
Adam Trendowicz · Ross Jeff ery

Software
Project
Eff ort
Estimation
Foundations and Best Practice
Guidelines for Success

Software Project Effort Estimation

ThiS is a FM Blank Page

Adam Trendowicz • Ross Jeffery

Software Project
Effort Estimation

Foundations and Best Practice
Guidelines for Success

Adam Trendowicz
Fraunhofer Institute for
Experimental Software Engineering
Kaiserslautern
Germany

Ross Jeffery
The University of New South Wales
Sydney
New South Wales
Australia

ISBN 978-3-319-03628-1 ISBN 978-3-319-03629-8 (eBook)
DOI 10.1007/978-3-319-03629-8
Springer Cham Heidelberg New York Dordrecht London

Library of Congress Control Number: 2014931020

Springer International Publishing Switzerland 2014
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part
of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations,
recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or
information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar
methodology now known or hereafter developed. Exempted from this legal reservation are brief excerpts
in connection with reviews or scholarly analysis or material supplied specifically for the purpose of being
entered and executed on a computer system, for exclusive use by the purchaser of the work. Duplication
of this publication or parts thereof is permitted only under the provisions of the Copyright Law of the
Publisher’s location, in its current version, and permission for use must always be obtained from
Springer. Permissions for use may be obtained through RightsLink at the Copyright Clearance Center.
Violations are liable to prosecution under the respective Copyright Law.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this
publication does not imply, even in the absence of a specific statement, that such names are exempt
from the relevant protective laws and regulations and therefore free for general use.
While the advice and information in this book are believed to be true and accurate at the date of
publication, neither the authors nor the editors nor the publisher can accept any legal responsibility for
any errors or omissions that may be made. The publisher makes no warranty, express or implied, with
respect to the material contained herein.

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

Foreword

Software effort estimation is one of the oldest and most important problems facing

software project management; being able to plan correctly is the basis for all project

management activities. One cannot manage a project without the knowledge of

what resources are needed to achieve the project goals. It is an area where there has

been a great deal of research in the development and fine-tuning of new models and

encoding of experience in applying these models.

Today, there are a large number of models, each having different strengths and

weaknesses in general and, more importantly, different strengths and weaknesses

relative to the environment and context in which they are to be applied, for

example, the historical data available and the kinds of factors that are relevant. At

the start of a project, it is difficult to understand all the influencing factors and risks;

there is a minimal amount of information available. Effort needs to be reestimated

at various points in time as the project progresses. And how do you balance early

effort commitment against new estimates? What trade-offs are possible?

Which models to apply under what conditions is difficult and requires a great

deal of insight into the environment. As with all software engineering approaches

and models, it is critical to understand the context in which the approach is to be

applied, the model assumptions and context for which the model was developed

(not always made clear by the model developer), and how to apply and tailor the

model to your context.

This book addresses all these points and provides a large set of model types and

classes, focusing on what you need to understand about your environment, what

information you need to be able to apply the model, what models are most effective

for a particular environment, and how you can learn from the model’s application so

you can evolve and improve your model over time.

The book is full of insights and useful advice on what to do and how to do it,

what to be wary of, and the limitations of effort estimation. Just reading the tips

contained in each chapter is a valuable experience.

The book goes beyond effort estimation and provides enormous insights into

project management, in general, discussing such issues as project trade-offs, risk

assessment, and organizational learning.

v

This is the most complete work on all aspects of software effort estimation that I

have seen and provides an excellent reference for the field. It belongs on the

bookshelf of every organization that needs to manage a software project. At the

same time, it is an excellent text for a university course on software effort estima-

tion, a topic that is typically insufficiently treated in most curricula.

December 2013 Victor R. Basili

University of Maryland

College Park, MD, USA

vi Foreword

On True Success

Past successes, no matter how numerous and universal, are no guarantee of future
performance in a new context.

– Henry Petroski

Failure is success if we learn from it.
– Malcolm Forbes

Success consists of going from failure to failure without loss of enthusiasm.
– Winston Churchill

To be defeated and not submit, is victory; to be victorious and rest on one’s laurels, is
defeat.

– Józef Piłsudski (First Marshal of Poland)

vii

ThiS is a FM Blank Page

Preface

The time for action is now. It’s never too late to do something.

—Antoine de Saint-Exupery.

What Is This Book About?

In this book, we focus on the estimation of software development effort. Three

aspects are considered important for the proper handling of effort estimation:

(1) foundations of software effort estimation, (2) selecting the most suitable esti-

mation approach, and (3) successfully using effort estimation in specific contexts.

What Is This Book NOT About?

This book does not include project planning activities that typically follow effort

estimation. We do not discuss such aspects as how to allocate project resources to

work tasks, how to sequence work activities, how to determine critical paths, and

how to resolve resource conflicts. Finally, we are not addressing project scheduling

or budgeting. We refer readers interested in these subjects to books that address

project management topics, for example, the PMI’s (2013) Project Management

Body of Knowledge (PMBOK Guide) or OGC’s (2009) PRINCE2, which offer

very useful overviews of common project management practices.

To Whom Is This Book Addressed?

In its very early stage, this book was intended as a collection of notes, where the

most relevant estimation principles, definitions, and empirical observations, found

in the literature and from experience, were gathered. In the course of time, this was

shared with others. This book aims to inherit the intention of these initial notes and

the needs of people they were shared with. It is addressed to those who want to take

ix

actions in order to improve their estimation practices, yet are missing (1) the

necessary knowledge and understanding of estimation principles and (2) a concise

reference of best practices and most common estimation approaches they can start

with and adapt to their particular needs. This book assumes one prerequisite about

its intended audience: it assumes that readers believe that it is never too late to do

something about your estimation practices, irrespective of whatever shape they are

now in.

Software Practitioners

This book is intended for all software practitioners responsible for software effort

estimation and planning in their daily work. This includes primarily, but is not

limited to, those who are responsible for introducing and maintaining estimation

practices in a software development organization.

Students

In this book, we also appreciate the value of the old saying “as the twig is bent, so

grows the tree” and address the content to students of software engineering

programs, particularity project and process management courses.

How to Read This Book

We anticipated this book to be a reference guidebook you can grab whenever you

need to learn or recall specific aspects of effort estimation. The way you read the

book depends on your particular needs at a given moment. So before you start, think

for a moment—what do you want to achieve?

• If you want to understand the basic challenges and principles of software effort
estimation, read Chaps. 1 and 2.

• If you want to master the principal concepts and techniques of existing estima-
tion methods, read Chaps. 3–5 and the Appendix.

• If you want to select the most suitable estimation method for estimating software
development effort in your specific context, read Chaps. 6 and 7.

• If additionally you want to get a quick insight into the most common estimation
methods, including their prominent strengths and weaknesses, read Chaps. 8–15,
or only some of them if you are interested in any specific method we present

there.

• If you want to introduce a new estimation approach or improve the one you have
been using, read Chap. 16.

• In any case, read the best-practice guidelines we present in Chap. 17.

x Preface

http://dx.doi.org/10.1007/978-3-319-03629-8_1
http://dx.doi.org/10.1007/978-3-319-03629-8_2
http://dx.doi.org/10.1007/978-3-319-03629-8_3
http://dx.doi.org/10.1007/978-3-319-03629-8_5
http://dx.doi.org/10.1007/978-3-319-03629-8_6
http://dx.doi.org/10.1007/978-3-319-03629-8_7
http://dx.doi.org/10.1007/978-3-319-03629-8_8
http://dx.doi.org/10.1007/978-3-319-03629-8_15
http://dx.doi.org/10.1007/978-3-319-03629-8_16
http://dx.doi.org/10.1007/978-3-319-03629-8_17

Moreover, each part of the book begins with a brief summary of the chapters it

encompasses. Refer to these summaries to quickly decide which chapter to read.

Key Terminology Used in This Book

In this book, we use several basic terms, which in other literature and in practice are

often used interchangeably. In order not to confuse the reader, we would like to start

by clarifying the most important terms we will use throughout the text.

Cost Versus Effort

Although principally and intuitively different, the terms “cost” and “effort” are

often used as synonyms in the software project management area. The Webster

dictionary defines cost as “the amount or equivalent paid or charged for something”

and effort as “conscious exertion of power” or “the total work done to achieve a

particular end”. In the software engineering domain, cost is defined in a monetary

sense, and with respect to software development projects, it refers to partial or total

monetary cost of providing (creating) certain products or services. Effort, on the

other hand, refers to staff time spent on performing activities aimed at providing

these products or services. In consequence, project cost includes, but is not limited

to, project effort. In practice, cost includes such elements as fixed infrastructure and

administrative costs for example. Moreover, dependent on the project context

(e.g., currency or cost of staff unit) despite the same project effort, project cost

may differ.

In the software engineering literature and practice, “cost” is often used as a

synonym for “effort.” One of the ways to notice the difference is to look at units

used. Cost in a monetary sense is typically measured in terms of a certain currency

(e.g., $, €, ¥, etc.), whereas cost in an effort sense is typically measured as staff time

(e.g., person-hours, person-days, person-months, etc.).

In this book, we focus on estimating software development effort, and we

consistently differentiate between cost and effort.

Estimation Versus Prediction Versus Planning

In software engineering, effort estimation, prediction, and planning are related to

each other; yet, they have different meanings, that is, they refer to different project

management activities. Actually, the dictionary definitions perfectly reflect the

differences between these three processes:

Preface xi

• Estimation: “the act of judging tentatively or approximately the value, worth, or

significance of something”

• Prediction: “the act of declaring or indicate in advance; especially: foretelling on
the basis of observation, experience, or scientific reason”

• Planning: “the act or process of making or carrying out plans; specifically: the
establishment of goals, policies, and procedures for a social or economic unit”

Estimation Versus Prediction

Both estimation and prediction contain an element of uncertainty; the first refers to

approximating an actual state, whereas the latter refers to a future state.

Simplifying, we may define prediction as estimating in advance. Since in software

engineering, effort estimation refers to approximating development effort in

advance, before development is completed, it should actually be called effort

prediction. Yet, in practice, both terms are used interchangeably. In this book, we

will follow this practice and use estimation and prediction as synonyms for

foretelling the effort required for completing software development projects.

Prediction Versus Planning

There is, however, a significant difference between prediction and planning. Pre-

diction refers to an unbiased, analytical process of approximating a future state.

Planning, on the other hand, refers to a biased process of establishing goals with

respect to the future state. Although predictions form a foundation for planning,

plans do not have to be (and typically are not) the same as predictions. In the case of

software development, the goal of prediction is to accurately foretell resources

(such as effort) required to provide project outcomes. The goal of effort planning is,

on the other hand, is to plan the project in such a way that the project goals are

achieved. In other words, we plan means within a project to achieve a specific

project’s end.

Kaiserslautern, Germany Adam Trendowicz

Sydney, NSW, Australia Ross Jeffery

xii Preface

Acknowledgments

A number of great people and organizations have made their explicit or implicit

contribution to this book by inspiring us, contributing to our knowledge, or helping

us in the creation of this book. Hereby, we would like to express our gratitude to

these people and organizations.

We would like to thank the reviewers of the book manuscript, Yasushi Ishigai

and Mirosław Ochodek, for their valuable remarks.

Adam Trendowicz would like to express special thanks to Yasushi Ishigai for

recent years of collaborative work in industrial contexts and great discussions on

the industrial challenges regarding effort estimation and potential solutions to these

challenges. Moreover, he would like to thank Fraunhofer Institute for Experimental

Software Engineering (IESE), Kaiserslautern, Germany, for giving him an oppor-

tunity to develop their professional expertise, including software effort estimation.

Ross Jeffery would like to thank National ICT Australia (NICTA) and the

University of New South Wales, who have supported his research for many

years. He would also like to thank the many academic and industry colleagues

who have assisted with the research in effort estimation.

We would like to convey special thanks to Mr. Ralf Gerstner and Ms. Victoria

Meyer from Springer for their great support in copyediting this book.

Last but not least, we seek forgiveness from all those whose names we have

failed to mention.

xiii

Disclaimer

Any of the trademarks, service marks, collective marks, registered names, or

similar rights that are used or cited in this book are the property of their respective

owners. Their use here does not imply that they can be used for any purpose other

than for the informational use as contemplated in this book. Rather than indicating

every occurrence of a trademarked name as such, this report uses the names only

with no intention of infringement of the trademark. The following table lists

trademark names used in this book.

Trademark Subject of trademark Trademark owner

CoBRA® Cost Estimation, Benchmarking,

and Risk Assessment

Fraunhofer Institute for Experimental

Software Engineering (IESE)

GQM+Strategies® Fraunhofer Institute for Experimental

Software Engineering (IESE)

CMMI® Capability Maturity Model

Integrated

Software Engineering Institute (SEI)

MS Office® MS Word®, MS Excel®, and

MS PowerPoint®
Microsoft® Corporation

PMBOK® Project Management Body of

Knowledge Guide

Project Management Institute (PMI)

PRINCE2™ Projects in Controlled

Environments 2

Office of Government Commerce (OGC)

xiv Acknowledgments

Acronyms

AC Actual cost

ACWP Actual cost of work performed

AHP Analytic hierarchy process

ANGEL Analogy estimation tool

ANN Artificial neural networks

AVN Analogy with virtual neighbor

BBN Bayesian belief network

BCWP Budgeted cost of work performed

BCWS Budgeted cost of work scheduled

BRACE Bootstrap-based analogy cost estimation

BRE Balanced relative error

CART Classification and regression trees

CASE Computer-aided software engineering

CI Confidence interval

CMMI Capability maturity model integrated

CoBRA Cost estimation, benchmarking, and risk assessment

COCOMO Constructive cost model

COTS Commercial off-the-shelf

DAG Directed acyclic graph

DBMS Database management system

EF Experience factory

EQF Estimating quality factor

EO Effort overhead

ESA European Space Agency

EV Earned value

EVM Earned value management

FP Function points

FPA Function points analysis

GAO US Government Accountability Office

GP Genetic programming

GQM Goal-question-metric

IEEE Institute of Electrical and Electronics Engineers

IFPUG International Function Point Users Group

xv

IRQ Interquartile range

ISBSG International Software Benchmarking Standards Group

JPD Join probability distribution

KPA Key process area

LAD Least absolute deviation

LMS Least median of squares

LOC Lines of code

MCDA Multi criteria decision analysis

MIS Management information systems

MMRE Mean magnitude of relative error

MRE Magnitude of relative effort

MSE Mean squared error

MSWR Manual stepwise regression

NPT Node probability table

OEM Original equipment manufacturer

OLS Ordinary least squares

OS Operating system

PDCA Plan-do-check-act

PDR Product design review

PERT Program evaluation and review technique

PI Prediction interval

PMI Project Management Institute

PMBOK Project Management Body of Knowledge

POP Predictive object points

PRINCE Projects in controlled environments

PROBE Proxy-based estimation

PV Planned value

QA Quality assurance

QIP Quality improvement paradigm

QSM Quantitative software management

RE Relative estimation error

ROC Rank order centroid

RR Robust regression

SEER-SEM Software Evaluation and Estimation of Resources-Software

Estimating Model

SEI Software Engineering Institute

SLIM Software lifecycle management

SLOC Source lines of code

SMART Specific, measurable, attainable, relevant, timely

SPI Software process improvement

SPR Software productivity research

UCP Use-case points

WBS Work breakdown structure

xvi Acronyms

Contents

Part I Foundations

1 Challenges of Predictable Software Development 3

1.1 Software Is Getting Complex . 3

1.2 Software Development Is Getting Complex 4

1.3 Project Management and Estimation Are Key Success Factors . . . 5

1.4 What is a “Good Estimate”? . 6

Further Reading . 7

2 Principles of Effort and Cost Estimation . 11

2.1 Basic Concepts of Effort Estimation . 11

2.2 Effort Estimation in Context . 18

2.3 Objectives of Effort Estimation . 27

2.4 Estimation Life Cycle . 31

2.5 Basic Components of Project Effort . 35

Further Reading . 42

3 Common Factors Influencing Software Project Effort 47

3.1 Context Factors . 47

3.2 Scale Factors . 49

3.3 Effort Drivers . 57

3.4 Selecting Relevant Factors Influencing Effort 68

3.5 Reducing the Negative Impact of Scale and Effort Drivers 71

Further Reading . 78

4 Estimation Under Uncertainty . 81

4.1 Nature of Estimation Uncertainty . 82

4.2 Sources of Uncertainty . 84

4.3 Representing Uncertainty . 87

4.4 Handling Uncertainty . 92

4.5 Reducing Uncertainty . 113

4.6 Uncertainty and Change . 118

Further Reading . 122

xvii

5 Basic Estimation Strategies . 125

5.1 Top-Down Estimation Approach . 125

5.2 Bottom-Up Estimation Approach . 127

5.3 Aggregating Component “Bottom” Estimates 133

5.4 Selecting Appropriate Estimation Strategy 140

5.5 Using Multiple Alternative Estimation Methods 143

5.6 Combining Alternative Estimates . 144

Further Reading . 150

Part II Selecting an Appropriate Estimation Method

6 Classification of Effort Estimation Methods 155

6.1 Classification of Effort Estimation Methods 155

6.2 Proprietary vs. Nonproprietary Methods 156

6.3 Data-Driven Methods . 157

6.4 Expert-Based Methods . 169

6.5 Hybrid Methods . 180

6.6 Fixed-Model vs. Define-Your-Own-Model Estimation 190

6.7 Comparison of Estimation Paradigms . 192

Further Reading . 206

7 Finding the Most Suitable Estimation Method 209

7.1 Pitfalls of Selecting “the Best” Estimation Method 210

7.2 Criteria for Selecting the Best Estimation Methods 222

7.3 Procedure for Selecting the Best Estimation Method 231

7.4 Example Selection Procedure . 246

Further Reading . 259

Part III Popular Effort Estimation Methods

8 Statistical Regression Analysis . 263

8.1 Principles . 263

8.2 Usage Scenarios . 270

8.3 Strengths and Weaknesses of Regression 273

Further Reading . 275

9 Constructive Cost Model—COCOMO . 277

9.1 Principles . 278

9.2 Usage Scenarios . 286

9.3 Strengths and Weaknesses of COCOMO 292

Further Reading . 292

10 Classification and Regression Trees . 295

10.1 Principles . 295

10.2 Usage Scenarios . 296

10.3 Strengths and Weaknesses . 302

Further Reading . 304

xviii Contents

11 Case-Based Reasoning . 305

11.1 Principles . 305

11.2 Estimation Process . 307

11.3 Strengths and Weaknesses . 311

Further Reading . 313

12 Wideband Delphi . 315

12.1 Principles . 315

12.2 Estimation Process . 317

12.3 Strengths and Weaknesses . 325

Further Reading . 326

13 Planning Poker . 327

13.1 Principles . 327

13.2 Estimation Process . 332

13.3 Strengths and Weaknesses . 336

Further Reading . 338

14 Bayesian Belief Networks (BBN) . 339

14.1 Principles . 339

14.2 Usage Scenarios . 341

14.3 Strengths and Weaknesses . 345

Further Reading . 348

15 CoBRA . 349

15.1 Principles . 349

15.2 Usage Scenarios . 354

15.3 Strengths and Weaknesses . 362

Further Reading . 364

Part IV Establishing Sustainable Effort Estimation

16 Continuously Improving Effort Estimation 367

16.1 Objects of Continuous Improvement . 367

16.2 Basic Improvement Scenarios . 373

16.3 Continuous Improvement Cycle . 377

Further Reading . 398

17 Effort Estimation Best Practices . 401

17.1 Ensure Appropriate Inputs . 402

17.2 Ensure Appropriate Resources . 411

17.3 Use Appropriate Estimation Methods and Models 415

17.4 Use Appropriate Estimation Outcomes 423

17.5 Ensure a Proper Estimation Environment 428

17.6 Last But Not Least. 430

Further Reading . 432

Contents xix

Appendix A: Measuring Software Size . 433

Bibliography . 451

Index . 463

xx Contents

About the Authors

Adam Trendowicz is a senior consultant at the Fraunhofer Institute for Experi-

mental Software Engineering (IESE) in Kaiserslautern, Germany, where he leads

the team of “Measurement and Prediction.” He received his Ph.D. in Computer

Science from the University of Kaiserslautern (Germany). Dr. Trendowicz has led

software cost estimation and software measurement improvement activities in

software companies of different sizes and from various domains (e.g., in Germany,

Japan, and India). He has been involved in functional software size estimation

(Function Point Analysis) and productivity benchmarking in organizations from

both industry and the public sector. Dr. Trendowicz has taught several tutorials on

software cost estimation and supervised the “Software Economics and Risk Man-

agement” module within the distance master studies program “Software Engineer-

ing for Embedded Systems”—a program developed jointly by the University of

Kaiserslautern and Fraunhofer IESE. Finally, Dr. Trendowicz has authored the

book titled Software Cost Estimation, Benchmarking, and Risk Assessment. The
Software Decision-Makers’ Guide to Predictable Software Development. More-

over, he has coauthored more than 20 international journal and conference

publications. Dr. Trendowicz’s other software engineering interests include

(1) project management, (2) software product quality modeling and evaluation,

and (3) technology validation by means of empirical methods.

Ross Jeffery is Emeritus Professor of Software Engineering in the School of

Computer Science and Engineering at the University of New South Wales and

research consultant in the Systems Software Research Group in National ICT

Australia (NICTA). His research interests are in the software engineering process

and product modeling and improvement, electronic process guides and software

knowledge management, software quality, software metrics, software technical and

management reviews, and software resource modeling and estimation. His research

has involved over 50 government and industry organizations over a period of

20 years and has been funded by industry, government, and universities. He has

coauthored 4 books and over 190 research papers. He has served on the editorial

xxi

board of the IEEE Transactions on Software Engineering, the Journal of Empirical
Software Engineering, and the Wiley International Series in Information Systems.

He was a founding member of the International Software Engineering Research

Network (ISERN). He was elected Fellow of the Australian Computer Society for

his contribution to software engineering research.

xxii About the Authors

Part I

Foundations

A problem well stated is a problem half solved.
—Charles F. Kettering

In this part, we introduce the topic of software effort estimation as one of the basic

elements of planning and managing software development undertakings.

Chapter 1 provides a brief introduction to software development and the appli-

cation of quantitative approaches for managing software development projects. In

this chapter, we also summarize typical effort estimation threats and challenges of

software development projects.

Chapter 2 introduces terminological and methodological principles of software

effort estimation. In this chapter, we position effort estimation within the software

development environment and sketch the basic estimation process including its

primary inputs and outputs.

Chapter 3 overviews common factors influencing software project effort. In this

chapter, we discuss three principal groups of factors—context factors, scale factors,

and effort drivers—and consider examples of the most common factors from each

group. Moreover, we provide guidelines on how to reduce their negative impact on

project effort in practical situations.

Chapter 4 discusses information uncertainty and estimation inaccuracy as two

critical aspects of software effort estimation. In this chapter, we discuss basic types

of uncertainty and common sources of uncertainty.Moreover, we provide guidelines

for how to represent and handle uncertainty in effort estimation and how to reduce

any negative influence of uncertainty on effort estimates. In this chapter, we partic-

ularly discuss how to handle the imperfect information upon which estimates are

based. Finally, we discuss the relationship between uncertainty and change in the

context of software development projects.

Chapter 5 summarizes top-down and bottom-up estimation strategies. In this

chapter, we overview the strengths and weaknesses of each strategy and provide

guidelines on which strategy should be used, depending on the particular estimation

situation. We also discuss an estimation strategy in which multiple estimation

methods are used to develop the effort estimate. Finally, we answer the question

of how to aggregate multiple estimates produced by the application of either a

bottom-up estimation or multiple estimation methods.

http://dx.doi.org/10.1007/978-3-319-03629-8_1
http://dx.doi.org/10.1007/978-3-319-03629-8_2
http://dx.doi.org/10.1007/978-3-319-03629-8_3
http://dx.doi.org/10.1007/978-3-319-03629-8_4
http://dx.doi.org/10.1007/978-3-319-03629-8_5

Challenges of Predictable Software
Development 1

Failing to plan is planning to fail.
—Winston Churchill

Effort and cost estimation are of paramount importance for the success of software

development projects. Everyday practice shows that many software organizations

still propose unrealistic software costs, work within tight schedules, and finish their

projects behind schedule and budget, or do not complete them at all.

In this section, we introduce software effort estimation as an essential element of

a successful software development project. We look at the characteristics of

software and the software engineering environment that make estimation a parti-

cularly challenging task. Finally, we try to answer the basic question of estimation,

namely, “what is a good estimate?”

1.1 Software Is Getting Complex

The creation of genuinely new software has far more in common with developing a new
theory of physics than it does with producing cars or watches on an assembly line.

—Terry Bollinger

Software is everywhere. Most of today’s goods and services are realized, at least

partially or completely with the help of software systems. Our dependency on

software increases continuously. On the one hand, progress in the domains where

software has traditionally been playing a key role entails increasing pressure upon

software to progress. On the other hand, in domains that were traditionally reserved

for hardware, software has become the major driving force of overall progress. For

example, it is said that 60–90 % of advances in the automotive domain nowadays

are due to software systems. Some products and services that would have tradition-

ally been realized through “hardware” solutions are now realized through software

systems. Other products and services are only possible through software systems

A. Trendowicz and R. Jeffery, Software Project Effort Estimation,
DOI 10.1007/978-3-319-03629-8_1, # Springer International Publishing Switzerland 2014

3

and could not have been realized by other means. In this way, the size and

complexity of software systems in various domains has increased rapidly.

This increasing complexity of software systems entails a fundamental shift in

their cost, time-to-market, functionality, and quality requirements. Software is

required to support a wide variety of domains; must always be faster, more intelli-

gent, more dependable; must require less hardware resources and be ever easier to

maintain; and, and, and. The wish list is typically quite long and ends up with: “The

software must cost less and come to the market before our competitors even think

about something similar.”

1.2 Software Development Is Getting Complex

Better, faster, cheaper. Choosing to concentrate on two of these concepts made
accomplishing the third difficult or impossible.

—James E. Tomayko and Orit Hazzan

When looking at the traditional manufacturing disciplines, software practitioners

may ask themselves: “If most manufacturing industries are able to control cost,

schedules and quality—at least most of the time—why can’t we?” One simple

answer is: “because software development differs from classical manufacturing.”

Let us briefly go through several aspects that distinguish software development

from traditional manufacturing.

Development Technologies and Paradigms Change Rapidly. Software devel-

opment teams must strive to achieve software development objectives by exploiting

the impressive advances in continuously changing—and thus often immature—

technologies and development paradigms. In fact, mastering rapidly changing

technologies and processes is often considered as the most important challenge

differentiating software development from other domains. Without counting

the minor changes in methods and tools, throughout the past 50 years, the software

industry has roughly gone through at least four generations of programming

languages and three major development paradigms.

Development Distribution Increases. Together with the increased variety of

software products, technologies, and processes, development distribution is grow-

ing constantly. Development is shifting from single contractors to distributed

projects, where teams are scattered across multiple companies, time zones, cultures,

and continents. The global trend toward software outsourcing has led to software

companies needing a reliable basis for making make-or-buy decisions or for

verifying the development schedule and cost offered by contractors if they decide

to buy parts of a software product.

4 1 Challenges of Predictable Software Development

Software Development Is Still a Largely Human-Intensive Process. Moreover,

software development is a human-based activity with extreme uncertainties from

the outset. Robert Glass (2002) reiterated this fact by saying: “Eighty percent of

software work is intellectual. A fair amount of it is creative. Little of it is clerical.”

Software development depends on the capabilities of developers and on the

capabilities of customers and other involved parties.

Software Products Have an Abstract Character. Probably none of the afore-

mentioned aspects has as large an impact on the difficulty of software production as

does the abstract character of software products. It is this “softness” of software

products that makes software engineering differ from other, “classical,” engineer-

ing domains. To create software, developers start with customer requirements and

go through a sequence of transformations during which all involved parties create,

share, and revise a number of abstract models of various, usually increasing,

complexity. In addition, individual project tasks in a transformation sequence are

usually highly interdependent. The intangible and volatile character of software

products—especially requirements—makes them difficult to measure and control.

This contributes to software development being a mixture of engineering, science,

and art.

1.3 Project Management and Estimation Are Key Success
Factors

Understanding the importance of accurate estimation, and a willingness to put in the
resources . . . are vitally important to a company’s success.

—Katherine Baxter

The complex and multidependent character of software development makes man-

aging software projects a challenging task. A software project should, like any other

project, be considered in terms of a business case. It should therefore lay out the

reason(s) for the investment, the expected benefits of the initiative, the costs to

make it happen, an analysis of the risks, and the future options that are created. A

software project also requires, as one of its key success factors, effective manage-

ment. It must focus on areas critical for financial success, the effective use of

resources, an analysis of market potential and opportunities for innovation, the

development of a learning environment, and so on.

1.3 Project Management and Estimation Are Key Success Factors 5

Criteria of Project Success
The classical definition of “project success” is “a project that provides

software of required functionality and quality within cost and schedule.”

Except for the meaning of “quality,” which has been a subject of discussions

for years, it is perhaps a clear definition of project success. But is it really?

In practice, success has a number of faces. Although perhaps not deemed

“a success,” a project that has not met some of the classical success criteria

can still be far from a complete disaster. For example, if the project is

canceled in a timely manner because it cannot meet the functionality and

quality requirements within a reasonable budget and time, it could be classi-

fied as not having failed—under the condition that lessons learned can be

applied in future projects to avoid a similar situation.

Software project management is a key project success factor, and, as aptly noted

by Barry Boehm, “Poor management can increase software costs more rapidly than

any other factor.” A number of bad management practices may lead to failed

projects, and one of the most common aspects of poor project management,

which typically results in a project crisis, is poor effort estimation. Glass (2002)

points to poor effort estimation as one of the two most common causes of runaway

projects, besides unstable requirements. Rosencrance (2007), in her survey of more

than 1,000 IT professionals, reports that two out of the three most important causes

of an IT project failure are perceived to be related to poor effort estimation, in

particular insufficient resource planning and unrealistic project deadlines.

Effective project management requires reliable effort and schedule estimation

support. On the one hand, project managers need a reliable basis for developing

realistic project effort, schedule, and cost plans. On the other hand, as project

management is to a large extent a political game, they need a reliable and convin-

cing basis for negotiating project conditions with project owners and/or customers.

In the latter scenario, simple, gut-feeling estimates are definitely insufficient to

justify realistic project plans against demands and expectations of other project

stakeholders.

Yet, independent of these findings, many software organizations still propose

unrealistic software costs, work within tight schedules, and finish their projects

behind schedule and budget, or do not complete them at all.

1.4 What is a “Good Estimate”?

A good estimate is an estimate that provides a clear enough view of the project reality to
allow the project leadership to make good decisions about how to control the project to hit
its targets.

—Steve McConnell

6 1 Challenges of Predictable Software Development

The basic question of software effort estimation is “What is a good estimate?”

Traditionally, effort estimation has been used for planning and tracking overall

resources, such as staff required for completing a project. With this objective in

mind, over the years, researchers have been pursuing an elusive target of getting

100 % accurate estimates in terms of the exact number of person-hours required to

complete on a software project. Effort estimation methods that grew up on this goal

focus on providing exact point estimates.

Yet, software practitioners nowadays require from effort estimation compre-

hensive decision support for a number of project management activities. They

noticed that even the most accurate estimates are worthless if they cannot be

reasonably justified to a project sponsor and customers or if they do not provide

guidelines on what to do if the project is not going to meet estimates. From this

perspective, one of the critical characteristics of good estimates is the additional

information provided to support project decision making. Firstly, project decision

makers need to identify the project areas that are responsible for increased devel-

opment effort in order to have a transparent and convincing basis for renegotiating

project resources and/or scope with the project sponsor. As aptly concluded by Tom

Demarco (1982), the purpose of estimation “is not to solve any of the problems of

actually getting a system built, but rather to make sure you encounter the fewest

number of surprises as you undertake this work.” Secondly, they need an indication

of the effort-related development processes that can potentially be affected in order

to improve productivity at low overhead—“low-hanging fruits.”

Summarizing, a good estimate is one that supports the project manager to

achieve successful project management and successful project completion. Thus,

a good estimation method is one that provides such support without violating other

project objectives such as project management overhead.

Tip

" A good estimate is one that supports project management activities such as

planning and negotiation of project resources, managing changes and risks, etc.

A good estimation method should thus provide—in addition to single point

estimates—transparent information on project-related factors affecting develop-

ment effort.

Further Reading

• R. Charette (2005), “Why software fails [software failure],” IEEE Spectrum,
vol. 42, no. 9, pp. 42–49.

This article looks at the status and the future of software. In the context of

trends in size and complexity, it gives an overview of famous software disasters

and their reasons. Among the most relevant causes of failed software projects are

unrealistic or unarticulated project goals, inaccurate estimates of needed

resources, and inability to handle the project’s complexity.

Further Reading 7

• L.J. Osterweil (2007), “A Future for Software Engineering?,” Proceedings of the
29th International Conference on Software Engineering, Workshop on the

Future of Software Engineering, Minneapolis, MN, USA: IEEE Computer

Society, pp. 1–11.

This article identifies common trends and key challenges of software engi-

neering practice and research. Among other items, it asks about the future of

design, modeling, and quantitative quality control of something as intangible as

software.

• Y. Wang (2007a), Software Engineering Foundations: A Software Science
Perspective, CRC Software Engineering Series, vol. 2, AUERBACH/CRC

Press.

In Sect. 1.3 of his book, the author discusses general constraints of software

and software engineering. He distinguishes three interrelated groups of

constraints: cognitive, organizational, and resources constraints. For each

group, the author lists and specifies in detail several basic constraints.

• E. Yourdon (2003), Death March, 2nd Edition, Prentice Hall.
This book is one of the software engineering and project management classics,

which, although not being technologically completely up-to-date now, discusses

timeless traps of software project management. The author discusses reasons for

software projects being what it calls “death march” projects; that is, projects that

are sentenced to fail from the very beginning because of their unrealistic set up.

Typical symptoms of a “death march” project are: (1) schedule, budget, and

staff are about half of what would be necessary, (2) planned product scope is

unrealistic, and (3) people are working 14 h a day, 6 or 7 days a week. Author

suggests a number of useful solutions to avoid and, if this is not an option, to

rescue death march projects.

• S. McConnell (1997), Software Project Survival Guide, 1st Edition, Microsoft

Press.

The book provides a set of guidelines on how to successfully perform software

projects. For each major stage of software development, the author refers to the

most common weaknesses that software projects typically face and discusses

ways of addressing them in order to successfully get through the project.

• T. DeMarco and T. Lister (1999), Peopleware: Productive Projects and Teams,
2nd Edition, Dorset House Publishing Company, Inc., p. 245.

This book discusses human aspects of software engineering. Authors show

that the primary issues of software development are human, not technical.

• F. P. Brooks (1995), The Mythical Man-Month: Essays on Software Engineer-
ing, Anniversary Edition, 2nd Edition, Addison-Wesley Professional.

This book discusses human aspects of software engineering. Fred

Brooks makes a simple conjecture that an intellectual job, such as software

8 1 Challenges of Predictable Software Development

