
Research and Development
in Intelligent Systems XXX

Max Bramer
Miltos Petridis Editors

Incorporating Applications and
Innovations in Intelligent Systems XXI

Proceedings of AI-2013,
The Thirty-third SGAI International
Conference on Innovative Techniques
and Applications of Artificial
Intelligence

Research and Development in Intelligent
Systems XXX

Incorporating Applications and Innovations
in Intelligent Systems XXI

Max Bramer • Miltos Petridis
Editors

Research and Development
in Intelligent Systems XXX

Incorporating Applications and
Innovations in Intelligent Systems XXI

Proceedings of AI-2013, The Thirty-third
SGAI International Conference on
Innovative Techniques and Applications
of Artificial Intelligence

123

Editors
Max Bramer
School of Computing
University of Portsmouth
Portsmouth
UK

Miltos Petridis
School of Computing, Engineering and

Mathematics
University of Brighton
Brighton
UK

ISBN 978-3-319-02620-6 ISBN 978-3-319-02621-3 (eBook)
DOI 10.1007/978-3-319-02621-3
Springer Cham Heidelberg New York Dordrecht London

Library of Congress Control Number: 2013950355

� Springer International Publishing Switzerland 2013
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of
the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations,
recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or
information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar
methodology now known or hereafter developed. Exempted from this legal reservation are brief
excerpts in connection with reviews or scholarly analysis or material supplied specifically for the
purpose of being entered and executed on a computer system, for exclusive use by the purchaser of the
work. Duplication of this publication or parts thereof is permitted only under the provisions of
the Copyright Law of the Publisher’s location, in its current version, and permission for use must
always be obtained from Springer. Permissions for use may be obtained through RightsLink at the
Copyright Clearance Center. Violations are liable to prosecution under the respective Copyright Law.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this
publication does not imply, even in the absence of a specific statement, that such names are exempt
from the relevant protective laws and regulations and therefore free for general use.
While the advice and information in this book are believed to be true and accurate at the date of
publication, neither the authors nor the editors nor the publisher can accept any legal responsibility for
any errors or omissions that may be made. The publisher makes no warranty, express or implied, with
respect to the material contained herein.

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

Programme Chairs’ Introduction

This volume comprises the refereed papers presented at AI-2013, the Thirty-third
SGAI International Conference on Innovative Techniques and Applications of
Artificial Intelligence, held in Cambridge in December 2013 in both the technical
and the application streams. The conference was organised by SGAI, the British
Computer Society Specialist Group on Artificial Intelligence.

The technical papers included new and innovative developments in the field,
divided into sections on Knowledge Discovery and Data Mining I, Knowledge
Discovery and Data Mining II, Intelligent Agents, Representation and Reasoning,
and Machine Learning and Constraint Programming. This year’s Donald Michie
Memorial Award for the best refereed technical paper was won by a paper entitled
‘‘Pattern Graphs: Combining Multivariate Time Series and Labelled Interval
Sequences for Classification’’ by S. Peter (University of Konstanz, Germany),
F. Höppner (Ostfalia University of Applied Sciences, Wolfenbüttel, Germany) and
M. R. Berthold (University of Konstanz, Germany).

The application papers included present innovative applications of AI
techniques in a number of subject domains. This year, the papers are divided
into sections on Medical Applications, Applications in Education and Information
Science, and AI Applications. This year’s Rob Milne Memorial Award for the best
refereed application paper was won by a paper entitled ‘‘Knowledge formalisation
for hydrometallurgical gold ore processing’’ by Christian Severin Sauer (Univer-
sity of West London, UK), Lotta Rintala (Aalto University, Finland) and Thomas
Roth-Berghofer (University of West London).

The volume also includes the text of short papers presented as posters at the
conference.

On behalf of the conference organising committee we would like to thank all
those who contributed to the organisation of this year’s programme, in particular
the programme committee members, the executive programme committees and
our administrators Mandy Bauer and Bryony Bramer.

Max Bramer, Technical Programme Chair, AI-2013.
Miltos Petridis, Application Programme Chair, AI-2013.

v

Acknowledgments

AI-2013 Conference Committee

Conference Chair

Prof. Max Bramer University of Portsmouth

Technical Programme Chair

Prof. Max Bramer University of Portsmouth

Deputy Technical Programme Chair

Prof. Daniel Neagu University of Bradford

Application Programme Chair

Prof. Miltos Petridis University of Brighton

Deputy Application Programme Chair

Dr. Jixin Ma University of Greenwich

Workshop Organiser

Prof. Adrian Hopgood Sheffield Hallam University

Treasurer

Rosemary Gilligan University of Hertfordshire

Poster Session Organiser

Dr. Nirmalie Wiratunga The Robert Gordon University

vii

FAIRS 2013

Dr. Paul Trundle University of Bradford
Giovanna Martinez Nottingham Trent University

UK CBR Organiser

Prof. Miltos Petridis University of Brighton

Publicity Officer

Dr. Ariadne Tampion

Conference Administrator

Mandy Bauer BCS

Paper Administrator

Bryony Bramer

Technical Executive Programme Committee

Prof. Max Bramer University of Portsmouth (Chair)
Prof. Frans Coenen University of Liverpool
Dr. John Kingston Be Informed
Dr. Peter Lucas University of Nijmegen, The Netherlands
Prof. Daniel Neagu University of Bradford (Vice-Chair)
Prof. Thomas Roth-Berghofer University of West London

Applications Executive Programme Committee

Prof. Miltos Petridis University of Brighton (Chair)
Mr. Richard Ellis Helyx SIS Ltd.
Ms. Rosemary Gilligan University of Hertfordshire
Dr. Jixin Ma University of Greenwich (Vice-Chair)
Dr. Richard Wheeler University of Edinburgh

viii Acknowledgments

Technical Programme Committee

Ali Orhan Aydin Istanbul Gelisim University
Yaxin Bi University of Ulster
Mirko Boettcher University of Magdeburg, Germany
Max Bramer University of Portsmouth
Krysia Broda Imperial College, University of London
Ken Brown University College Cork
Frans Coenen University of Liverpool
Madalina Croitoru University of Montpellier, France
Bertrand Cuissart Universite de Caen
Ireneusz Czarnowski Gdynia Maritime University, Poland
John Debenham University of Technology, Sydney
Nicolas Durand University of Aix-Marseille
Frank Eichinger SAP AG, Karlsruhe, Gemany
Sandra Garcia Esparza University College Dublin, Ireland
Adriana Giret Universidad Politécnica de Valencia
Nadim Haque Thunderhead.com
Arjen Hommersom University of Nijmegen, The Netherlands
John Kingston Be Informed
Konstantinos Kotis VTT Technical Research Centre of Finland
Ivan Koychev Bulgarian Academy of Science
Fernando Lopes LNEG-National Research Institute, Portugal
Peter Lucas Radboud University Nijmegen
Stephen G. Matthews De Montfort University, UK
Roberto Micalizio Universita’ di Torino
Dan Neagu University of Bradford
Lars Nolle Nottingham Trent University
Dan O’Leary University of Southern California
Juan Jose Rodriguez University of Burgos
María Dolores Rodríguez-Moreno Universidad de Alcalá
Thomas Roth-Berghofer University of West London
Fernando Sáenz-Pérez Universidad Complutense de Madrid
Miguel A. Salido Universidad Politécnica de Valencia
Rainer Schmidt University of Rostock, Germany
Frederic Stahl University of Reading
Jiao Tao Oracle USA
Simon Thompson BT Innovate
Andrew Tuson City University London
Graham Winstanley University of Brighton

Acknowledgments ix

Application Programme Committee

Hatem Ahriz Robert Gordon University
Tony Allen Nottingham Trent University
Ines Arana Robert Gordon University
Mercedes Argüello Casteleiro University of Salford
Ken Brown University College Cork
Sarah Jane Delany Dublin Institute of Technology
Richard Ellis Helyx SIS Ltd
Roger Evans University of Brighton
Lindsay Evett Nottingham Trent University
Rosemary Gilligan University of Hertfordshire
John Gordon AKRI Ltd
Elizabeth Guest Leeds Metropolitan University
Chris Hinde Loughborough University
Adrian Hopgood Sheffield Hallam University
Stelios Kapetanakis University of Brighton
Jixin Ma University of Greenwich
Lars Nolle Nottingham Trent University
Miltos Petridis University of Brighton
Rong Qu University of Nottingham
Miguel A. Salido Universidad Politécnica de Valencia
Roger Tait University of Cambridge
Wamberto Vasconcelos University of Aberdeen
Richard Wheeler Edinburgh Scientific

x Acknowledgments

Contents

Research and Development in Intelligent Systems XXX

Best Technical Paper

Pattern Graphs: Combining Multivariate Time Series
and Labelled Interval Sequences for Classification 5
Sebastian Peter, Frank Höppner and Michael R. Berthold

Knowledge Discovery and Data Mining I

Vertex Unique Labelled Subgraph Mining . 21
Wen Yu, Frans Coenen, Michele Zito and Subhieh El Salhi

Hierarchical Single Label Classification: An Alternative Approach . . . 39
Esra’a Alshdaifat, Frans Coenen and Keith Dures

Classification Based on Homogeneous Logical Proportions 53
Ronei M. Moraes, Liliane S. Machado, Henri Prade and Gilles Richard

Knowledge Discovery and Data Mining II

Predicting Occupant Locations Using Association Rule Mining 63
Conor Ryan and Kenneth N. Brown

Contextual Sentiment Analysis in Social Media Using
High-Coverage Lexicon . 79
Aminu Muhammad, Nirmalie Wiratunga, Robert Lothian
and Richard Glassey

Profiling Spatial Collectives . 95
Zena Wood

xi

http://dx.doi.org/10.1007/978-3-319-02621-3_1
http://dx.doi.org/10.1007/978-3-319-02621-3_1
http://dx.doi.org/10.1007/978-3-319-02621-3_2
http://dx.doi.org/10.1007/978-3-319-02621-3_3
http://dx.doi.org/10.1007/978-3-319-02621-3_3
http://dx.doi.org/10.1007/978-3-319-02621-3_4
http://dx.doi.org/10.1007/978-3-319-02621-3_5
http://dx.doi.org/10.1007/978-3-319-02621-3_6
http://dx.doi.org/10.1007/978-3-319-02621-3_6
http://dx.doi.org/10.1007/978-3-319-02621-3_7

Sentiment Classification Using Supervised Sub-Spacing 109
Sadiq Sani, Nirmalie Wiratunga, Stewart Massie and Robert Lothian

Intelligent Agents

On Applying Adaptive Data Structures to Multi-Player
Game Playing . 125
Spencer Polk and B. John Oommen

Anytime Contract Search . 139
Sunandita Patra, Satya Gautam Vadlamudi and Partha Pratim Chakrabarti

Diagnosing Dependent Action Delays in Temporal
Multiagent Plans . 157
Roberto Micalizio and Gianluca Torta

Representation and Reasoning

Conditional Preference-Nets, Possibilistic Logic, and the Transitivity
of Priorities. 175
D. Dubois, H. Prade and F. Touazi

Using Structural Similarity for Effective Retrieval of Knowledge
from Class Diagrams . 185
Markus Wolf, Miltos Petridis and Jixin Ma

Formulating the Temporal Causal Relationships Between
Events and Their Results . 199
J. Ma, M. Petridis and B. Knight

Machine Learning and Constraint Programming

The Importance of Topology Evolution in NeuroEvolution:
A Case Study Using Cartesian Genetic Programming
of Artificial Neural Networks . 213
Andrew James Turner and Julian Francis Miller

Inferring Context from Users’ Reviews for Context Aware
Recommendation . 227
F. Z. Lahlou, H. Benbrahim, A. Mountassir and I. Kassou

xii Contents

http://dx.doi.org/10.1007/978-3-319-02621-3_8
http://dx.doi.org/10.1007/978-3-319-02621-3_9
http://dx.doi.org/10.1007/978-3-319-02621-3_9
http://dx.doi.org/10.1007/978-3-319-02621-3_10
http://dx.doi.org/10.1007/978-3-319-02621-3_11
http://dx.doi.org/10.1007/978-3-319-02621-3_11
http://dx.doi.org/10.1007/978-3-319-02621-3_12
http://dx.doi.org/10.1007/978-3-319-02621-3_12
http://dx.doi.org/10.1007/978-3-319-02621-3_13
http://dx.doi.org/10.1007/978-3-319-02621-3_13
http://dx.doi.org/10.1007/978-3-319-02621-3_14
http://dx.doi.org/10.1007/978-3-319-02621-3_14
http://dx.doi.org/10.1007/978-3-319-02621-3_15
http://dx.doi.org/10.1007/978-3-319-02621-3_15
http://dx.doi.org/10.1007/978-3-319-02621-3_15
http://dx.doi.org/10.1007/978-3-319-02621-3_15
http://dx.doi.org/10.1007/978-3-319-02621-3_16
http://dx.doi.org/10.1007/978-3-319-02621-3_16

Constraint Relationships for Soft Constraints 241
Alexander Schiendorfer, Jan-Philipp Steghöfer, Alexander Knapp,
Florian Nafz and Wolfgang Reif

Short Papers

A Fuzzy Logic-Based Decision Support System for the Diagnosis
of Arthritis Pain for Rheumatic Fever Patients 259
Sanjib Raj Pandey, Jixin Ma, Choi-Hong Lai and Chiyaba Njovu

A Viewpoint Approach to Structured Argumentation 265
Nouredine Tamani, Madalina Croitoru and Patrice Buche

Rule Type Identification Using TRCM for Trend Analysis
in Twitter . 273
João Bártolo Gomes, Mariam Adedoyin-Olowe,
Mohamed Medhat Gaber and Frederic Stahl

KNNs and Sequence Alignment for Churn Prediction. 279
Mai Le, Detlef Nauck, Bogdan Gabrys and Trevor Martin

Applications and Innovations in Intelligent Systems XXI

Best Application Paper

Knowledge Formalisation for Hydrometallurgical
Gold Ore Processing . 291
Christian Severin Sauer, Lotta Rintala and Thomas Roth-Berghofer

Medical Applications

Extracting and Visualising Clinical Statements
from Electronic Health Records . 307
M. Arguello, M. J. Fernandez-Prieto and J. Des

Evaluation of Machine Learning Techniques in Predicting
Acute Coronary Syndrome Outcome . 321
Juliana Jaafar, Eric Atwell, Owen Johnson, Susan Clamp
and Wan Azman Wan Ahmad

Contents xiii

http://dx.doi.org/10.1007/978-3-319-02621-3_17
http://dx.doi.org/10.1007/978-3-319-02621-3_18
http://dx.doi.org/10.1007/978-3-319-02621-3_18
http://dx.doi.org/10.1007/978-3-319-02621-3_19
http://dx.doi.org/10.1007/978-3-319-02621-3_20
http://dx.doi.org/10.1007/978-3-319-02621-3_20
http://dx.doi.org/10.1007/978-3-319-02621-3_21
http://dx.doi.org/10.1007/978-3-319-02621-3_22
http://dx.doi.org/10.1007/978-3-319-02621-3_22
http://dx.doi.org/10.1007/978-3-319-02621-3_23
http://dx.doi.org/10.1007/978-3-319-02621-3_23
http://dx.doi.org/10.1007/978-3-319-02621-3_24
http://dx.doi.org/10.1007/978-3-319-02621-3_24

Applications in Education and Information Science

An AI-Based Process for Generating Games from Flat Stories 337
Rosella Gennari, Sara Tonelli and Pierpaolo Vittorini

Partridge: An Effective System for the Automatic Cassification
of the Types of Academic Papers . 351
James Ravenscroft, Maria Liakata and Amanda Clare

Aggregation Semantics for Link Validity . 359
Léa Guizol, Madalina Croitoru and Michel Leclère

AI Applications

Efficient Interactive Budget Planning and Adjusting Under
Financial Stress . 375
Peter Rausch, Frederic Stahl and Michael Stumpf

‘The First Day of Summer’: Parsing Temporal Expressions
with Distributed Semantics . 389
Ben Blamey, Tom Crick and Giles Oatley

Genetic Programming for Wind Power Forecasting
and Ramp Detection . 403
Giovanna Martínez-Arellano and Lars Nolle

Automated River Segmentation Using Simulated Annealing 419
N. Richards and J. M. Ware

