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Foreword

D. Bigoni · A. Carini · M. Gei · A. Salvadori
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This Special Issue of the International Journal of Frac-
ture contains selected papers presented at the IUTAM
Symposium Fracture Phenomena in Nature and Tech-
nology that was held at the School of Engineering,
University of Brescia, Italy, during the week of July
1–5, 2012. The symposium focused on innovative
contributions in fracture research, interpreted broadly
to include new engineering and structural mechanics
treatments of damage development and crack growth,
large-scale failure processes as exemplified by earth-
quake or landslide failures, ice shelf break-up, and
hydraulic fracturing (natural, or for resource extrac-
tion or CO2 sequestration), small-scale rupture phe-
nomena in materials physics including inception of
shear banding, void growth, adhesion and decohesion

D. Bigoni (B) · A. Carini · M. Gei · A. Salvadori
Trento, Italy
e-mail: bigoni@ing.unitn.it

in contact and friction, crystal dislocation processes,
and atomic/electronic scale treatment of brittle crack
tips and fundamental cohesive properties. The Spe-
cial Issue manuscripts were limited to original work
and were reviewed following the standard procedures
of the Journal. The Organizing Committee is grateful
to the IUTAM that fostered and supported the sym-
posium, to the financial support from the EU (PIAP-
GA-2011-286110-INTERCER2), to the University of
Brescia (Italy) and to the University of Trento (Italy)
that contributed greatly to the success of the Confer-
ence, to the Municipality of Brescia that welcomed the
event and the participants.
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Modeling fracture by material-point erosion

A. Pandolfi · B. Li · M. Ortiz
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Abstract The present work is concerned with the
verification and validation of an implementation of the
eigenfracture scheme of Schmidt et al. (SIAM J Multi-
scale Model Simul 7:1237–1266, 2009) based on mate-
rial-point erosion, which we refer to as eigenerosion.
Eigenerosion is derived from the general eigenfrac-
ture scheme by restricting the eigendeformations in a
binary sense: they can be either zero, in which case the
local behavior is elastic; or they can be equal to the
local displacement gradient, in which case the corre-
sponding material neighborhood is failed, or eroded.
When combined with a material-point spatial discreti-
zation, this scheme gives rise to material-point erosion,
i. e., each material point can be either intact, in which
case its behavior is elastic, or be completely failed—or
eroded—and has no load bearing capacity. We verify
the eigenerosion scheme through convergence studies
for mode I fracture propagation in three-dimensional
problems. By way of validation we apply the eigene-
rosion scheme to the simulation of combined torsion-
traction experiments in aluminum-oxide bars.

A. Pandolfi (B)
Dipartimento di Ingegneria Strutturale, Politecnico di
Milano, Piazza Leonardo da Vinci 32, 20133 Milano, Italy
e-mail: pandolfi@stru.polimi.it

B. Li · M. Ortiz
Graduate Aeronautical Laboratories, California Institute
of Technology, Pasadena, CA 91125, USA
e-mail: libo@caltech.edu

M. Ortiz
e-mail: ortiz@aero.caltech.edu

Keywords Meshfree approaches ·
Material point erosion · Eigen fracture ·
Max-Ent shape functions · Brittle Fracture

1 Introduction

Lagrangian meshfree methods are well-suited to a
number of areas of application, such as terminal
ballistics, machining, fluid-structure interaction.
Lag-rangian meshfree methods offer significant
advantages over competing approaches, such as purely
Eulerian formulations, particle methods, purely
Lagrangian formulations with continuous adaptive
remeshing, arbitrary-Lagrangian–Eulerian (ALE).
These competing approaches may suffer from a vari-
ety of shortcomings, for example: the introduction
of large numerical diffusion errors; large discreti-
zation errors at fluid-solid interfaces; difficulties in
maintaining monotonicity, positivity and in tracking
state variables; spurious modes and tensile instabili-
ties; mesh entanglement; the need to remesh or rezone
arbitrary three-dimensional domains and the atten-
dant remapping of state variables; ad-hoc transition
or blending regions; difficulties in defining numerical
integration rules and satisfying essential boundary con-
ditions; unknown convergence and stability properties;
and others.

A representative example of Lagrangian mesh-
free schemes is furnished by the Optimal-Transpor-
tation Meshfree (OTM) method of Li et al. (2010).
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A. Pandolfi et al.

In the quasistatic setting of interest here, the OTM
method combines: (i) Maximum-entropy (max-ent)
meshfree interpolation Arroyo and Ortiz (2006) from
a nodal-point set; and (ii) material-point sampling
(cf., e. g., Sulsky et al. 1994) in order to track the local
state of material points, carry out complex constitutive
updates and perform spatial integrals. Max-ent inter-
polation Arroyo and Ortiz (2006) offers the advantage
of being meshfree and entirely defined—essentially
explicitly—by the current nodal-set positions, thus
effectively sidestepping the need for continuous reme-
shing in simulations of unconstrained flows. In addi-
tion, max-ent interpolation satisfies a Kronecker-delta
property at the boundary, which greatly facilitates the
enforcement of essential boundary conditions, and has
good accuracy convergence and monotonicity condi-
tions. Because of interpolatory nature, OTM is free
from the tensile numerical instabilities that plague par-
ticle methods. In dynamic problems, the OTM method
additionally draws on optimal transportation concept,
such as the Wasserstein distance between successive
mass densities, in order to discretize the action integral
in time. The optimal-transportation approach to time
discretization leads to geometrically-exact updates of
the local volumes and mass densities, and exact con-
servation properties including symplecticity, linear and
angular momentum.

Many of the applications where Lagrangian mesh-
free schemes, such as the OTM method, are attractive
involve material failure and fracture of some kind.
However, there is limited experience at present con-
cerning the simulation of fracture and fragmentation
processes within the framework of meshfree interpola-
tion schemes. Notable exceptions are the contributions
in the meshfree Galerkin approximation (Belytschko
et al. 1993; Lu et al. 1995; Belytschko et al. 1996),
and in the smooth particle hydrodynamics method
(Rabczuk and Eibl 2003; Rabczuk et al. 2004; Karekal
et al. 2011). In this paper we assess the performance of
a recently proposed approach to fracture, termed eigen-
fracture (Schmidt et al. 2009), within a meshfree frame-
work. The eigenfracture scheme resorts to the classical
device of eigendeformations (Mura 1987; Colonnetti
1917) in order to account for material fracture. To this
end, the energy functional depends on two fields: the
displacement field u and an eigendeformation field ε∗
that describes such cracks as may be present in the
body. Specifically, eigendeformations allow the dis-
placement field to develop jumps at no cost in local

elastic energy. In addition, in the eigenfracture scheme
the fracture energy is set to be proportional to the vol-
ume of the θ-neighborhood of the support of the eig-
endeformation field, suitably scaled by 1/θ. The opti-
mal crack set is obtained by minimizing the resulting
energy functional with respect to both the displacement
and the eigendeformation fields, subject to irreversibil-
ity constraints. We note that other two-field approxi-
mation schemes for brittle fracture, most notably the
Ambrosio-Tortorelli scheme (Ambrosio and Tortorelli
1992; Braides and Defranceschi 1998), have been pro-
posed in the past and used as a basis for numerical
approximations (Bourdin and Chambolle 2000; Bour-
din et al. 2000; Bourdin 2007), but the use of eigende-
formations to describe brittle fracture in a variational
framework does not appear to have been pursued prior
to Schmidt et al. (2009). We also note that other dam-
age regularizations of brittle fracture (Braides and Dal
Maso 1997; Braides 2002; Braides and Defranceschi
1998; Negri 2005) have been proposed in the past and
shown to be convergent.

In the present work, we specifically consider a mesh-
free approach based on maximum-entropy (max-ent)
interpolation (Arroyo and Ortiz 2006) combined with
material-point sampling and integration (Li et al.
2010). We confine our attention throughout to quasi-
static problems. Extensions of the max-ent meshfree
approach to dynamics, based on optimal-transportation
theory, may be found in Li et al. (2010). In the max-
ent/material-point scheme considered here, the spatial
discretization is based on two sets of points: the nodal
points and the material points. Specifically, the nodal
points carry the information concerning the displace-
ments, whereas the material points carry the material
state, including eigendeformations. The link between
material points and nodes is established through max-
ent interpolation. The max-ent shape functions exhibit
rapid decay and their support can be restricted to a
finite range, with the result that every material point
is connected to a limited number of nodes within its
immediate environment.

When combined with the max-ent/material-point
scheme, eigenfracture may be implemented as mate-
rial-point erosion, i. e., the material-points can be
either intact, in which case their behavior is elastic,
or be completely failed—or eroded—and have no load
bearing capacity. The implementation of the method,
included the all-important θ-neighborhood construc-
tion, is exceedingly simple and applies to general

123123 Reprinted from the journal4
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situations, possibly involving complex three-dimen-
sional fracture patterns such as branching and fragmen-
tation. The accuracy and convergence of the eigene-
rosion approach is comparable—at a much reduced
implementation cost and complexity—to that of other
numerical fracture schemes. We note that element ero-
sion has been extensively used to simulate fracture in a
number of areas of application, including terminal bal-
listics (Johnson and Stryk 1987; Belytschko and Lin
1987; Ortiz and Giannakopoulos 1990; Johnson and
Stryk 1990; Whirley and Hallquist 1991; Borvik et al.
2008). However, some of these methods fail to con-
verge or converge to the wrong limit (Negri 2003). By
contrast, the eigenfracture scheme is known to properly
converge to Griffith fracture (Griffith 1920) in the limit
of vanishingly small mesh sizes (Schmidt et al. 2009).
In particular, the local-neighborhood averaging of the
energy which underlies the calculation of the effective
energy-release has the effect of eliminating spurious
mesh-dependencies.

We base our assessment of the method on selected
verification and validation test cases. We verify the
approach by means of convergence studies for mode
I fracture propagation in three-dimensional plates. We
additionally present a validation of the method through
simulations of combined traction-torsion experiments
on aluminum oxide bars (Suresh and Tschegg 1987).
We find that the eigenerosion scheme indeed results in
convergent approximations, both as regards crack paths
as well as the attendant deformation fields and struc-
tural response. We also find that the scheme enables the
simulation of exceedingly complex three-dimensional
fracture patterns. The range and versatility afforded by
the approach is all the more remarkable given the sim-
plicity of its implementation.

The paper is organized as follows. In Sect. 2,
we begin by formulating the problem to be approx-
imated, namely, the problem of quasi-static crack-
growth in an otherwise linear-elastic solid. We
continue with brief review to the max-ent/material-
point approach in Sect. 3. Then we recall briefly the
eigenerosion method in Sect. 4. In Sect. 5.1 we verify
the approach by means of convergence studies for mode
I fracture propagation in three-dimensional plates. In
Sect. 5.2 we present a validation of the method through
simulations of combined traction-torsion experiments
on aluminum oxide bars, taken from Suresh and
Tschegg (1987). We conclude with some comments
on the actual results and possible extensions in Sect. 6.

2 Variational formulation of fracture mechanics

In this section we succinctly summarize the formula-
tion of fracture mechanics that we take as the basis
for subsequent developments. We specifically follow
Larsen et al. (2009) and Pandolfi and Ortiz 2012, which
may be consulted for additional mathematical detail.

We consider an elastic body occupying a domain
φ ⊂ R

n , n ≥ 2. The boundary ∂φ of the body con-
sists of an exterior boundary ω, corresponding to the
boundary of the uncracked body, and a collection of
cracks jointly defining a crack set C . In addition, ω

is partitioned into a displacement boundary ω1 and a
traction boundary ω2. The body undergoes deforma-
tions under the action of body forces, displacements
prescribed over ω1 and tractions applied over ω2, sub-
ject to a contact condition on C . Under these conditions,
the potential energy of the body is

E(u, C, t) =

⎧⎪⎨
⎪⎩

∫

φ

W (x, u,∇u) dx +
∫

ω2

V (x, u) dHn−1, if [[u]] · ν ≥ 0,

+∞, otherwise,

(1)

where, here and subsequently, Hd is the d-dimensional
Hausdorff measure,1 ν is a unit normal to C , [[u]] is the
displacement jump,

[[u]] · ν ≥ 0 (2)

defines the contact constraint, W is the elastic strain
energy density of the body—possibly including dis-
tributed body forces— and V is the potential of the
applied tractions. The explicit dependence of E on t
in (1) is meant to reflect the time dependence of the
forcing, namely, the applied forces and prescribed dis-
placements. Suppose now that the applied loads and
prescribed displacements are incremented over the time
interval [t, t + πt] and that, in response to this incre-
mental loading, the crack set extends from C(t) to
C(t + πt). Owing to the irreversibility of fracture we
must necessarily have that

C(t) ⊂ C(t + πt), (3)

i. e., the crack set must be monotonically increasing in
time. Let the elastic energy increment recorded during
the time increment be πE . Then, a classical calculation

1 cf., e. g., Dal Maso and Toader (2002); on smooth curves, dH1

is the element of length; on smooth surfaces, dH2 is the element
of area.

123Reprinted from the journal 5



A. Pandolfi et al.

Fig. 1 Crack advancing in a body occupying a domain φ and
zoom of the crack-front region showing the crack set C(t) at
time t , contained in the extended crack set C(t + πt) at time
t + πt . During the time interval πt the crack front L sweeps an
area πC of unit normal ν, and propagates in the direction of the
crack front velocity v

(Knees and Mielke 2008; Larsen et al. 2009) gives the
rate of energy release as

− Ė = − lim
πt→0

πE

πt
=

∫

L

Gv dHn−2 (4)

where L is the crack front, Fig. 1b, v is the crack-front
velocity, and

G = lim
πt→0

σ ν · [[ut+πt ]], σ =∂∇u W (x, u,∇u) (5)

is the energetic force acting on the crack front. The
identity (4) gives the rate at which energy flows to the
crack front.2 In continuum thermodynamics, the dual-
ity-pairing structure of (4) is conventionally taken to
mean that the energetic force G does power, or drives
on the crack-front velocity v. On this basis, within
Osanger’s general framework for inelastic processes,
we may postulate the existence of a crack-tip equation
of motion of the form

G = ∂ψ(v), (6)

where ψ is a dissipation potential density per unit
crack-front length. The total dissipation potential for
the entire crack front finally follows by additivity as

α(v) =
∫

L

ψ(v) dHn−2. (7)

We note that the dissipation attendant to crack growth
is localized to the crack front L . Under the assumption

2 cf. Larsen et al. (2009) for a rigorous mathematical definition
of the crack front and attendant crack-front velocity.

of rate-independence the dissipation potential is of the
form

ψ(v) = Gc|v|, (8)

which is subject to the monotonicity constraint (3). In
(8), Gc is the critical energy release rate, or specific
fracture energy, of the material. The assumption of rate-
independence is characteristic of ideally brittle behav-
ior and forms the basis of Griffith’s theory of fracture
Griffith (1920). Since the rate-independent dissipation
potential ψ(v), Eq. (8), is not differentiable at the ori-
gin, the equation of motion (6) must be understood in
the sense of subdifferentials, namely,

G − Gc ≤ 0, (9a)

v ≥ 0, (9b)

(G − Gc)v = 0, (9c)

which embody Griffith’s crack propagation and arrest
criteria.

Because of the rate-independent nature of Griffith’s
criterion, the crack tracking problem can be reduced,
in the spirit of the so-called deformation theory, to
the minimization of the energy-dissipation functional
Mielke and Ortiz (2007)

F(u, C, t) = E(u, C, t) + Gc|C | (10)

at every time, subject to the monotonicity constraint
(3), i. e.,

(
u(t), C(t)

⎛ ∈ argmin F(·, ·, t), (11a)

subject to: C(t1) ⊂ C(t2), whenever t1 < t2. (11b)

In (10), |C | denotes the area of the crack set. Thus, the
geometry of a growing crack and the corresponding
equilibrium elastic field in a perfectly brittle material
is obtained by jointly minimizing F(u, C, t) at all times
with respect to both the displacement field u and the
crack set C subject to the constraint (3). In particular,
the crack path results from a competition between: the
elastic energy, which promotes fracture as an energy-
release mechanism; the specific fracture energy, which
penalizes fracture proportionally to the crack area; and
the monotonicity and contact constraints, which intro-
duce irreversibility, path dependency, hysteresis and
tension-compression asymmetry.

