} \mathcal{H}_0 : \text{the ball is drawn from box A;} \\ \mathcal{H}_1 : \text{the ball is drawn from box B.} \end{cases}$

For example, suppose that 10 balls are drawn from each box as shown in Fig. 2.2. Based on the empirical distribution results in Fig. 2.2, conditional distributions of the number on balls are given by

$$Pr (1|\mathcal{H}_0) = \frac{4}{10};$$

$$Pr (2|\mathcal{H}_0) = \frac{3}{10};$$

$$Pr (3|\mathcal{H}_0) = \frac{3}{10};$$

and

¹ Note that in Chaps. 2 and 3, we use LR to denote the term "likelihood ratio," while in the later chapters of the book, the LR is used to represent "lattice reduction."

$$Pr (1|\mathcal{H}_1) = \frac{2}{10};$$

$$Pr (2|\mathcal{H}_1) = \frac{2}{10};$$

$$Pr (3|\mathcal{H}_1) = \frac{4}{10};$$

$$Pr (4|\mathcal{H}_1) = \frac{2}{10}.$$

In addition, the probability that A (\mathcal{H}_0) or B (\mathcal{H}_1) box is chosen is assumed to be the same, i.e.,

$$\Pr\left(\mathcal{H}_0\right) = \Pr\left(\mathcal{H}_1\right) = \frac{1}{2}.$$
(2.1)

Then, we can easily have

$$Pr (1) = Pr (\mathcal{H}_0) Pr (1|\mathcal{H}_0) + Pr (\mathcal{H}_1) Pr (1|\mathcal{H}_1) = \frac{6}{20};$$

$$Pr (2) = Pr (\mathcal{H}_0) Pr (2|\mathcal{H}_0) + Pr (\mathcal{H}_1) Pr (2|\mathcal{H}_1) = \frac{5}{20};$$

$$Pr (3) = Pr (\mathcal{H}_0) Pr (3|\mathcal{H}_0) + Pr (\mathcal{H}_1) Pr (3|\mathcal{H}_1) = \frac{7}{20};$$

$$Pr (4) = Pr (\mathcal{H}_0) Pr (4|\mathcal{H}_0) + Pr (\mathcal{H}_1) Pr (4|\mathcal{H}_1) = \frac{2}{20};$$

where Pr (*n*) denotes the probability that the ball with number *n* is drawn. Taking Pr(\mathcal{H}_k) as the a priori probability (APRP) of \mathcal{H}_k , the a posteriori probability (APP) of \mathcal{H}_k is shown as follows:

$$\Pr(\mathcal{H}_{0}|1) = \frac{2}{3};$$

$$\Pr(\mathcal{H}_{0}|2) = \frac{3}{5};$$

$$\Pr(\mathcal{H}_{0}|3) = \frac{3}{7};$$

$$\Pr(\mathcal{H}_{0}|4) = 0,$$

and

$$Pr (\mathcal{H}_{1}|1) = \frac{1}{3};$$

$$Pr (\mathcal{H}_{1}|2) = \frac{2}{5};$$

$$Pr (\mathcal{H}_{1}|3) = \frac{4}{7};$$

$$Pr (\mathcal{H}_{1}|4) = 1.$$

Here, Pr $(\mathcal{H}_k|n)$ is formed as the conditional probability that the hypothesis \mathcal{H}_k is true under the condition that the number on the drawn ball is *n*. For example, if the number of the ball is n = 1, since Pr $(\mathcal{H}_0|1) = \frac{2}{3}$ is greater than Pr $(\mathcal{H}_1|1) = \frac{1}{3}$, we can decide that the ball is drawn from box A, where the hypothesis \mathcal{H}_0 is accepted. The corresponding decision rule is named as the MAP hypothesis testing, since we choose the hypothesis that maximizes the APP.

Generally, in the binary hypothesis testing, \mathcal{H}_0 and \mathcal{H}_1 are referred to as the null hypothesis and the alternative hypothesis, respectively. Under the assumption that the APRPs $Pr(\mathcal{H}_0)$ and $Pr(\mathcal{H}_1)$ are known and the conditional probability, $Pr(Y|\mathcal{H}_k)$, is given, where *Y* denotes the random variable for an observation, the MAP decision rule for binary hypothesis testing is given by

$$\begin{cases} \mathcal{H}_0 : \Pr\left(\mathcal{H}_0 | Y = y\right) > \Pr\left(\mathcal{H}_1 | Y = y\right);\\ \mathcal{H}_1 : \Pr\left(\mathcal{H}_0 | Y = y\right) < \Pr\left(\mathcal{H}_1 | Y = y\right), \end{cases}$$
(2.2)

where y denotes the realization of Y. Note that \mathcal{H}_0 is chosen if $\Pr(\mathcal{H}_0|Y = y) > \Pr(\mathcal{H}_1|Y = y)$ and vice versa. Here, we do not consider the case of $\Pr(\mathcal{H}_0|Y = y) = \Pr(\mathcal{H}_1|Y = y)$ in (2.2), where a decision can be made arbitrarily. Thus, the decision outcome in (2.3) can be considered as a function of y. Using Bayes rule, we can also show that

$$\begin{cases} \mathcal{H}_{0}: \frac{\Pr\left(Y=y|\mathcal{H}_{0}\right)}{\Pr\left(Y=y|\mathcal{H}_{1}\right)} > \frac{\Pr\left(\mathcal{H}_{1}\right)}{\Pr\left(\mathcal{H}_{0}\right)};\\ \mathcal{H}_{1}: \frac{\Pr\left(Y=y|\mathcal{H}_{0}\right)}{\Pr\left(Y=y|\mathcal{H}_{1}\right)} < \frac{\Pr\left(\mathcal{H}_{1}\right)}{\Pr\left(\mathcal{H}_{0}\right)}. \end{cases}$$
(2.3)

Fig. 2.3 The pdf of the hypothesis pair

Notice that as *Y* is a continuous random variable, $Pr(Y = y | \mathcal{H}_k)$ is replaced by $f(Y = y | \mathcal{H}_k)$, where $f(Y = y | \mathcal{H}_k)$ represents the conditional probability density function (pdf) of *Y* given \mathcal{H}_k .

Example 2.1. Define by $\mathcal{N}(\mu, \sigma^2)$ the pdf of a Gaussian random variable (i.e., *x*) with mean μ and variance σ^2 , where

$$\mathcal{N}\left(\mu,\sigma^{2}\right) = \frac{\exp\left(-\frac{(x-\mu)^{2}}{2\sigma^{2}}\right)}{\sqrt{2\pi\sigma^{2}}}.$$
(2.4)

Let the noise *n* be a Gaussian random variable with mean zero and variance σ , while *s* be a positive constant. Consider the case that a constant signal, *s*, is transmitted, while a received signal, *y*, may be corrupted by the noise, *n*, as shown in Fig. 2.3. Then, we can have the following hypothesis pair to decide whether or not *s* is present when *y* is corrupted by *n*:

$$\begin{cases} \mathcal{H}_0 : y = n; \\ \mathcal{H}_1 : y = s + n. \end{cases}$$

$$(2.5)$$

Then, as shown in Fig. 2.3, we have

$$\begin{cases} f(y|\mathcal{H}_0) = \mathcal{N}(0, \sigma^2); \\ f(y|\mathcal{H}_1) = \mathcal{N}(s, \sigma^2), \end{cases}$$
(2.6)

and

$$\frac{f\left(Y=y|\mathcal{H}_{0}\right)}{f\left(Y=y|\mathcal{H}_{1}\right)} = \exp\left(-\frac{s(2y-s)}{2\sigma^{2}}\right),\tag{2.7}$$

when s > 0. Letting

$$\rho = \frac{\Pr(\mathcal{H}_0)}{\Pr(\mathcal{H}_1)},$$

the MAP decision rule is simplified as follows: