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Preface

The main purpose of this monograph is to provide a simple and accessible introduc-
tion to the mixed finite element method as a fundamental tool to numerically solve a
wide class of boundary value problems arising in physics and engineering sciences.
The book is based on material that I have used to teach corresponding undergrad-
uate and graduate courses at Universidad de Concepción, Concepción, Chile, during
the last 10 years. As compared with several other classic books on the subject, and
in addition to being of a limited scope, the main features of the present work con-
cern, on the one hand, my attempt to present and explain most of the details in the
proofs and in the various applications. In particular, several results and aspects of the
corresponding analysis that are usually available only in papers or proceedings are
included here. In addition, keeping in mind that the subject is growing and evolving
very quickly, I concentrate the discussion mainly on those core concepts and funda-
mental results that need to be understood by thesis students and young researchers
so that they can read more advanced textbooks and make their own contributions in
this and related fields. As a consequence, one of the main emphases of the book is
on most of the mathematical and numerical issues involved in the application of the
mixed finite element method to simple modeling problems in continuum mechan-
ics. This includes classical Poisson and linear elasticity problems, both under several
kinds of boundary conditions for which, among other matters, complete proofs of
the continuous and discrete inf-sup conditions required by the theory are provided.

The contents of the book, which assume a basic knowledge of functional analy-
sis, partial differential equations, and Sobolev spaces (e.g., [7, 15, 50, 51, 53, 54])
are described next. Throughout the text, I employ the usual notations from those
disciplines, especially the standard terminology for Sobolev spaces. For example, if
O is an open set, its closure, a curve, or a surface, and s ∈R, then 〈·, ·〉s,O , | · |s,O , and
‖ · ‖s,O denote, respectively, the inner product, seminorm, and norm of the Sobolev
space Hs(O). In particular, given Γ , a boundary or part of a boundary, 〈·, ·〉0,Γ rep-
resents the inner product of L2(Γ ), whereas 〈·, ·〉 stands for the duality pairings of
H−s(Γ )×Hs(Γ ), H−s

00 (Γ )×Hs
00(Γ ), and any vector version of them, for each s > 0.

However, when it is necessary to identify the underlying Γ , the corresponding du-
ality expression is replaced by 〈·, ·〉Γ . Furthermore, when using the norm ‖ · ‖X of
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viii Preface

a given normed space X and when no confusion arises, the subscript X will usu-
ally be omitted. Finally, I use 0 to denote the null scalar as well as the null vector
of any space and use C and c, with or without subscripts, bars, tildes, or hats, to
denote generic constants independent of eventual discretization parameters, which
may take different values at different places.

In Chap. 1, which is of an introductory character, I present a detailed discussion
of the classical and general versions of the Lax–Milgram lemma, provide a cou-
ple of examples of mixed variational formulations, and prove the main results on
traces and Green’s identities in H1(Ω) and H(div;Ω). The analysis of the Babuška–
Brezzi theory for the aforementioned formulations is the main subject of Chap. 2.
The continuous and discrete versions of the theorem, with the necessary and suf-
ficient conditions for unique solvability and the corresponding Cea estimate of the
error in the general case, are presented here. In addition, applications to several
problems from continuum mechanics, whose respective analyses employ known re-
sults from functional analysis and Sobolev spaces, are also provided here. Then, in
Chap. 3, I discuss the main facts about the classical Raviart–Thomas spaces. This
includes the unisolvency that characterizes their definitions, and the approximation
properties of the local and global interpolation operators involved. All the necessary
theoretical tools, such as the Denny–Lions and Bramble–Hilbert lemmas and related
arguments, are described in this part. Subsequently, after assimilating the contents
of this chapter, the reader will easily understand the analysis of similar finite ele-
ment subspaces available in the literature, such as Brezzi–Douglas–Marini (BDM)
and Brezzi–Douglas–Fortin–Marini (BDFM) (e.g., [13, 16]). Finally, specific mixed
finite element methods for the boundary value problems discussed in Chap. 2, which
consider the Raviart–Thomas finite element subspaces from Chap. 3, are examined
in Chap. 4. The corresponding numerical analyses include, among other aspects, the
derivation of stable discrete liftings of the associated normal traces, which is par-
ticularly relevant for the treatment of Neumann or mixed boundary conditions in
three dimensions. The devising of well-posed mixed finite element methods for the
linear elasticity problem, which is based on the approach establishing its connection
with stable finite element schemes for the usual primal formulation of the Stokes
problem, is also discussed briefly in this chapter.

It is time now for the acknowledgements. First of all, I would like to express my
deep gratitude to my great collaborators and even greater friends, Salim Meddahi,
Norbert Heuer, Francisco J. Sayas, and Antonio Márquez, who, beginning in the
late 1990s, and the early, mid, and late following decade, respectively, up to nowa-
days, have strongly contributed to improving my limited original knowledge of the
mixed finite element method and its diverse applications. My deep appreciation also
goes to George C. Hsiao for the many fruitful discussions on this and related topics
over the years. In addition, I am very thankful to all the undergraduate and grad-
uate students from Universidad de Concepción, Chile, who have taken my regular
courses on the subject or have performed their thesis work under my guidance dur-
ing the last decade. Apologizing in advance for not naming them all, I would like to
give special thanks to a former Ph.D. student of mine, Ricardo Oyarzúa, who took
the time to read the entire manuscript and pointed out several typographical and
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mathematical amendments in it. Nevertheless, I am sure that new readers will find
more corrections to make, and I thank them in advance for letting me know about
the errors. In addition, my gratitude is also due to Mrs. Angelina Fritz, who typeset
the original version of the book (written in Spanish) in LATEX. Finally, I would like
to express my appreciation to Springer-Verlag, and especially to Donna Chernyk,
Associate Editor of Mathematics, for the publication of this monograph and for the
friendly and supportive collaboration along all the way.

This work was partially supported by CONICYT-Chile, through BASAL Project
CMM (Universidad de Chile and Universidad de Concepción) and Anillo Project
ACT1118 (ANANUM, Universidad de Concepción), and by Centro de Investi-
gación en Ingenierı́a Matemática (CI2MA), Universidad de Concepción.

Concepción, Chile Gabriel N. Gatica
October 2013
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Chapter 1
INTRODUCTION

In this chapter we base most of the presentation on the classical references [8, 20,
41, 51] and describe the main introductory aspects of the finite and mixed finite
element methods. We first recall the particular and general versions of the Lax–
Milgram lemma and then introduce two examples illustrating the use of mixed vari-
ational formulations to solve boundary value problems. Finally, we present several
basic results on traces, integration by parts formulae, and Green’s identities for some
Sobolev spaces, and in particular for H(div;Ω).

1.1 The Lax–Milgram Lemma

To state and prove this result, the most classical one in the analysis of variational
problems, we need some preliminary concepts.

1.1.1 Preliminaries

Definition 1.1. Let (H1,〈 ·, · 〉1) and (H2,〈 ·, · 〉2) be real Hilbert spaces. We say that
B : H1 × H2 → R is a bilinear form if it is linear in each of its components, that is,

(i) B(α x+β y,z) = α B(x,z) + β B(y,z) ∀x,y ∈ H1, ∀z ∈ H2, ∀α, β ∈ R;
(ii) B(x,α y+β z) = α B(x,y)+ β B(x,z) ∀x ∈ H1, ∀y,z ∈ H2, ∀α, β ∈ R.

Definition 1.2. Let (H1,〈 ·,〉1) and (H2,〈 ·, · 〉2) be real Hilbert spaces with induced
norms ‖ · ‖1 and ‖ · ‖2, respectively. We say that a bilinear form B : H1 × H2 → R

is BOUNDED if there exists a constant M > 0 such that

|B(x,y)| ≤ M ‖x‖1 ‖y‖2 ∀(x,y) ∈ H1 ×H2.

G.N. Gatica, A Simple Introduction to the Mixed Finite Element Method: Theory
and Applications, SpringerBriefs in Mathematics, DOI 10.1007/978-3-319-03695-3 1,
© Gabriel N. Gatica 2014
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2 1 INTRODUCTION

Definition 1.3. Let (H,〈·, ·〉) be a real Hilbert space with induced norm ‖ · ‖, and
let B : H × H → R be a bilinear form. We say that B is STRONGLY COERCIVE (or
H-ELLIPTIC) if there exists a constant α > 0 such that

B(x,x) ≥ α ‖x‖2 ∀x ∈ H.

Now, given (H1,〈·, ·〉1) and (H2,〈·, ·〉2) real Hilbert spaces and B : H1 × H2 → R a
bounded bilinear form, we are interested in defining the operator B : H1 → H2 in-
duced by B and vice versa. To this end, we consider v∈ H1 and define the functional
Fv : H2 → R by

Fv(w) := B(v,w) ∀w ∈ H2.

Since B is bilinear, it is clear that Fv is linear. In addition, the fact that B is bounded
(with constant M) implies that

|Fv(w)| ≤ M‖v‖1 ‖w‖2 ∀w ∈ H2,

which shows that Fv ∈ H ′
2 and

‖Fv‖ ≤ M‖v‖1 ∀v ∈ H1. (1.1)

The foregoing analysis induces the definition of the operator B : H1 → H ′
2 as

B(v) := Fv ∀v ∈ H1,

which, in virtue of the linearity of B in its first component and the inequality (1.1),
is linear and bounded with

‖B‖L (H1,H′
2)

≤ M.

Recall here that, given Banach spaces X and Y , L (X ,Y ) denotes the space of
bounded linear operators from X to Y . Finally, if R2 : H ′

2 → H2 denotes the Riesz
mapping, we let B : H1 → H2 be the operator induced by B, that is,

B := R2 ◦ B (1.2)

or, graphically,
B

H1 −→ H ′
2

↘ ↓ R2
B H2

.

Note that the linearity and boundedness of R2 and B yield the same properties for
B, and there holds

〈B(v),w〉2 = 〈R2(B(v)),w〉2 = B(v)(w) = B(v,w) ∀(v,w) ∈ H1 ×H2 . (1.3)

Conversely, given B ∈ L (H1,H2), we define the bilinear form B : H1 ×H2 → R

induced by B as

B(v,w) := 〈B(v),w〉2 ∀(v,w) ∈ H1 ×H2 . (1.4)