A rigorous derivation of the deformation-theoretical
formulation (11) of the crack-tracking problem may be

123123 Reprinted from the journal6
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based on energy-dissipation functionals (Mielke and
Ortiz 2007), which in the present context supply a min-
imum principle that characterizes entire crack paths
Larsen et al. (2009). Problem (11) then follows simply
from by noting that, for monotonically growing brittle
cracks, the dissipation (7) is an exact time-differential
of Gc|C |, i. e.,

α(v) = d

dt
(Gc|C |) . (12)

Conditions for the existence of solutions of the crack-
tracking problem (11), which is not guaranteed in
general, may be found in Dal Maso and Toader (2002),
Francfort and Larsen (2003), and Dal Maso et al.
(2005).

In order to obviate the need for minimizing the
energy-dissipation functional F(u, C, t) with respect
to the crack set C , which may be numerically cum-
bersome, in the framework of linearized elasticity
Schmidt et al. (2009) have proposed a reformulation
of the crack-tracking problem (10) in terms of eig-
endeformations ε∗, with the aid of a small parameter
θ with units of length. In particular, the crack set is
approximated as C = {ε∗ ⊥= 0}, namely the support of
the eigendeformation field, i. e., the domain over which
the eigendeformation field is nonzero; and Cθ is the
θ-neighborhood of C , i. e., the set of points that are at a
distance less or equal to θ from C . The regularized
energy-dissipation functional proposed by Schmidt
et al. (2009) is

Fθ(u, ε∗, t) =
∫

φ

W (ε(u) − ε∗) dV

+
∫

ω2

V (x, u) dHn−1 + Gc
|Cθ |
2θ

. (13)

In this expression ε(u) = 1
2 (∇u + ∇uT ) is the the

strain operator of linear elasticity and |Cθ | denotes the
volume of the θ-neighborhood Cθ . We note that the reg-
ularized energy-dissipation functional Fθ(u, ε∗, t) now
allows for eigendeformation fields that are spread
over a volume, and thus represent a damaged volume
of material. As before, the eigendeformations allow
the material to relax its energy locally. The center-
piece of the approach of Schmidt et al. (2009) con-
cerns the proper evaluation of the fracture-energy
cost attendant to a distribution of eigendeformations,
which is given by the last term in (13). Indeed,
Schmidt et al. (2009) have shown that the regu-

larized energy-dissipation functional Fθ , Eq. (13),
ω-converges to the Griffith functional F , Eq. (10),
as θ → 0. We recall that ω-convergence is a notion
of variational convergence that implies convergence of
minimizers. In particular, the scaling of the volume of
the θ-neighborhood Cθ by θ−1 in the energy-dissipa-
tion functional (13) in turn penalizes the volume of the
approximate crack set C , which in the limit converges
to a surface.

The regularized crack tracking problem consists of
minimizing the regularized energy-dissipation func-
tional (13) for every time, subject to the monotonicity
constraint (3), which now requires that the approxi-
mate crack sets grow monotonically, and to a suitable
contact constraint in lieu of (2). For instance, the con-
straint

ε∗ ≥ 0, (14)

first proposed by Ortiz (1985) and widely used since,
can be used to enforce the contact constraint within an
eigendeformation framework. Constraint (14) specif-
ically requires that all the eigenvalues of ε∗ be non-
negative, which effectively satisfy the crack closure
constraint.

It bears emphasis that the net effect of the regular-
ization of the fracture energy in (13) is to eliminate
the spurious mesh-dependencies that afflict naive ero-
sion schemes and ensure convergence of the approx-
imations. For instance, a typical scheme consists of
introducing C0 finite-element interpolation for the dis-
placements and piecewise constant interpolation for
the eigendeformations, i. e., restricting the eigende-
formations to be constant over the elements, see,
e. g., Ortiz and Giannakopoulos (1990). These schemes
indeed converge pointwise as the mesh size goes to
zero, provided that the crack set is aligned with the
mesh, as in the case of a structured mesh in a rectan-
gular plate subjected to mode I loading, but may fail to
converge otherwise Negri (2003). The reason for the
lack of convergence is a geometrical one: as the crack
zig-zags in accordance with the mesh in order to match
the limiting crack path, it overestimates the amount of
fracture energy by a geometrical factor. Negri devel-
oped converging schemes that overcome this difficulty
by recourse to mesh adaption (Negri 2003, 2005) or to
nonlocal averaging schemes (Negri 2005; Lussardi and
Negri 2007).
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3 Max-ent shape functions

The remainder of the paper is devoted to a verifica-
tion and validation analysis of mesh-free approxima-
tion schemes based on the regularized crack-tracking
problem just described. The spatial discretization of
the energy-dissipation functional (13) considered in
this work is the quasistatic version of the optimal-
transportation meshfree (OTM) method developed in
Li et al. (2010) for particular applications to flow of
fluids and solids. The discretization is based on two
sets of points: the nodal points and the material points.
Thus, the nodal points xa carry the information con-
cerning the displacements, whereas the material points
x p carry the material state, including eigendeforma-
tions. The link between material points and nodes
is established through the displacement interpolation
rule:

u p =
n⎝

a=1

ua Na
(
x p

⎛
, (15)

where Na(x) are conforming shape functions defined
over φ. The support of the shape functions Na(x) is
expected to have a finite range, so that every material
point is connected to a limited number of nodes within
its immediate environment. Following Li et al. (2010),
in this work we specifically use the local max-ent inter-
polation introduced in Arroyo and Ortiz (2006). Thus,
the shape function for the node a is

Na(x) = 1

Z(x, λ∗(x))

× exp
[
−β|x − xa |2 + λ∗(x) · (x − xa)

⎞
,

a = 1, . . ., n, (16)

where

λ∗(x) = arg min
λ∈Rd

log Z(x, λ). (17)

The function Z : R
d ×R

d → R is the partition function
associated with the node set X , i. e.:

Z(x, λ) ≡
n⎝

a=1

exp [−β|x − xa |2 + λ · (x − xa)]. (18)

The scalar β can be chosen to be dependent on the
position, e. g., related to the size of the material-point
neighborhood h p as

βp = γ
1

h2
p
, (19)

Fig. 2 Sketch of the neighborhoods of three material points,
p1, p2 and p3, labeled V1, V2 and V3. The nodes are denoted
ni . Material point p1 has connections to five nodes lying in V1.
Node n1 lies inside the three neighborhoods Vk and, therefore,
is connected to the three material points

where γ is a dimensionless constant that assumes pos-
itive values close to the unity. In the present applica-
tions we assume γ = 0.1. The neighborhood size h p

measures the radius of a spherical volume Vp, centered
at the material point and including n p nodal points,
where the max-ent shape functions of the material point
are defined. The size h p—and therefore the number
of support nodes—is not necessarily constant for all
the material points. For example, in the present imple-
mentation h p is chosen to scale with the local distance
between material points. Fig. 2 illustrates the concept of
h p-neighborhood in two dimensions.

The discretization of the regularized energy-dissipa-
tion potential (13) requires the use of the shape-func-
tion derivatives, which can be found in Arroyo and
Ortiz (2006). The computation of the nodal forces due
to the tractions on ω2 may be simplified by introducing
a balanced stress field τ satisfying the identities:

∇ · τ = 0 in φ, τn = q on ω2, (20)

see Li et al. (2010), and applying the divergence the-
orem. By imposing the stationarity of (13), we obtain
the standard nonlinear equilibrium equations. In sta-
tic applications involving nonlinear material behaviors
and kinematics a consistent linearization of the internal
forces may be necessary. In the calculations presented
here we solve the nonlinear equilibrium equations by
means of an explicit dynamic relaxation algorithm
Oakley and Knight (1995), which does not require com-
putation of the tangent stiffness.
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4 The eigenerosion criterion

Schmidt et al. (2009) have proved that approximations
of the regularized problem converge to exact solutions
of the Griffith crack-tracking problem when the mesh
size and the regularization parameter θ tend to zero in
the right order. One specific scheme that was shown
to be convergent consists of approximating the dis-
placement field by means of conventional C0 finite-
element interpolations and taking the eigendeformation
field to be constant over elements but otherwise uncon-
strained, by using a local regularization Schmidt et al.
(2009). Since the local element eigendeformations are
allowed to take arbitrary values, they either are zero,
in order to minimize the attendant fracture energy, or
completely negate the local deformation of the element,
thus rendering its elastic energy zero. Thus, in that finite
element approximation scheme, the discrete crack-
tracking problem is reduced to successively fail-
ing or eroding elements when the attendant elastic
energy release exceeds the attendant cost in fracture
energy.

A detailed algorithm for finite element erosion has
been provided in Pandolfi and Ortiz (2012). The same
algorithm applies to the present material-point dis-
cretization, with elements replaced by material points
mutatis mutandis. In particular, the energy release rate
attendant to the erosion of one material point can be
computed explicitly, as the difference of the energies
of the body before and after the erosion of the material
point, or, more conveniently, it can be approximated
using first-order asymptotic formulae for notches Ortiz
and Giannakopoulos (1990). In addition, the fracture-
energy cost is computed by recourse to the θ-neighbor-
hood construction, where a small parameter θ with the
dimension of a length is used to define a volume-like
neighborhood that approximates the crack surface Pan-
dolfi and Ortiz (2012). Finally, the contact constraint
is imposed by restricting erosion to material points in
a state of volumetric expansion, i. e., material points
whose volume in the deformed configuration is larger
than the undeformed volume.

The simulation of crack propagation requires the
sequential solution of equilibrium step and material
point-erosion steps. If material points are eroded,
the equilibrium step needs to be repeated under the
same boundary conditions in order to restore mechan-
ical equilibrium. However, in some cases unstable
crack growth may result in several material-point

erosion steps at fixed external load, or on runaway
material-point erosion if the problem has no solution,
in the sense of existence of joint minimizers (u, C)

of the energy (10). Evidently, the intermediate con-
figurations resulting from multiple material-point ero-
sions at fixed applied load are the result of ancillary
constraints on the growth of the crack, namely, an
ordering of the material points by energy-release rate
and the sequential failing of material points according
to that ordering. A rigorous mathematical framework
for appending such ancillary quasistatic crack-growth
constraints has been put forth by Larsen et al. (2010b)
and Larsen (2010). An alternative regularization of
the problem consists of replacing the rate-indepen-
dent kinetics (12) characteristic of Griffith fracture by
kinetics defined by dissipation potentials Eq. (12), with
super-linear growth. This type of crack-growth kinet-
ics has been investigated in Larsen et al. (2009) by
means of energy-dissipation functionals Mielke and
Ortiz (2007). Yet another—physically based— regular-
ization of the problem consists of accounting for iner-
tia and dynamic crack growth Bourdin et al. (2011); Li
et al. (2012).

The implementation of the eigenerosion scheme into
the meshfree material-point code is particularly simple.
In addition to the standard arrays required by any sta-
tic solver, the eigenerosion scheme requires the intro-
duction of an array to keep track of the material points
that are progressively included in the evolving θ-neigh-
borhood of the crack. We recall that, according to the
ω-convergence analysis of Schmidt et al. (2009), the
size θ of the neighborhood can be chosen freely, as long
as it tends to zero more slowly than the mesh size. In
the calculations presented here we simply take, based
on calibration studies, θ = 2.5hmin, where hmin is the
minimum distance between nodes.

5 Numerical examples

In this section we collect verification tests aimed at
assessing the convergence characteristics of the eigene-
rosion scheme. We additionally present a validation
example concerned with the simulation of the mixed
mode I-III tests on aluminum oxide bars presented in
Suresh and Tschegg (1987). This validation example
showcases the ability of the eigenerosion scheme to
simulate complex three-dimensional crack geometries.
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0.5

0.5

1

0.25

(a)

Fig. 3 Displacement boundary conditions for the square plate
loaded in mode I. Edge H = 1, precrack a = 0.25, thickness
t = hmin

5.1 Edge-cracked square panel in mode I

We begin by assessing the performance of the
eigenerosion scheme by means of standard numerical
tests concerned with plane-strain crack growth in mode
I. For purposes of comparison, we replicate the dimen-
sionless conventions used in Pandolfi and Ortiz (2012).
Specifically, we consider a square plate of size H = 1
containing an initial edge crack of length a = 0.25H
loaded in pure mode I by displacement control on the
outer flanks of the plate, Fig. 3. The calculations are car-
ried out in finite deformations for a compressible neo-
Hookean material with Young’s modulus E = 1.06,
Poisson’s ratio ν = 0.333 and critical energy-release
rate Gc = 0.0001. Numerical simulations are per-
formed using a full three-dimensional code. In order
to simulate two-dimensional plane-strain geometries,
the boundary displacements in the third direction are
constrained. In addition, we place two material points
across the thickness, which is taken equal to the mesh
size.

We consider three discretizations defined by the
minimum distance between nodes hmin, and labeled
M1, M2 and M3, see Table 1. The distance hmin is taken
as a basis for the definition of the θ-neighborhood size,
leading from 3 to 4 material points in each material
point θ-neighborhood.

The cracks for the three discretizations at the final
–or at an advanced– stage of the fracture propagation
are compared in Fig. 4. The crack surfaces are generated
by the erosion of a single layer of material points and

Table 1 Data of the discretizations considered for the verifi-
cation analysis through convergence tests in the squared pre-
notched plate

Discretization Material points Nodes hmin

M1 9, 600 3, 382 0.0029

M2 38, 400 13, 162 0.0014

M3 153, 600 51, 922 0.0007

appear smooth and straight. The effective crack, mod-
eled by the set of eroded material points, converges to
a flat surface for θ → 0 following hmin → 0. Contour
levels in Fig. 4 refer to the normal component of the
Cauchy stress in the vertical direction.

Plots of global quantities per unit of thickness versus
the prescribed boundary displacement demonstrating
the expected mesh independency are shown in Fig. 5.
In particular, Fig. 5a illustrates the global vertical reac-
tion and Fig. 5b describes the total displacement norm
|u|L1, defined as:

|u|L1 =
∫

φ

|u(x)|dφ. (21)

Finally, Fig. 5c shows the dependence of the strain
energy E of the body on crack extension πa. Under a
prescribed boundary displacement δ the initial crack
does not propagate as long as the strain energy E
is less than the expenditure of fracture energy Gcl
necessary to break the initial ligament of length l =
0.75. In such situations, a null crack length πa = 0 is
the minimizer of the functional (13). When δ equals
the critical prescribed boundary displacement δc at
which E = Gcl, the crack extends through the
entire initial ligament with a discrete jump of length
πa = l, showing a sudden change of stability. At
this point, the minimizer of the functional (13) is
πa = l. We note that intermediate crack extensions
0 < πa < l are not energy-dissipation minimizers for
any prescribed boundary displacement δ and, therefore,
are devoid of special meaning within the variational
framework Larsen (2010).

5.2 Mixed tension-torsion experiment simulations

As a selected example of application showcasing
the range and scope of the eigenerosion scheme,
we proceed to simulate the combined tension-torsion
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Fig. 4 Edge-crack square panel. Predicted crack paths for three meshes of increasing fineness. Contour levels refer to the normal
component of the Cauchy stress in the vertical direction. a M1, b M2, c M3
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Fig. 5 Edge-cracked square panel. Dependence of: a global reaction force, and b displacement norm, on prescribed boundary displace-
ment. c Dependence of the strain energy on crack length at fixed prescribed boundary displacement

experiments on aluminum oxide bar specimens with
a circular notch reported by Suresh and Tschegg
(1987). Fig. 6 shows the geometry of the specimen
used in the experiments, with the detail of the annu-
lar pre-crack smooth notch. In the experiments the
pre-crack has been sharpened by fatigue through a
mode I cyclic loading in tension. To limit the com-
putational effort, in our numerical discretization we
model the central part of the specimen only, while
describing accurately the notch and the fatigue crack,
and apply displacement boundary conditions consis-
tent with the experimental tension-torsion configura-
tion, see Fig. 6. Specifically, we fix one end of the
computational domain and apply a uniform axial dis-
placement and rigid rotation about the axis at the other
end. The resultants of the nodal reactions on the fixed
base provide the numerical axial force and torque to be
compared with the experimental data. Displacements

are increased monotonically up to the onset of crack
growth from notch. Thereafter, the displacements
are kept constant, as in all cases the cracks grow
unstably.

The experimental paper provided the material prop-
erties used in the numerical analyses, i. e., the elastic
modulus E = 345 GPa and the mode I toughness
K I c = 3.35 MPam1/2. Assuming a Poisson’s coef-
ficient ν = 0.3, we derive the shear modulus μ =
138 GPa for the neo-Hookean model. The critical
energy release rate is computed through the relation

Gc = K 2
I c

E
(22)

which gives Gc = 32 N/m.
The three-dimensional numerical model comprises

603,996 material points and 221,191 nodes. The spa-
tial distribution of the material points is not uniform
and the discretization coarsens away from the notch,
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Fig. 6 Geometry of the
specimen used in the
experimental tests of Suresh
and Tschegg (1987). The
computational domain and
loading used for the
simulations is inset in the
lower-right corner

see Fig. 7. The minimum discretization size at the notch
is hmin = 0.0032 mm. In all calculations, the max-ent
interpolation parameter is set to γ = 0.1. By virtue of
this choice, the range of the max-ent shape functions
extends beyond nearest-neighboring nodes and, there-
fore, the attendant interpolation departs significantly
from finite-element interpolation. An initial triangula-
tion Fig. 7a is use in order to define the material-point
set Fig. 7b and assign volumes to each material point. In
order to calibrate the eigenerosion θ-neighborhood size
we begin by performing preliminary numerical analy-
ses in pure tension. The experimentally observed max-
imum axial force at failure is approximately 3,750 N
Suresh and Tschegg (1987). The minimum discrepancy
between the numerical and experimental axial force
is found to be 5 % and to occur for θ = 2.5hmin.
This value of θ is then used in all the subsequent
calculations.

We consider three loading cases leading to different
stress states at the notch: (i) pure tension or mode I load-
ing; (ii) mixed tension—torsion or mixed-mode I–III
loading, and (iii) pure torsion or mode III loading. In all
cases, failure occurs catastrophically once the limit load
is reached, in agreement with experiment. Suresh and
Tschegg (1987) provide the pictures of the post-mor-
tem crack surfaces for different specimens, included
the tension—pure mode I—and torsion—pure mode
III—cases. In the pure-tension case, the fracture surface
appears flat and smooth. In all other cases, the fracture
surfaces exhibit a striking saw-toothed pattern form-
ing inclined surfaces akin to petals. This orderly petal
structure breaks down in the central part of the spec-
imen. The sharpness of the petal structure, as well as
the failure load, increase with the magnitude of applied
torque.

Figures 8, 9, and 10 show the aspect of the numeri-
cally computed crack surfaces for the three simulations,
at one of the last stages of the fracture process. On the

left side of each figure, the fracture surface is visual-
ized by the collection of the eroded material points.
In this representation, the eroded material points are
located in proximity of—and trace—the crack surface.
By contrast, on the right side of the figure we show the
structure of the crack surface as obtained by means of
a rendering procedure based on averaging and smooth-
ing the positions of the eroded material points and on
spline approximation (cf. Alliez et al. 2007; Mullen
et al. 2010). This postprocessing construction aims to
determine a smooth surface, which may then be identi-
fied with the crack set, that is as close as possible to the
failed material-point set while costing the same amount
of fracture energy. Thus, whereas eigenerosion supplies
a volume approximation of the crack set, the postpro-
cessing construction effectively reverses that approxi-
mation and provides a sharp surface representation of
the crack set. A projection of the crack surfaces is addi-
tionally shown at the bottom of the figures in order to
visualize the complex crack front.

It may be seen from the figures that the pure-trac-
tion case is predicted to produce a flat crack surface,
whereas the pure-torsion case is predicted to result in
a periodic petal structure that breaks down in the cen-
tral part, in agreement with experiment. In addition,
the mixed-mode case generates less sharp petals that
converge smoothly towards the center of the specimen,
also in agreement with experiment. The precise frac-
tography predicted by the calculations cannot be com-
pared quantitatively with experiment, since the original
publication does not report quantitative fractograph-
ic measurements. This limitation notwithstanding, a
qualitative comparison can be performed in terms of
the observed number of petals, to wit: eight petals in
pure torsion and seven larger petals in the mixed-mode
case. Remarkably, the calculations predict exactly the
same number of petals in both cases, cf. Figs. 9
and 10.
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Fig. 7 Mixed-Mode tests of
Suresh and Tschegg (1987).
Computational model
consisting of 603,996
material points and 221,191
nodes. Note the strong
refinement at the notch.
a Initial triangulation of the
nodal set used to define the
material-point set.
b Visualization of the
resulting material-point set

Fig. 8 Simulation of the
mixed-mode tests of Suresh
and Tschegg (1987),
pure-tension case.
Left: failed material-point
set. Right: reconstructed
crack surface

Further insight into the formation of complex frac-
tographies in the pure torsion and mixed-mode exper-
iments and simulations may be derived from stability
analyses. Thus, in keeping with observation, our sim-
ulations describe the segmentation of the initially flat
annular crack into daughter cracks that rotate progres-
sively towards the direction of maximum tensile stress.
Subsequently, the axial symmetry of the test forces the
cracks to merge in the central part of the specimen.
As observed experimentally in other geometries, mode
I-III cracks often propagate unstably by the formation
of inclined facets, steps and self-similar branching pat-
terns. Stability analyses of mode I-III crack growth that
shed light into such observations may be found, e. g.,
in (Xu et al. 1994; Movchan 1998; Lazarus et al. 2001;
Lin et al. 2010; Leblond et al. 2011). These analyses
reveal the existence of a critical stress intensity factor
ratio K I I I /K I , dependent on Poisson’s ratio, that sepa-
rates stable and unstable planar crack growth (Xu et al.
1994; Movchan 1998; Leblond et al. 2011). Thus, for
sufficiently small, respectively large, K I I I /K I ratio

planar crack growth is stable, respectively unstable.
The stress-intensity ratio corresponding to the mixed-
mode test under consideration here is K I I I /K I ≈ 3,
which is greatly in excess of the stability limit for ν =
0.333. Under these conditions, planar crack growth is
unstable and the crack may indeed be expected to grow
out of the plane and form complex patterns, as predicted
by our calculations.

6 Summary and concluding remarks

We have described a meshfree material-point approx-
imation method for the numerical simulation of brit-
tle fracture propagation. The approach is based on
the combination of: meshfree max-ent interpolation
(Arroyo and Ortiz 2006); material-point sampling and
integration (Li et al. 2010); and a convergent material-
point erosion method based on the concept of eigende-
formations (Schmidt et al. 2009; Pandolfi and Ortiz
2012). Specifically, the crack set is approximated by
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Fig. 9 Simulation of the
mixed-mode tests of Suresh
and Tschegg (1987), mixed
tension-torsion case. Left:
failed material-point set.
Right: reconstructed crack
surface

Fig. 10 Simulation of
mixed-mode tests of Suresh
and Tschegg (1987),
pure-torsion case. Left:
failed material-point set.
Right: reconstructed crack
surface

means of eigendeformations, which enable the mate-
rial to develop displacement jumps at no cost of local
elastic energy. In the implementation developed in this
work, which we term eigenerosion, we compute the
energy-release rate attendant to the failure of one mate-
rial point by means of an θ-neighborhood construction.
This construction averages the elastic energy over a
length scale θ intermediate between the mesh size and
the size of the body. In this manner, the details of the
mesh are averaged over and the scheme results in mesh-
insensitive—and ultimately convergent—crack paths
and fracture energies. The overall convergence of the
method is clearly apparent in benchmark tests such as
crack initiation and growth in an edge-crack panel. The
range and scope of the method has been demonstrated
through the simulation of the combined torsion-traction
experiments of Suresh and Tschegg (1987). The abil-
ity of eigenerosion to predict the salient features of the

complex crack patterns that arise in those experiments
is remarkable.

As already noted, the algorithm presented here is
capable of tracking the propagation of both stable
and unstable cracks. For unstable cracks, by order-
ing the material points by energy-release rate and
failing them sequentially in accordance with that order-
ing, the algorithm provides crack-growth paths joining
two consecutive stable crack configurations or repre-
senting runaway unstable crack growth. There exist at
present rigorous mathematical approaches for under-
standing possibly-unstable quasistatic crack-growth in
brittle solids (Larsen et al. 2009, 2010b; Larsen 2010).
Whereas the present approach appears to be predic-
tive on the basis of direct comparisons with exper-
iment, a firm mathematical grounding of numerical
crack-tracking algorithms remains to be established
and is greatly to be desired.
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In closing, we additionally remark that the present
approach may be made extensive to inelastic behav-
ior, including plasticity, by recourse to variational
constitutive updates (Ortiz and Stainier 1999; Yang
et al. 2006). Thus, variational updates provide well-
defined incremental energies that combine both inter-
nal energy and dissipation. The incremental energies
can in turn be used in order to define the driving force
for fracture in the presence of inelasticity (Li et al.
2012).
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Abstract The problem of the in-plane dynamic per-
turbation of a crack propagating with a front that is
nominally straight is solved, to second order in the per-
turbation. The method of approach is a streamlined and
generalized version of that previously applied to first
order by the author and co-workers. It emerges, how-
ever, that the analysis at second order requires for its
consistency the introduction of a new singular term, of
a type not present at first order. The analysis is restricted
to the case of Mode I loading, for clarity of exposition.
It is carried out at a level of generality that incorpo-
rates viscoelastic response as well as propagation in
a “vertically stratified” medium including, as a spe-
cial case, propagation in a slab of finite thickness. For
illustration, the general solution is specialized to the
case of a stationary crack in an infinite elastic medium
and agreement with a solution recently developed by
methodology that is specific to the static case is con-
firmed.
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1 Introduction

The author and co-workers over a period of years solved
a variety of problems involving the dynamic pertur-
bation of a propagating crack (see e.g. Movchan and
Willis 1995; Willis and Movchan 1995, 1997, 2007;
further references are given later). During the course of
this extended work, the methodology became increas-
ingly refined and the purpose now is to summarise the
approach that at the present time appears to be optimal.
Virtually all of the previous work was devoted just to the
first-order perturbation. Perturbation to higher order in
fact requires the introduction of terms different in char-
acter (and not needed) at first order. This is exposed by
developing the perturbation solution explicitly to sec-
ond order, showing the way, in principle, to obtaining
the solution to any order. The exposition is kept as sim-
ple as possible, by restricting attention to in-plane per-
turbation of a crack, propagating under Mode I loading.
In general, the cracked medium can be a slab, occupy-
ing the domain

D = {x : −∗ < x1, x2 < ∗,−h < x3 < h} (1.1)

subjected to loading which in the absence of the crack
would generate the stress field σ A

i j (x, t) and corre-

sponding displacement field u A
i (x, t). The crack occu-

pies the surface

Sε = {x : −∗ < x1 < V t + εφ(x2, t),

−∗ < x2 < ∗, x3 = 0}. (1.2)
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The more general case, involving out-of plane pertur-
bation, would define the perturbed crack to lie on the
surface x3 = εψ(x1, x2) but here ψ ⊂ 0 is assumed.
Out-of-plane perturbation was first treated by Willis
and Movchan (1997) but see also Willis (1999) for a
correction. Propagation in an elastic slab was addressed
by Movchan et al. (2005). The stress and displacement
fields in the presence of the crack are denoted σi j , ui .
They respond to the same external loading as σ A

i j , u A
i

but, in addition, correspond to zero tractions on the
surfaces of the crack and display a discontinuity in dis-
placement across the crack. Thus, the difference fields
σi j −σ A

i j , ui −u A
i satisfy the equations of motion with

zero body force, together with homogeneous boundary
conditions on the boundary of D (excluding Sε), while
on Sε,

σi3 − σ A
i3 = −σ A

i3, −∗ < x1 < V t + εφ(x2, t),

x3 = ±0. (1.3)

The medium is assumed to be homogeneous or, more
generally, to be vertically stratified, with properties
only varying with x3, and it can be linearly viscoelas-
tic, with time-harmonic moduli Ci jkl(ω) at radian
frequency ω. First-order perturbation of a crack in
an infinite viscoelastic medium has been treated by
Woolfries and Willis (1999), Woolfries et al. (2002),
Movchan and Willis (2001, 2002).

Now introduce the Green’s function G+
i j defined for

the medium occupying x3 > 0, with traction boundary
conditions applying on x3 = 0 and the same types of
conditions as those that define σ A

i j and u A
i , and σi j and

ui , on x3 = h.1 It follows that the difference fields
satisfy, on x3 = 0, the relation

ui − u A
i = −G+

i j ≥ (σ3 j − σ A
3 j ), (1.4)

the convolution being with respect to x1, x2 and t . Sim-
ilarly, for the region x3 < 0, on the boundary x3 = 0,

ui − u A
i = G−

i j ≥ (σ3 j − σ A
3 j ). (1.5)

From Eqs. (1.4) and (1.5), therefore,

[ui ] = −2∇Gi j ∞ ≥ (σ3 j − σ A
3 j ), (1.6)

where [ui ] represents the jump in displacement across
x3 = 0 and ∇Gi j ∞ is the average of G+

i j and G−
i j .

Specialising to Mode I loading (which implies both
symmetry of the loading and of the properties of the

1 In the case h → ∗, G+
i j satisfies a radiation condition so

that it is composed from waves travelling away from the surface
x3 = 0.

medium), the only non-zero jump in displacement is
[u3] and the only non-zero traction is σ33. Calling these,
respectively, [u]− and σ+, since [u]− = 0 ahead of the
crack and σ+ = 0 on the crack, it follows that these
satisfy the single equation

[u]− + 2G ≥ (σ+ − σ A) = 0, (1.7)

where ∇G33∞ is denoted G and σ A represents σ A
33. The

desired aspect of the solution is the stress intensity
factor. Its deduction from relation (1.7) constitutes the
main task of this work.

2 Method of solution

Before proceeding further, it is useful to change coor-
dinates to (X, x2, t) where

X = x1 − V t. (2.1)

It is easy to check that, with the functions re-defined
as functions of (X, x2, t), Eq. (1.7) remains exactly the
same, with the convolution now interpreted relative to
the new coordinates. It is also relevant to note that, if the
Fourier transform of any one of the functions is known
relative to the original coordinates—for instance

F G(ξ1, ξ2, ω) =∫ ∫ ∫
G(x1, x2, t)ei(ξ1x1+ξ2x2+ωt) dx1dx2dt, (2.2)

then its Fourier transform relative to the new coordi-
nates is

G̃(ξ1, ξ2, ω) =∫ ∫ ∫
G(X + V t, x2, t)ei(ξ1 X+ξ2x2+ωt) d Xdx2dt

= F G(ξ1, ξ2, ω − V ξ1). (2.3)

Interpreted relative to the new coordinates, at least
if ε = 0, Eq. (1.7) defines a problem of Wiener–Hopf
type. It is helpful, therefore, to factorize G as follows:

G = G− ≥ G+, (2.4)

where G− is zero for X > 0 and G+ is zero for X < 0.
Correspondingly G̃− is analytic in ξ1 for Im(ξ1) < 0
and G̃+ is analytic in ξ1 for Im(ξ1) > 0.

The basic relation (1.7) is now expressed in the form

1
2 (G−)−1 ≥ [u]− + G+ ≥ σ+ = G+ ≥ σ A. (2.5)

In preparation for describing the general strategy, con-
sider first the case ε = 0. The convolution G+ ≥ σ+ is
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a “+” function while (G−)−1 ≥ [u]− is a “−” function.
It follows from (2.5) that

G+ ≥ σ+ = {G+ ≥ σ A}+, (2.6)

meaning that the right side is defined to be zero when
X < 0. Hence, formally,

σ+ = (G+)−1 ≥ {G+ ≥ σ A}+. (2.7)

Similarly,

[u]− = 2G− ≥ {G+ ≥ σ A}−. (2.8)

Evidently, the type of singularity displayed by σ+, as
X → 0, is determined by the singularity of (G+)−1.2

Furthermore, the coefficient of this singularity is pro-
portional to {G+ ≥ σ A}+, evaluated as X → 0. In the
case of viscoelasticity and subsonic V , the singularity
in σ+ is of square-root type,

σ+ ≤ K0/(2π X)1/2 (2.9)

and, with suitable normalization of G+,

K0 = lim
X→0

{G+ ≥ σ A}+, (2.10)

the suffix on K0 indicating that ε = 0. For “inter-
sonic” V , a similar conclusion holds but the singularity
is no longer of square-root type. The relevant analysis
has been performed by Obrezanova and Willis (2003,
2008). Only subsonic V is considered from now on.

The general strategy is now outlined. The factors
G+ and G− are hard to find but it is a routine matter
to obtain their Fourier transforms; hence, working is
mostly performed within the Fourier domain.

First, relation (2.5) is considered as X→±0. Explic-
itly,

σ+ ≤ K (ε)/(2π(X − εφ))1/2 + A(ε)(X − εφ)1/2

+B(ε)(X − εφ)3/2 + · · · + σ ≥+(X − εφ, x2, t),

(2.11)

where σ ≥+ is non-singular and vanishes together with
all its X -derivatives as X → εφ. Correspondingly,

[u]− ≤ K u(ε)(εφ − X)1/2 + Au(εφ − X)3/2

+Bu(εφ − X)5/2 + · · · + u≥−(X − εφ, x2, t).

(2.12)

Also,

{G+ ≥ σ A}(X) ≤ {G+ ≥ σ A}(0)+X{G+ ≥ (σ A)∈}(0)

+ 1
2 X2{G+ ≥ (σ A)∈∈}(0) + · · · , (2.13)

2 If (G+)−1 has a singularity like X−s then σ+ has a singularity
like X (1−s).

having left implicit the dependence on x2 and t . The
prime denotes differentiation with respect to X .

Next, evaluate the Fourier transform of each side,
with respect to X ; this transformation will be indicated
with a hat symbol. Considering X → 0 is equivalent
to considering ξ1 → ∗. The transform of the left side
of (2.5) contains the products of the transforms of the
participating functions and hence involves, as X →
0, the asymptotic forms of Ĝ+ and (Ĝ−)−1 as ξ1 →
∗. These are easiest obtained from the corresponding
asymptotic forms of the transforms with respect to all
arguments:

G̃+ ≤ (2i)1/2

(ξ1 + 0i)1/2

{
1 + i

Q1

ξ1 + 0i
− Q2

(ξ1 + 0i)2

}
(2.14)

(G̃−)−1 ≤ 2(2i)1/2(ξ1 − 0i)1/2

A (V )

{
1 + i

R1

ξ1 − 0i
− R2

(ξ1 − 0i)2

}
,

(2.15)

having chosen what will be the right normalization for
G̃+ and employed the asymptotic form

G̃ ≤ A (V )

2|ξ1|

{
1 + i

G1

ξ1
− G2

ξ2
1

}
(2.16)

for G̃. The functions Q1 etc. depend on ξ2 and ω. Corre-
spondingly, Q1 etc. depend on x2 and t . They conform
to the relations

G1 = Q1 − R1, G2 = Q2 − R2 − R1(Q1 − R1).

(2.17)

Transforming (2.11) and (2.12) with respect to X
gives

σ̂+ ≤
{ (i/2)1/2 K (ε)

(ξ1 + 0i)1/2 + π1/2(i)3/2 A(ε)

2(ξ1 + 0i)3/2

−3π1/2(i)1/2 B(ε)

4(ξ1 + 0i)5/2

}
eiεξ1φ + σ̂ ≥+, (2.18)

[û]− ≤
{ K u(ε)π1/2(−i)3/2

2(ξ1 − 0i)3/2 − 3Au(ε)π1/2(−i)1/2

4(ξ1 − 0i)5/2

−15Bu(ε)π1/2(−i)3/2

8(ξ1 − 0i)7/2

}
eiεξ1φ + û≥−. (2.19)

Transforming (2.13) with respect to X gives

̂{G+ ≥ σ A} ≤
{

i

ξ1 + 0i
− i

ξ1 − 0i

}
{G+ ≥ σ A}(0)

−
{

1

(ξ1 + 0i)2 − 1

(ξ1 − 0i)2

}
{G+ ≥ (σ A)∈}(0)

−
{

i

(ξ1 + 0i)3 − i

(ξ1 − 0i)3

}
{G+ ≥ (σ A)∈∈}(0).

(2.20)
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The formulae just presented allow the development
of what amounts to the “inner limit” of relation (2.5),
when X → 0 (if preferred, when X = O(ε)). The
next step is to make an “outer expansion” of this inner
limit. This is done by now regarding X as fixed (and so
finite) and letting ε → 0. This is equivalent to taking
ξ1 fixed and letting ε → 0, which means adopting the
expansion (to second order in ε)

eiξ1εφ ≤ 1 + iξ1εφ − 1
2 (ξ1εφ)2. (2.21)

This, evidently, is equivalent to letting ξ1 → 0, or
X → ∗. Relation (2.5) is an identity; the result
of taking these two limits remains an identity from
which the desired information can be deduced. The
approach is conceptually simple but the new identity
contains many terms, summarised in the “Appendix”,
Section 5.

3 Deductions

Now set

K (ε) ≤ K0 + εK1 + ε2 K2 (3.1)

with similar expansions for A(ε), B(ε) and the para-
meters with superscript u.

Implications of the identity (2.5) will be explored,
using the expressions (2.20), (5.1) and (5.2). The terms

Ĝ+ ≥ σ ≥+ and ̂(G−)−1 ≥ u≥− are disregarded in the first
instance; they will be introduced only when strictly
necessary and this will first occur at order ε2. At order
ε0, the identity (2.5) delivers three relations, the first of
which is

K0
i

ξ1 + 0i
− (π/2)1/2

A (V )
K u

0
i

ξ1 − 0i

= {G+ ≥ σ A}(0)

{
i

ξ1 + 0i
− i

ξ1 − 0i

}
, (3.2)

from which it follows that

K0 = (π/2)1/2

A (V )
K u

0 = {G+ ≥ σ A}(0). (3.3)

The next, considering terms containing 1/ξ2
1 , yields

(π/2)1/2 A0 + Q1 ≥ K0 = − (π/2)1/2

A (V )
[ 3

2 Au
0 − R1 ≥ K u

0 ]
= {G+ ≥ (σ A)∈}(0). (3.4)

Finally, from the terms containing 1/ξ3
1 ,

3
2 (π/2)1/2 B0 + (π/2)1/2 Q1 ≥ A0 + Q2 ≥ K0

= (π/2)1/2

A (V )
[ 15

4 Bu
0 − 3

2 R1 ≥ Au
0 + R2 ≥ K u

0 ]
= {G+ ≥ (σ A)∈∈}(0). (3.5)

It may be noted that (3.4), taken with (3.3) and (2.17),
implies the relation

Au
0 = − 2

3 A (V )[A0 + (2/π)1/2G1 ≥ K0]. (3.6)

Similarly,

Bu
0 =2

5 A (V )[B0+ 2
3 (G1 ≥ A0+(2/π)1/2G2 ≥ K0)].

(3.7)

This provides some check on the algebra because σ+
and [u]− satisfy the relation (1.7) which involves only
the Green’s function G.

Next, consider terms of order ε. The first, which is
independent of ξ1, gives

− φK0 + φ
(π/2)1/2

A (V )
K u

0 = 0, (3.8)

which is true on account of (3.3). Now for the terms
containing 1/ξ1,

K1 − (π/2)1/2φ A0 − Q1 ≥ (φK0)

= (π/2)1/2

A (V )
[K u

1 + 3
2 φ Au

0 −R1 ≥ (φK u
0 )] = 0. (3.9)

The terms containing 1/ξ2
1 give

(π/2)1/2(A1 − 3
2 φB0)

+Q1 ≥ (K1 − (π/2)1/2φ A0) − Q2 ≥ (φK0)

=− (π/2)1/2

A (V )
[ 3

2 Au
1 + 15

4 φBu
0 −R1 ≥ (K u

1 + 3
2 φ Au

0)

+R2 ≥ (φK u
0 )]

= 0. (3.10)

The terms at order ε that contain 1/ξ3
1 are incomplete

through truncation of the basic expansions at just three
terms. Thus, B1 is undetermined.

Using results already obtained, the first equality in
(3.9) can be expressed

(π/2)1/2

A (V )
K u

1 = K1+φG1 ≥ K0−G1 ≥ (φK0) (3.11)

and the first equality in (3.10) gives

− (π/2)1/2

A (V )
( 3

2 Au
1 + 15

4 φBu
0 )=(π/2)1/2(A1− 3

2 φB0)

+ G1 ≥ (K1−(π/2)1/2φ A0)−G2 ≥ (φK0). (3.12)
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Further reduction is possible but the relations as dis-
played are obtainable directly from expansion of (1.7).

Consider, finally, terms of order ε2. The terms that
contain iξ1 give

− 1
2 φ

2 K0 + (π/2)1/2

A (V )
( 1

2 φ
2 K u

0 ) = 0, (3.13)

which is already known to be true. Now, however, con-
sider the terms that are independent of ξ1. They give

−φK1 + 1
2 (π/2)1/2φ2 A0 + 1

2 Q1 ≥ (φ2 K0)

+ (π/2)1/2

A (V )
[φK u

1 + 3
4 φ

2 Au
0 − 1

2 R1 ≥ (φ2 K u
0 )]

+ · · · = 0, (3.14)

where the terms not shown explicitly are associated

with {Ĝ+ ≥ σ ≥+ + 1
2

̂(G−)−1 ≥ u≥−}.
Equation (3.14) simplifies to

1
2 [G1 ≥ (φ2 K0)+φ2G1 ≥ K0]−φG1 ≥ (φK0)+· · ·=0.

(3.15)

It can be satisfied by assuming that σ ≥+ and u≥− have
“outer” expansions (i.e. as ε → 0 with X fixed or,
equivalently, as X → ∗ with ε fixed)

σ ≥+ ≤ ε2C≥ X−5/2, u≥− ≤ ε2C≥u(−X)−3/2. (3.16)

Correspondingly, as ξ1 → 0,

σ̂ ≥+ ≤ 4
3 ε

2C≥π1/2(i)−3/2(ξ1 + 0i)3/2,

û≥− ≤ −2ε2C≥uπ1/2(i)1/2(ξ1 − 0i)1/2. (3.17)

These must be multiplied3, respectively, by the asymp-
totic forms of Ĝ+, (Ĝ−)−1, obtainable from (2.14),
(2.15). The leading-order terms in the resulting expres-
sions are proportional to iξ1; they do not spoil Eq. (3.13)
if

C≥u = − 2
3 A (V )C≥. (3.18)

The complete version of Eq. (3.15) now becomes

1
2 [G1 ≥ (φ2 K0) + φ2G1 ≥ K0]
−φG1 ≥ (φK0) + 8

3 (π/2)1/2G1 ≥ C≥ = 0. (3.19)

3 Stated more precisely, convolutions with respect to x2 and t
must be performed.

Thus, C≥ and C≥u are determined. Finally, the terms of
order ε2 that contain 1/ξ1 give

K2 − (π/2)1/2φ A1 + 3
4 (π/2)1/2φ2 B0

−Q1 ≥ (φK1 − 1
2 (π/2)1/2φ2 A0)

+Q2 ≥ ( 8
3 (π/2)1/2C≥ + 1

2 φ
2 K0)

= (π/2)1/2

A (V )

{
K u

2 + 3
2 φ Au

1 + 15
8 φ2 Bu

0

−R1 ≥ (φK u
1 + 3

4 φ
2 Au

0)

−R2 ≥ (4(π/2)1/2C≥u − 1
2 φ

2 K u
0 )

}

= 0. (3.20)

The terms of order ε2 that contain 1/ξ2
1 or 1/ξ3

1 would
require for their completion more terms in the original
expansions. Thus, A2 and B2, as well as B1, remain
undetermined. Using results already established, the
first equality in (3.20) can be expressed in the form

(π/2)1/2

A (V )
K u

2 = K2 + φG1 ≥ K1 − G1 ≥ (φK1)

+(π/2)1/2{ 1
2 [G1 ≥ (φ2 A0) + φ2G1 ≥ A0] − φG1 ≥ (φ A0)}

+ 1
2 [φ2G2 ≥ K0 + G2 ≥ (φ2 K0)] − φG2 ≥ (φK0)

+G2 ≥ ( 8
3 (π/2)1/2C≥), (3.21)

again consistent with the fact that surface traction and
displacement are related through the Green’s function.
It follows also that

K2 = Q1 ≥ [φQ1 ≥ (φK0)] − φQ2
1 ≥ (φK0) + φQ2 ≥ (φK0)

− 1
2 Q2 ≥ (φ2 K0)

+ 1
2 (π/2)1/2 Q1 ≥ (φ2 A0) + 3

4 (π/2)1/2(φ2 B0)

− 8
3 (π/2)1/2 Q2 ≥ C≥, (3.22)

having substituted the relevant expressions for K1 and
A1.

Finally, with the definitions

L0 ={G+ ≥ (σ A)∈}|X=0, M0 ={G+ ≥ (σ A)∈∈}|X=0

(3.23)

and using (3.4)1 and (3.5)1, the result can be expressed
in the form

K2 = Q1 ≥ [φQ1 ≥ (φK0)]−φQ2
1 ≥ (φK0)

+ 1
2 [φ2 Q2

1 ≥ K0−Q1 ≥ (φ2 Q1 ≥ K0)]
+φQ2 ≥ (φK0)− 1

2 [Q2 ≥ (φ2 K0)+φ2 Q2 ≥ K0]
+ 1

2 [Q1 ≥ (φ2 L0)−φ2 Q1 ≥ L0]+ 1
2 φ

2 M0

− 8
3 (π/2)1/2 Q2 ≥ C≥. (3.24)
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4 Example: infinite uniform isotropic medium

It can be shown that, for this case, on the surface x3 = 0,

G+
33(x1, x2, t) = G−

33(x1, x2, t) = G(x1, x2, t) (4.1)

and that, relative to the frame (x1, x2, t),

F G(ξ1, ξ2, ω) = (ω2/b2)(ω2/a2 − |ξ |2)1/2

iμD(|ξ |, ω)
, (4.2)

where |ξ | = (ξ2
1 + ξ2

2 )1/2 and a, b are the speeds of
dilatational and shear waves:

a2 = (λ + 2μ)/ρ, b2 = μ/ρ. (4.3)

The medium has Lamé moduli λ, μ and density ρ, and

D(|ξ |, ω) = 4|ξ |2(ω2/a2 − |ξ |2)1/2(ω2/b2 − |ξ |2)1/2

+(ω2/b2 − 2|ξ |2)2. (4.4)

Then, relative to the moving frame, G̃(ξ1, ξ2, ω) is
given by replacing ω with ω − V ξ1, as prescribed in
(2.3).

It follows that, as ξ1 → ∗, G̃ has the expansion
(2.16), with

A (V ) = 2(V 2/b2)α

μR(V )
, (4.5)

where R(V ) is the Rayleigh discriminant

R(V ) = 4αβ − (1 + β2)2, (4.6)

with

α = (1 − V 2/a2)1/2, β = (1 − V 2/b2)1/2. (4.7)

If the medium is viscoelastic, then a and b become
functions of ω relative to the original stationary frame
and functions of ω− V ξ1 relative to the moving frame.
It follows immediately that

G1(ξ2, ω) = −iω
A ∈(V )

A (V )
. (4.8)

The corresponding operator in physical space is

G1≥ = A ∈(V )

A (V )

∂

∂t
. (4.9)

The first dependence on x2 comes in with G2.
Before proceeding further, consider Eq. (3.19) for

C≥: it reduces to

8
3 (π/2)1/2∂C≥/∂t = − 1

2 [∂(φ2 K0)/∂t + φ2∂K0/∂t]
+φ∂(φK0)/∂t ⊂ 0. (4.10)

Thus, remarkably, it is consistent to take C≥ = 0.4

Furthermore, this conclusion would persist even if the
medium were anisotropic, so long as the basic propaga-
tion is in a direction of symmetry. If the coupled Mode
II-III problem were considered, even for an isotropic
medium, terms analogous to C≥ would at least have
to be admitted. It is not known at the time of writing
whether or not such terms are zero if the medium is
isotropic. Detailed analysis is in progress and will be
reported separately.

Having established that C≥ = 0, for the sake of a
simple illustration, the problem is pursued just in the
static limit, for which there is no distinction between
F G and G̃ and the variable ω is simply absent. Thus,

F G = G̃ = 1 − ν

μ|ξ | , (4.11)

where ν = λ/2(λ + μ) is Poisson’s ratio. It follows
immediately that

G̃+ = (2i)1/2

(ξ1 + i |ξ2|)1/2 ,

(G̃−)−1 = (2i)1/2μ(ξ1 − i |ξ2|)1/2

1 − ν
(4.12)

so that

Q1 = − 1
2 |ξ2|, Q2 = 3

8ξ
2
2 . (4.13)

Also,

G1 = 0, G2 = 1
2 ξ

2
2 . (4.14)

Taken together with (3.22), these relations suffice to
complete the solution of the elastostatic problem.

Consider, finally, the particular case that σ A depends
on x1 only so that K0, A0 and B0 are constants, and
take the perturbation to be

εφ(x2) = a cos(kx2) (4.15)

(so that a is a suitably small length). In this case,

Q1 ≥ φ = Re
∫

Q1(x ∈
2)e

ik(x2−x ∈
2) dx ∈

2

= − 1
2 |ka| cos(kx2), (4.16)

since Q1 is given by (4.13)1. A repeat of this type of
reasoning gives

Q1 ≥ [φQ1 ≥ φ]= 1
4 (ka)2[cos2(kx2)−sin2(kx2)].

(4.17)

4 Movchan and Willis (2001) unwisely included (but did not use)
some results for second-order perturbation that were derived sim-
ply by comparing terms containing what is here called K2, with-
out checking the consistency of the other second-order terms.
Their formula is correct only because, as now established, C≥ =
0 in the case that they considered.
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