Short Papers

A Multiagent Based Framework for the Simulation
of Mammalian Behaviour . 435
Emmanuel Agiriga, Frans Coenen, Jane Hurst and Darek Kowalski

Parameter Estimation of Nonlinear Systems Using Lèvy
Flight Cuckoo Search . 443
Walid M. Aly and Alaa Sheta

xiv Contents

http://dx.doi.org/10.1007/978-3-319-02621-3_25
http://dx.doi.org/10.1007/978-3-319-02621-3_26
http://dx.doi.org/10.1007/978-3-319-02621-3_26
http://dx.doi.org/10.1007/978-3-319-02621-3_27
http://dx.doi.org/10.1007/978-3-319-02621-3_28
http://dx.doi.org/10.1007/978-3-319-02621-3_28
http://dx.doi.org/10.1007/978-3-319-02621-3_29
http://dx.doi.org/10.1007/978-3-319-02621-3_29
http://dx.doi.org/10.1007/978-3-319-02621-3_30
http://dx.doi.org/10.1007/978-3-319-02621-3_30
http://dx.doi.org/10.1007/978-3-319-02621-3_31
http://dx.doi.org/10.1007/978-3-319-02621-3_31
http://dx.doi.org/10.1007/978-3-319-02621-3_32
http://dx.doi.org/10.1007/978-3-319-02621-3_32
http://dx.doi.org/10.1007/978-3-319-02621-3_33
http://dx.doi.org/10.1007/978-3-319-02621-3_33

Research and Development in
Intelligent Systems XXX

Best Technical Paper

Pattern Graphs: Combining Multivariate Time
Series and Labelled Interval Sequences for
Classification

Sebastian Peter, Frank Höppner and Michael R. Berthold

Abstract Classifying multivariate time series is often dealt with by transforming the
numeric series into labelled intervals, because many pattern representations exist to
deal with labelled intervals. Finding the right preprocessing is not only time consum-
ing but also critical for the success of the learning algorithms. In this paper we show
how pattern graphs, a powerful pattern language for temporal classification rules, can
be extended in order to handle labelled intervals in combination with the raw time
series. We thereby reduce dependence on the quality of the preprocessing and at the
same time increase performance. These benefits are demonstrated experimentally on
10 different data sets.

1 Introduction

In recent years the development of cheaper sensors and bigger storage capacities
has led to an increase in the amount of data gathered periodically. Companies are
now able to use (mobile and/or wireless) sensor networks more efficiently in many
different domains (e.g. health care, climate, traffic, business processes to name a
few) to collect data with usually various dimensions. By analysing temporal data,
companies try to gather more insight into their processes and are thereby able to draw

S. Peter (B) · M. R. Berthold
Nycomed-Chair for Bioinformatics and Information Mining, University of Konstanz,
Box 712, D-78457 Konstanz, Germany
e-mail: sebastian.peter@uni-konstanz.de

M. R. Berthold
e-mail: michael.berthold@uni-konstanz.de

F. Höppner
Department of Computer Science, Ostfalia University of Applied Sciences,
D-38302 Wolfenbüttel, Germany
e-mail: f.hoeppner@ostfalia.de

M. Bramer and M. Petridis (eds.), Research and Development in Intelligent Systems XXX, 5
DOI: 10.1007/978-3-319-02621-3_1, © Springer International Publishing Switzerland 2013

6 S. Peter et al.

conclusions, enabling them for example, to predict the market for the next week or
optimise the output by improving the production process.

One important aspect during the analysis step is often finding typical or char-
acteristic situations. To grasp or encompass these situations, various notions of
multivariate temporal patterns are described in literature. Example applications for
multivariate temporal patterns include the discovery of dependencies in wireless
sensor networks [1], the exploration of typical (business) work flows [3] or the clas-
sification of electronic health records [2]. Temporal patterns are often applied to
labelled interval data, as the resulting patterns are easy to understand for the experts
and also allow us to deal with multivariate data. To incorporate numerical time series
in the patterns, they are discretized and their behaviour is described by a linguis-
tic term (‘low revolutions’, ‘slowly accelerating’) that holds over a given period of
time, hence the term ‘labelled (temporal) interval’. The effectiveness of such pat-
terns depend strongly on this discretization step. In this paper we extend the powerful
concept of pattern graphs (see Fig. 1 as an example) enabling us to deal directly with
time series data and overcome the sensitivity of the preprocessing phase.

The paper is outlined as follows: The next section reviews related work and further
motivations for our work. We then give an introduction to pattern graphs (Sect. 3)
and the matching and learning algorithms (Sect. 4) [10, 11]. In Sect. 5, we contribute
the necessary changes to incorporate numeric time series. Section 6 presents the
experimental results, and we conclude the paper in Sect. 7.

2 Motivation and Related Work

In this paper we concentrate on multivariate temporal patterns to characterise the
evolution of multiple variables over time. These patterns are used in the antecedents
of classification rules. The data consists of labelled temporal intervals; the labels
may address categorical (e.g. ‘gear-shift’ in Fig. 1) or numerical features (e.g. ‘low
revolutions’ in Fig. 1). These labelled intervals and their relationships are combined
to form temporal patterns, for example by specifying the relationships between all
observed intervals like ‘A before B’, ‘A overlaps C’ and ‘C overlaps B’ [2, 5].
This notation is quite strict and somewhat ambiguous [7], because the qualitative

coupling(..,0.500) gear down

[1,*]

?

?
[1,*]

[1,*]

[1,*]

[1,*]

low revolutions

]*,1[]*,1[

?

[1,50]

[1,*]

gear up ?
[1,50]

?
[1,50] [1,*]

?
[1,*]

[1,*]

[1,*]?
[1,*]

middle revolutions

¬gear up

¬gear down ¬gear up

¬gear down

[1,*]

gear up

Fig. 1 Example of a pattern graph describing a driving cycle (learned from data, see [10])

Pattern Graphs: Combining Multivariate Time Series 7

relationship does not carry quantitative information about the degree of overlap or
size of a gap. Other approaches contain such information [3], but consider only those
events that do not include durations and thus offer no means to express concurrency
as in ‘A and B must co-occur for 5–10 time units’. To be more robust against noise,
some approaches allow to address parts of the intervals only [4, 9]. The recently
proposed pattern graphs [11] satisfy most of the shortcomings and will be used in
this paper (and will be introduced below in more detail).

Regardless of the pattern language, when the recorded data is numeric in nature,
this leads to the problem of having to convert the numeric data into labelled intervals.
This is usually done by applying thresholds, clustering methods or methods dedicated
to finding stable intervals (e.g. ‘Persist’ [8]). This step is time consuming: multiple
iterations and manual inspections are needed for a suitable discretization as a bad
discretization can render all efforts to retrieve good patterns useless. An example is
shown in Fig. 2, where the values of two time series (a) and (b) are discretized using
the threshold 5, leading to the same sequence of labelled intervals (with labels [low:
y ≤ 5] and [high: y > 5]) in Fig. 2c. In this case the sequences are not distinguishable
anymore, which is undesired if both series belong to different classes and we look for
a temporal pattern that distinguishes both classes from each other. Furthermore the
one perfect discretization may not exist in a situation where in class (a) the threshold
needs to be 5 whereas for class (b) 6 and for class (c) the threshold of 7 would
be perfect. To overcome this problem, the selection of optimal thresholds may be
postponed in the learning algorithm itself instead of leaving it as a preprocessing
step.

3 Pattern Graphs

This section reviews pattern graphs, which were first introduced in [11]. We consider
m (categorical or numeric) attributes with value range D j , composed of multivariate
observations x ∈ D with D = (D1 × · · · × Dm).

t

3

5

t
0 3 10 13 0 3 10 13

y:high

y:low

y

t
0 3 10 13

3

5y

(a) (b) (c)

Fig. 2 Two time series: positive class (a) and negativie class (b) discretized to the interval sequence
(c) by using the threshold 5 (dotted line), thereby loosing information to distinguish them from each
other

8 S. Peter et al.

Definition 1 ((sub)sequence). A sequence S consists of an arbitrary number of
observations (x1, . . . , xn) ∈ S with S = ⋃∞

i=1 Di . Let |S| = n denote the length
of the sequence S. A subsequence from index a to b of S is denoted by S|[a,b].

To describe those parts of the series that are relevant for the classification task,
we apply (local) constraints to subsequences:

Definition 2 (set of constraints for (sub)sequences). Let C = {C | C : S →
B} denote the set of all (possible) constraints on (sub)sequences. We distinguish
between value-constraints, restricting the acceptable values of the (sub)sequence, and
temporal constraints, which limit their duration. For a sequence S = (s1, . . . , sk),
examples of value-constraints are:

• C(S) = true (“don’t care”: is always satisfied)
• C(S) = true ⇔ ∀i : 1 ≤ i ≤ k : si, j ∈ C j with C j ⊕ D j for all 1 ≤ j ≤ m.

This constraint limits the range of accepted values for the sequence.

In this paper we consider only one type of temporal constraint:

• Given t ∈ T , T = {(a, b)|1 ≤ a ≤ b} ⊕ N
2, a temporal constraint is defined as

C(S) = true ⇔ a ≤ |S| ≤ b. Therefore a temporal constraint is represented by
an interval [a, b] and restricts the duration of the (sub)sequence S to lie within these
bounds. Here a is considered the minimal and b the maximal temporal constraint.

Up to now, pattern graphs have only been used for interval sequences, that is, a
condition (described by the interval label) either holds or not (D j = {0, 1}). We thus
have three different value-constraints: C j ⊕ {0} (absent), C j ⊕ {1} (present) and
C j ⊕ {0, 1} (don’t care). A pattern graph defines a partial order of constraints:

Definition 3 (pattern graph). A tuple M = (V, E,Cval ,Ctemp) is a pattern graph,
iff (V, E) is an acyclic directed graph with exactly one source (), one sink (⊥),
a finite node set V ⊕ N ∪ {	,⊥} and an edge set E ⊕ (V × V), for which the
following properties hold with V ′ = V \{	,⊥}:
• ∀(v1, v2) ∈ E : v2
= 	 (no incoming edge to)
• ∀(v1, v2) ∈ E : v1
= ⊥ (no outgoing edge from ⊥)
• ∀v ∈ V ′ : (∃w ∈ V : (v,w) ∈ E) ∧ (∃w ∈ V : (w, v) ∈ E)

(all nodes v ∈ V ′ have at least one incoming and outgoing edge)

Finally,Cval : V ′ → C is a function, mapping each node v ∈ V ′ to a value-constraint
C ∈ C , whereas Ctemp : V ′ → C maps each node v ∈ V ′ to a temporal constraint
C ∈ C . By C v

val we abbreviate Cval(v), i.e., the value constraint assigned to v. We
define C v

temp := Ctemp(v) analogously.

Definition 4 (mapping). A mapping B for a sequence S and a pattern graph
M = (V, E,Cval ,Ctemp) assigns each node v ∈ V \{	,⊥} a continuous subse-
quence S|[a,b]. 	 is assigned the fictitious subsequence S|[0,0] and ⊥ the subsequence
S|[|S|+1,|S|+1]. B(v) = [a, b] denotes the start and end index of the subsequence of
S assigned to node v.

Pattern Graphs: Combining Multivariate Time Series 9

1

B

A

50 2013

(b)

7

[1,*]

?

2

(a)

A B B
A

[1,*] [1,*]
[1,*]

3 4 5

Fig. 3 Example for multiple mapping candidates on a given graph (a) and sequence (b)

Definition 5 (match, valid mapping). A valid mapping B for pattern graph M =
(V, E,Cval ,Ctemp) and a sequence S of length n is a mapping with the following
additional properties: with V ′ = V \{	,⊥}

∀(v1, v2) ∈ E : B(v1) = [a, b] ∧ B(v2) = [c, d] ⇒ b + 1 = c (no gaps) (1)

∀i : 1 ≤ i ≤ n : ∃v ∈ V ′ : i ∈ B(v) (each index is assigned at least once) (2)

∀v ∈ V ′ : C v
val(S|B(v)) = true (value-constraint holds) (3)

∀v ∈ V ′ : C v
temp(S|B(v)) = true (temporal constraint holds) (4)

Having defined the pattern graph in detail we will now give an example to illustrate
the semantics of the pattern graph. Figure 3a shows an example of a pattern graph
with one path, which is read as follows: The temporal constraint of a node is depicted
above the node. A star represents an unlimited duration. The value-constraint of a
node is shown inside the node. We have two kinds of value-constraints for attribute
A: A means that the attribute is active (DA = {1}) and ¬A requires its absence
(DA = {0}). A node labelled ‘?’ (don’t care) is unconstrained. Please note that if the
node states A the behaviour of the other attributes is unconstrained.

Figure 3b shows a sequence where the vertical axis reveals two attributes A and
B, which hold over certain periods of time (black bars, time on horizontal axis). We
now discuss whether these sequence match the pattern graph in Fig. 3a. As this is
a simple graph, it contains only one path from source to sink. For this graph the
sequence has to be divided into four contiguous parts, so that the first part satisfies
the ‘don’t care’ constraint; during the second part the property A has to hold; the
property B must hold in the third part and both A and B have to hold during the last
part. All of these four parts require a duration of at least one time unit (but have no
upper bound on the duration) except the A node with a minimum duration of 3. The
sequence shown in Fig. 3a can be mapped to the graph, because we can clearly see
that A is active until B begins and is active until the end and during the last part A
becomes active again through to the end of the sequence. Actually the pattern graph
has more than one valid mapping (discussed later in Sect. 4). A more complex and
expressive pattern graph is found in Fig. 1, which describes a driving cycle derived
from real data [10].

10 S. Peter et al.

4 Matching and Learning Pattern Graphs

Matching a pattern graph to a sequence is essentially a combinatorial problem, an
efficient matching algorithm can be found in [11]. Often multiple matches are possible
and for each edge e = (u, v) ∈ E the algorithm provides a set of valid edge positions
p(e), i.e., a set of positions t that satisfy all value-constraints of node u for t ′ < t and
all value-constraints of node v for t ′ ≥ t . For the graph in Fig. 3a and the sequence
in Fig. 3b we have a set of valid locations p(e) = {0} for the edge e from node 	 to
⊥, but for the edge e′ from B to AB we have p(e′) = {13, 14, . . . , 19}. These edge
positions are organized in so called mapping candidates, which map each edge of
the graph to one contiguous interval of valid edge positions. So a mapping candidate
C may be considered as a precursor of a valid mapping B in the following sense (by
(·, v) we denote any edge leading to v):

∀v ∈ V : B(v) = [s, e] ⇒ s ∈ C(·, v) ∧ e ∈ C(v, ·)

Multiple mapping candidates exist, from which one or more valid mappings may
be derived. Consider the graph in Fig. 3. The ‘?’ node is valid during [0,20], the ‘A’
node is satisfied during [0,7] and [13,20], ‘B’ during [5,20] and finally ‘AB’ during
[5,7] and [13,20]. Out of these sets of valid positions the matching algorithm derives
two mapping candidates C1 and C2, assigning each edge its admissible positions.
Three valid mappings B1-B3, obtained from C1 and C2, are shown below (many
more are possible).

C1 1:[0,0], 2:[1,4], 3:[5,7], 4:[13,19], 5:[20,20] B1 [0,1] - [1,4] - [4,13] - [13,20]
B2 [0,2] - [2,7] - [7,16] - [16,20]

C2 1:[0,0], 2:[13,15], 3:[16,18] 4:[17,19] 5:[20,20] B3 [0,13] - [13,17] - [17,18] - [18,20]

While all edge positions from the mapping candidates ensure that the value con-
straints hold, the positions must also fulfil the temporal constraint of the node. For
instance, if the temporal constraint for the node labelled ‘A B’ was [5,*], the mapping
B2 and B3 would no longer be valid (because the sequence assigned to this node has
only a length of ≤ 4).

A two-phased learning algorithm for pattern graphs has been introduced in [10],
where a general pattern, matching all instances of a class, is learned in the first
phase. The second phase implements a beam-search, where in each iteration, the
k-best pattern graphs are refined further by special refinement operators, which add
new nodes or edges to the graph, modify temporal constraints or add value con-
straints to nodes in order to improve some measure of interestingness (we apply the
J-measure [12]).

Pattern Graphs: Combining Multivariate Time Series 11

y >= 3.5

(a) (b)

y:high y:high

]*,1[]*,1[]*,1[]*,1[

y:lowy:lowy:low

[1,*] [1,*]

Fig. 4 Two pattern graphs with a new constraint to distinguish the positive between the negative
sequences from Fig. 2

5 Extending Pattern Graphs to Time Series

In order to enable pattern graphs to deal with a numeric range D j ⊕ R (cf. Def. 1)
we introduce new value constraints called series constraints, where C j = {x |x ≤
σ} ⊕ D j or C j = {x |x ≥ σ} ⊕ D j for some threshold σ (cf. Def. 2). With these
additional constraints we enable pattern graphs to overcome the obstacle of finding
the best discretization to convert time series to labelled intervals, as every node may
now use its own threshold σ instead of relying on the predefined intervals alone. This
enables us to use different thresholds for different classes and it also allows us to use
different series constraints for the same series within the same class (local constraints
in different nodes). For example we can create the pattern graphs shown in Fig. 4a
and b which are able to separate the sequences shown in Fig. 2a and b nevertheless
they have the same interval representation as shown in Fig. 2.

To learn such constraints automatically from data, we have to extend the beam
search operators. While it is quite easy to check whether a given assignment of
subsequences to graph nodes represents a valid mapping, it is much more complicated
to derive new conditions that are in some way ‘optimal’ for the set of all possible
mappings. This is due to the fact that a graph node with constraint ‘y:low’ may
match an interval [s, e] with this label in many different ways: any sub-interval
[s′, e′] ⊕ [s, e] satisfies the node constraints; such a constraint still leaves many
possibilities for valid mappings. In order to refine (or introduce new) node constraints,
we have to consider all of these potential mappings at the same time, in order to
calculate what would be the best additional constraint to distinguish good from
bad cases. Enumeration of all possible mappings is not feasible because of their
large number. Thus we operate directly on the mapping candidates of the matching
algorithm.

Without loss of generality we will consider only the x ≤ σ constraint in the
following. The new operator is instantiated for each individual graph node v ∈ V .
As with all the other operators, it receives all mapping candidates (that already reflect
the value constraints of that node), the temporal constraint and the data sequence.
The objective is to derive a threshold σ on one (numeric) variable x of the sequence,
such that the additional node constraint x ≤ σ improves the discriminative power of
the pattern. Expressed more formally: if P is a pattern graph, let m P (s) = 1 denote
that P has a valid mapping to s ∈ S (0, else). Let G ′ denote the resulting pattern
if P is extended by the constraint x ≤ σ in node v. Then a confusion matrix from
mG ′(S) ∈ {0, 1} and a class k/¬k is created for G ′ to evaluate its utility.

12 S. Peter et al.

The naive approach to find the best refinement is to extend P with every possible
series constraint for x and then match all of the resulting graphs to all sequences. It
is sufficient to examine only those thresholds σ that change the matching result of
some s ∈ S, that is, for σ we obtain mG ′(s) = 1 but for σ − ε we have mG ′(s) = 0,
because it is only at these thresholds that the confusion matrices of the rule change.
Thus, we need to determine only as many confusion matrices as we have sequences.
How do we find the threshold σ for a given sequence s? If a subsequence, mapped
to node v, shall satisfy the constraint, we have to choose σ as the maximum of
all x . However we do not know this subsequence in advance, but have to consider all
possible subsequences that may be obtained from the mapping candidates. To let
all subsequences satisfy the constraint, we have to pick the smallest of all maximum
values of all possible subsequences. If this value were reduced only slightly (−λ),
there would be at least one subsequence for node v that would not match anymore
with the result that no valid mapping exists anymore. Lemma 1 shows that it is
sufficient to inspect only the shortest possible subsequences rather than all possible
subsequences.

Lemma 1. By max S we denote the maximum of the x-values in a (sub) sequence
S. Let Q be the set of all subsequences (that may occur in a valid mapping to node
v) and Q′ the set of shortest subsequences.1 Then min maxS∈Q S = min maxS∈Q′ S
holds.

Proof. Let S ∈ Q. Without loss of generality let us assume that S
∈ Q′. Thus, S
is not among the shortest subsequences and therefore we find a T ∈ Q′ ⊕ Q such
that T is a subsequence of S. All values of T are contained in S, but S contains
additional entries, therefore we have s := max S ≥ max T =: t . Thus, we know that
min maxS∈Q′ S ≤ t ≤ s. This means, that s = max S can be ignored safely in the
calculation of min maxS∈Q S.

Algorithm 1 findBestSeriesSmallerThanThresholdConstraint
Require: S: all sequences
Require: v: node to refine
Require: vmin : minimal length of the node
Ensure: best refinement

1: for s ∈ S do
2: find mapping candidates CM
3: values ← ⋃

c∈Cm
get MinMaxV alueFor MappingCandidate(s, c, vmin, v)

4: σ ← minvalues
5: collect all thresholds σ in set α

6: end for
7: sort all thresholds in α in ascending order
8: create and evaluate confusion matrices for all found thresholds.
9: add the threshold σ with highest measure to the node v as the series constraint
10: return refined pattern graph.

1 shortest in the following sense: ∀s′ ∈ Q′ : ¬∃s ∈ Q : s ⊂ s′.

Pattern Graphs: Combining Multivariate Time Series 13

Algorithm 2 getMinMaxValueForMappingCandidate
Require: s: sequence
Require: c: mapping candidate
Require: vmin : minimal length of the node
Require: v: node to refine
Ensure: smallest maximum value of the subsequences contained in c

1: pl ← latest start position ∈ c((·, v))

2: pe ← earliest end position ∈ c((v, ·))
3: Sm ← ∅
4: begin ← pe - vmin .
5: if begin > pl then
6: return maximum value contained in s|[pl,pe]
7: else
8: while begin ≤ pl do
9: Sm ← Sm ∪ s|[begin,begin+vmin]
10: begin ← begin + 1
11: end while
12: end if
13: return smallest value out of the maximum values from the subsequences ∈ Sm

The outline of the refinement operator to find the best x ≤ σ is shown in
Algorithm 1. In the lines 1–6 the algorithm computes the threshold as defined by
the Lemma 1. It utilises Algorithm 2 to find the maximum value of all shortest sub-
sequences for a given mapping candidate. vmin denotes either the minimal temporal
constraint of node v, or is a greater value if the graph structure requires longer
sequences in order to satisfy the temporal constraints of other nodes (for example
due to parallel paths).

We find the best refinement by evaluating all possible confusion matrices and
picking the one with the highest interestingness measure. In order to avoid overfitting,
the series constraint with the best measure will be relaxed similarly to the binary split
operator in decision tree learning: We search for the next greater value and use the
mean of both. This doesn’t change the prediction of the new pattern on the training
set, but is less restrictive for new instances. The refinement is completed in line 9 by
adding the series constraint with the computed value to the node.

From Algorithm 2 we can see that the shortest subsequences for a single map-
ping candidate are always subsequences with the same length, shifted by one time
unit. This allows us to use a priority queue, in order to extract the constraint value
efficiently.

Overfitting. An important step to avoid overfitting is to prevent nodes with the
minimum temporal constraints 1 to be refined with a series constraint. This would
allow the pattern graph to focus on one single time point and would thus stimulate
overfitting. We therefore enforce a minimal length of a node to be refined with
the new series constraint. If a node has a minimal duration of 1 during refinement, the
minimal length will be set to this minimal length (lower bound of vmin). This has the
consequence for step 1 that only subsequences with the minimal length, which are
mappable to the node have do be analysed. Additionally we have added a likelihood

14 S. Peter et al.

ratio [6] test after every refinement and keep only those graphs with statistically
significant improvements to avoid overfitting (which is a problem common to all
rule learners).

6 Experimental Evaluation

The experimental evaluation is divided into two different experimental setups. In
the first experiment we show that the series constraints help to overcome the pre-
processing problem discussed earlier. Whereas in the second experiment we show
that the new approach is able to perform better, even if a good discretization is applied
beforehand.

6.1 Robustness Against Preprocessing Errors

To show that series constraints could help dealing with sub-optimal preprocessing of
the data we took nine data sets from the UCR time series repository.2 This repository
already supplies training and tests partitions for each data set in a common format.
All of these data sets consist of a raw univariate time series which requires some
preprocessing: a moving average smoothing was applied to the series and we also
extracted an additional slope series. Thereby we artificially converted the data into
a multivariate time series (original and slope time series). In the second step this
preprocessed time series had to be converted into a labelled interval series by applying
3-quantile discretization. To achieve different discretization the quantile boundaries
are selected randomly for each iteration. We are aware of the fact that for the given
data sets algorithms exists that perform better, but most of these approaches could
not deal with multivariate data. These approaches often utilize 1-nearest neighbor
classification (1NN) with Euclidean distance or dynamic time warping, whereas
the pattern graphs rely on simple elements only (like intervals with a value ≥ σ)
and thus highlight structural differences. These simple elements keep pattern graphs
interpretable even in the case of complex multivariate data (see Sect. 6.2). Therefore
1NN-approaches are not the real competitors. To show the improvement of the learned
graphs with series constraints and allow future comparison for follow up work we
decided to use these data sets. Table 1 displays the results obtained by applying the
beam with and without the series constraints for 30 iterations per class and dataset.
The parameter for the minimum sequence length was set to 10, but the results obtained
by using additional operators with 5, 15 and 20 as minimal length led to nearly the
same results. The first row names the dataset, the second row displays the class (for
which the pattern graphs was learned for). The left side represents the search without

2 Keogh, E., Zhu, Q., Hu, B., Hao. Y., Xi, X., Wei, L. & Ratanamahatana, C. A. (2011). The UCR
Time Series Classification/Clustering Homepage: www.cs.ucr.edu/~eamonn/time_series_data/.

www.cs.ucr.edu/~eamonn/time_series_data/.

Pattern Graphs: Combining Multivariate Time Series 15

Table 1 Results on the data when the thresholds vary

series constraint the right side represents the search with series constraints. The third
row indicates accuracy and the fourth contains standard deviation.

For most of the classes the learned pattern graphs with the series constraints are
able to perform significantly better in terms of accuracy. We can also see that in most
cases standard deviation has decreased, showing that the suboptimal discretization
has been compensated. For four classes only small improvements in terms of accu-
racy and standard deviation occurred. For two classes the performance with series
constraints deteriorates: for the class # 3 from the Synthetic Control data set, standard
deviation increases while accuracy drops. In these cases the series constraint led the
beam search into a local maximum (the interestingness measure is also lower on the
training set). This leaves room for further improvements of this approach, because
without the limitations of the beam we should obtain at least the same performance
as before.

6.2 Improved Accuracy on Data with Good Discretization

We obtained a data set from a German company producing, amongst others, power
tools. This data set consists of 8 different classes, where each class describes a
different screwing process: screwing in and out using different gears of the power
tool and different screws. Each of these 564 instances are described by five time
series, e.g. voltage/current at the battery or engine etc. In a first step we manually
discretized each of this series to labelled intervals in an interactive manner until we

16 S. