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Preface to Second Edition

The main change made in this edition is a new chapter, Chap. 10, located between
Chaps. 9 and 10 of the previous edition. It presents the method based on simulation
of advective solute transport through porous media with direct inclusion of
hydrodynamic dispersion. The method reduces solute transport simulation to
solving partial differential equations of the first order for different actual pore
water velocities which makes it very flexible. The ways of evaluating the actual
pore water velocities are suggested also. The method is an alternative to the
classical convective-dispersion model with it fictitious dispersion coefficient and
the mean actual pore velocity, excluding hydraulic dispersion, the main reason for
appearance of long tails of the observed breakthrough curves.

The history of this chapter appearance is following. A known hydrogeologist
stated to Dr. Steven Kraemer, my supervisor at that time, that the use of the first
type boundary condition in simulation of solute transport in porous media is
incorrect. He suggested overwriting all related software used by Environmental
Protection Agency, U.S.A., applying the boundary condition of the third type, the
flux condition, the only correct boundary condition, according to him. Before
discussing the issue with his supervisors, Steve asked me to clarify the situation.
The most detail basis for introducing the flux boundary condition which I could
find is the work of Parker and van Genuchten (1984). In my opinion the basis was
unsatisfactory, doubtful mathematically and physically, which I reported to Steve.
After becoming a free lance hydrogeologist, I got more free time and took part in
discussion (Gorokhovski 2013) on Batu (2010) holding that the flux condition is
the only correct one because it keeps mass-balance at the inlet. In the response to
my criticism, (Batu et al. 2013) do not refute my arguments but continue insist that
the flux boundary condition is the only correct one. It is obvious that the use of the
mean pore velocity in the classical model eliminates hydraulic dispersion from it.
The empirical dispersion coefficient should, as if, compensate for the hydraulic
dispersion. How this fictitious coefficient does the job was never explained, and it
does not factually. Long tails of the observed breakthrough curves exists due
mostly hydraulic dispersion. The impossibility in most cases to reproduce them by
simulation breakthrough curves is clear demonstration of this. The issue of fitting
the simulation breakthrough curves into the observed long tailed ones was the
main motivation for Parker and van Genuchten (1984) to introduce the flux
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boundary condition. Likely, its application did not resolve the issue (Parker and
van Genuchten 1984; Paseka et al. 2000; Delleur 2006; Dušek et al. 2007;
Appuhamillage et al. 2010).

Other changes include reviews of some works appeared after publishing of the
first edition of this book or related to Chap. 10. Thus, in distinction from the
previous edition, all examples related to solute transport are concentrated in this
chapter to minimize the necessary changes in the book. Few misprints and inac-
curacies slipped into the previous text were corrected also.
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Preface to the First Edition

This book concerns the uncertainty of the hydrogeological modeling. In a sense, it
is a development of the ideas published long ago (Gorokhovski 1977). The topic of
that book was impossibility of evaluating the uncertainty of the simulation results
in a provable quantitative way. The book happened to be a success: I had difficulty
finding its copies for my friends, some prominent hydrogeologists and geological
engineers started treating me with more respect, and some colleagues stopped
speaking to me for a long time. But no other consequences followed.

I personally was not fully satisfied. The book was mostly a critique based on
common sense and illustrated by simple and transparent examples from hydro-
geology and geological engineering. The examples could be easily verified, using
just a calculator. The book stated that the impossibility to evaluate the uncertainty
of simulation results does not preclude obtaining the results which are best in a
reasonably defined sense, though the uncertainty of those best results remains
unknown. But I had a vague notion on how to assure such results at that time.

Quantitative predictions of responses of geological objects on man made and
natural impacts were, are, and will remain in the foreseeable future a considerable
element of engineering design and decision making. Even in that time and even in
the Soviet Union, where I resided and worked, it was possible to simulate many
applied hydrogeological processes, though access to the pertinent software and
computers was not easy, at least for me (see Afterword for more details). At
present, due to the fast development of computers and numerical methods, we can
simulate almost any process based on contemporary concepts and theories. The
gravest obstacle remains uncertainty of the simulation results caused by paucity of
the available data on properties of geological objects, boundary conditions, and
impacts when the natural impacts are affecting factors. So one of the main issues,
in my opinion, is how to assure that the yielded results are the best, effective, in the
sense as the best is defined. I hope that this book is a considerable step to yielding
the effective simulation results.

The uncertainty of the results of hydrogeological modeling was and is discussed
intensively. Thus, Beck (1987) writes: ‘‘The difficulties of mathematical modeling
are not questions of whether the equations can be solved and the cost of solving
them many times; not are they essentially questions of whether priory theories (on
transport, dispersion, growth, decay, predation, etc.) is potentially capable of
describing the system’s behavior. The important questions are those whether the
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priory theory adequately matches observed behavior and whether the predictions
obtained from models are meaningful and useful’’. Oreskes et al. (1994) hold that
geological models ‘‘predictive value is always open to question’’. (See also,
Oreskes 2003, 2004). This is not surprising, since in hydrogeology ‘‘the modeling
assumptions are generally false and known to be false’’ (Morton 1993, Beven
2005). I could continue this list of similar quotations. But let me restrict myself
with one more. As Beven (2004), puts it mildly: ‘‘There is uncertainty about
uncertainty’’. I think he is wrong: the uncertainty of the hydrogeological modeling
is the fact about which there is no uncertainty. Indeed: ‘‘It’s a fundamental tenet of
philosophy of science that the truth of a model can never be proved; only dis-
proved,’’ (Mesterton-Gibbons 1989).

The above quotations are a tribute to academism really. Experienced hydrog-
eologists are well aware of the uncertainty of most their conclusions. And the
reason is obvious. The models include properties and combinations of the prop-
erties of geological objects. Those must be known continuously, at least, when
differential or integral equations are involved. That is, they must be known at each
point of the object and at each instant of the simulation period, excluding sets of
isolated points and instants. But geological objects are inaccessible to direct
observations and measurements and the data on them are sparse. The geological
models are a tool to interpolate and extrapolate the sparse data at every point of the
geological object which they represent in simulations and at very instant of the
periods of the simulations. The tool is limited. The geological interpolation and
extrapolation are based on the principle that geological settings of the same origin,
composition, and geological history have the same properties. This principle leads
to so-called piecewise homogeneous geological models. Sometimes, the properties
are subjected to spatial trends whose mathematical descriptions are arbitrary in
essence (Chap. 3). So how can we evaluate in a quantitative way the reliability of
the geological models with respect to a problem at hand? It suffices just a common
sense to conclude that it is impossible except, maybe, in some rare cases.

Since the issue is not simulations, solving the corresponding equations, but the
uncertainty of the yielded results, the question arises, what to do? U.S. EPA (1987)
gives the answer related to environmental predictions, including hydrogeological
ones: ‘‘It should be recognized that the data base will always be inadequate, and
eventually there will be a finite sum that is dictated by time, common sense, and
budgetary constraints. One simply has to do the best one can with what is avail-
able’’. Unfortunately, (U.S. EPA, 1987) does not explain what is and how to do
‘‘the best’’.

The situation seems to be clear enough: it is impossible to evaluate the
uncertainty of simulation results of the hydrogeological models in a provable
quantitative way. But, contrary to its own statement cited above U.S. EPA (1989)
holds that ‘‘Sensitivity and uncertainty analysis of environmental models and their
predictions should be performed to provide decision -makers an understanding of
the level of confidence in model results and to identify key areas for future study’’.
It claims also that ‘‘A number of methods have been developed in recent years for
quantifying and interpreting the sensitivity and uncertainty of models’’. NCR
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(1990) states ‘‘Over the past decade, the development of stochastic modeling
techniques has been useful in quantitatively establishing the extent to which
uncertainty in model input translates to uncertainty in model prediction’’. Binley
and Beven (1992), Beven and Freer (2001) and Beven (2005), suggest a general
likelihood framework for uncertainty analysis, recognizing that it includes some
subjective elements and, therefore, in my opinion, may not be provable. Hill et al.
2000, suggest the algorithm and program, permitting evaluating the uncertainty of
simulation results. Cooley, 2004, suggests a theory for making predictions and
estimating their uncertainty. And so on (Feyen and Caers 2006; Hassan et al. 2008;
Rojas et al. 2008, 2010; Ch and Mathur 2010; Mathon et al. 2010; Ni el at. 2010;
Singh et al. 2010a, b; Zhang et al. 2010; Doherty and Christensen 2011, and
others).

For example, Doherty and Christensen (2011) hold in the abstract to their paper
that it ‘‘describes a methodology for paired model usage through which predictive
bias of a simplified model can be detected and corrected, and postcalibration
predictive uncertainty can be quantified’’. However, they write closer to the end of
their paper: ‘‘In designing and implementing the methodology discussed herein,
we have assumed that the processes and construction details of the complex model
approximate those of reality. It is obvious that this will not always be the case.
Indeed, even the most complex model is quite simple compared to reality itself. In
spite of this, a modeler can only do his or her best’’. Something like this has been
already quoted (EPA, 1987). But let us continue. Several lines below their pre-
vious statement Doherty and Christensen (2011) write: ‘‘Nevertheless, the less
than perfect nature of a complex model, and its consequential failure to represent
all nuances of system behavior, may indeed result in some degree of underesti-
mation of predictive uncertainty. This, unfortunately, is unavoidable’’.

I pay more attention to the work of Doherty and Christensen (2011) not only
because it is one of the most recent ones on the uncertainty of hydrogeological
simulation, but because it is typical. Many, if not most, of such publications
proclaim in the very beginning that a method of quantifying of the simulation
uncertainty is being suggested. However, somewhere closer to the end, the authors
explain that they can estimate the uncertainty to some degree. The authors, being
excellent mathematicians, understand that their simulations are based on a number
of explicit and implicit assumption, hypotheses, and simplifications most of which
cannot be validated or are knowingly false. So their estimates of the uncertainty
are not provable. This is from where all these ‘‘to some degree’’ appear. The Polish
poet and aphorist Jerzy Lec told about such kind of situations: ‘‘Impolitely to speak
‘it seems’ when everything is already clear’’.

Doherty and Christensen (2011) attracted my attention also because their
methodology of the paired model usage, at first glance, seems to be similar to the
two-level modeling described in this book and presented previously, in various
contexts related to its different possible use (Gorokhovski 1986, 1991, 1996, 2012;
Gorokhovski and Konivetski 1994; Gorokhovski and Nute 1995, 1996). While
seemingly alike, the paired model usage and the two-level modeling differ with
respect to their mathematics and goals. The goal, as well as mathematics, of the
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two-level modeling is much more modest: It recognizes the impossibility to
quantify the uncertainty of simulation results in a provable way and is focused just
on obtaining the best simulation results in reasonably predefined senses.

Although the number of publications providing the methods, as if, quantifying
uncertainty of the results of hydrogeological modeling growths very fast, they
cannot call off the philosophical tenet which leaves us still with the only real
option: ‘‘to do the best one can with what is available’’. In this book, it means
obtaining the best simulation results in the sense of the least squares criterion on a
given monitoring network, though other criteria of the efficiency are possible also.
Besides, the required ‘the best’ must relate not to the best fit during model iden-
tifications (calibrations), but to the best results in the coupled predictive simula-
tions. Such simulation results are called effective. To achieve the predictive
efficiency for a given simulation model, we need to find the effective parameters,
that is, the parameters making the pertinent predicting or evaluating effective.
A model furnished with the effective parameters is called effective. Once more, the
goal must be the models which are effective in predictive simulations and extended
evaluations, not in model identification procedures like calibration. This can be
achieved by introducing the transforming mechanisms converting the actual
properties of geological bodies into effective parameters of the predictive models
(Chap. 5). Chapters 6 and 7 contain examples of such mechanisms. The standard
procedure for evaluating the transforming mechanisms is called by me the two-
level modeling (Chap. 8). The transforming mechanisms can be applied for solving
inverse problems (Chap. 9). The notion of the inverse problem in this book differs
from the standard one accepted in hydrogeological modeling. That is, the inverse
problem is understood as evaluating properties of more complex models using less
complex ones. This second edition contains new Chap. 10 discussing solute
transport through porous media. Chap. 11 is a short conclusion. The book ends
with Chap. 12 in which I compare my Soviet and American experiences as a
teacher and a scientist. I hope it may by interesting for readers.

I hope that this book can be helpful for modelers working with the underground
flows and mass transport. But its main addressees are common hydrogeologists
and, maybe, students of hydrogeology and environmental sciences. I knew and
know many excellent hydrogeologists who never differentiated or integrated
anything after passing the final tests on calculus. For these reasons, I resort to the
sound sense and the simplest mathematical models and examples, rather of the
conceptual nature, i.e., ‘‘constructed to elucidate delicate and difficult points of a
theory’’ (Lin and Segel 1974, Kac 1969) as much as I can. However, the approach
to alleviating the issue of the uncertainty of the results of hydrogeological simu-
lations suggested in this book requires intensive computational calculations. This
does not permit avoiding mathematics completely. But the mathematics applied in
the text is mostly the least squares method. The examples and the results are
transparent and easy to understand and to interpret even for those readers who do
not want to mess with mathematics.
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Abstract

Geological models applied to predictive hydrogeological modeling are not exact
replicas of the objects they represent. Manifold details related to structures and
properties of the objects remain unknown. Those details can affect simulation
results considerably, differently, and unpredictably for different formulations of the
simulation problem. They cause the phenomenon of problem-dependence of model
identification, make the model parameters, effective in calibration, ineffective in
predictive simulations and do not permit the provable evaluation of uncertainty of
the simulation results. However, this does not preclude obtaining the best, effective,
simulation results based on the available data and predefined criteria of quality of
predicting. To provide such results, transforming mechanisms are introduced. They
are mathematical expressions for evaluating the model parameters, which are
effective in predictive simulations. Examples of the mechanisms are provided as
well as method of their evaluation, and how the mechanisms can be used for
interpretation hydrogeological data is also shown. In this edition, a new chapter is
included suggesting, as alternative to the dispersive-convective model of solute
transport through porous media, the advective model taking in consideration
hydraulic dispersion and demonstration of its advantage. In his last chapter, the
author compares the conditions under which he worked in the Soviet Union
(35 years) and in the United States (20 years) which may be interesting for readers.
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Chapter 1
Introduction

Although hydrogeological conditions can be of interest per se, most of hydro-
geological investigations are of applied nature, and their results are used in
decision-making that may carry large ecological and financial risks. For example,
when developing a reservoir project, the developers have to evaluate possible
losses of water from the reservoir, stability of the dam and how the adjacent soils
and rocks could be affected by different project decisions. Hydrogeological
investigations related to the use of an aquifer for water supply should not only
conclude that the usage is possible. The developers must also have estimates on
how long and with what intensity the aquifer can be exploited by a well or a group
of wells. The developers of a landfill project must know whether the landfill can
cause contamination of the aquifer below and, if so, whether and when the con-
taminant plume reaches water supply wells and the concentration of the pollutant
at the wells. The developers of an irrigation project need to know to what extent
and how fast the water table rise should be expected, what consequences are
possible and how to deal with them, etc.

The point is that for the projects that affect geological surroundings to be
effective environmentally and economically, the responses of the surroundings to
the planning impacts must be taken in consideration. To this end the goal of the
applied hydrogeological investigations is to provide quantitative predictions of
those responses. Moreover, to make a correct or optimal decision, decision-makers
must know the errors of the quantitative predictions. (The term ‘to predict’ relates
to the processes developing in time. In this text it is used also as a synonyms of the
term ‘to evaluate’ in cases of evaluating some instant value or steady state con-
ditions, if such usage does not cause confusion.)

The usual tool for obtaining quantitative hydrogeological predictions is math-
ematical modeling, i.e., solving differential and integral equations describing the
pertinent processes or states. The mathematical models are applied to the geo-
logical models substituting for real geological objects. In this book, the mathe-
matical models are assumed to be adequate, i.e., that they reproduce the processes
of interest sufficiently accurately. This is not true in general (see Chap. 10), but the
mathematical models recognized by the professional community and applied
properly usually yield satisfying approximations of the reality. The main source of
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the errors occurring in simulations is the distinction between predictive geological
models and actual geological objects, and inaccurate or often just wrong boundary
conditions, though inaccuracies of the mathematical models also contribute in
those errors. Since the geological surroundings are inaccessible to direct obser-
vations and measurements, and data on them are sparse, the issue is how the parts
of geological objects which are unknown or wrongly presented by geological
models can affect the accuracy of the simulation results.

Let us start with simple example: steady-state filtration in an unconfined aquifer
on a horizontal base when the recharge is absent (Fig. 1.1). Under the Dupuit-
Forchheimer assumption (simplification), considering the vertical component of
the Darcy velocity to be negligibly small, the filtration can be treated as one-
dimensional. It is governed by the following ordinary differential equation

d K xð Þh xð Þ dh
dx

� �

dx
¼ 0 ð1:1Þ

where h(x) is the thickness of the aquifer at point x and K(x) is the hydraulic
conductivity varying along the x-axis. Equation 1.1 is derived based on the law of
conservation and the Darcy law stating that the velocity of filtration q (the Darcy
velocity, specific flux) is equal to

q ¼ �KðxÞ dh

dx
: ð1:2Þ

The boundary conditions are the thickness of the aquifer at the ends of interval
[0, L] which is assumed to be known: h(0) = h0 and h(L) = hL.

Let the goal be to evaluate the thickness of the aquifer at any arbitrary location
x within interval [0, L]. To this end, we have to integrate Eq. 1.1. Its first inte-
gration yields

2K xð Þh xð Þ dh

dx
¼ C

Fig. 1.1 One-dimensional
steady state flow on interval
[0, L]
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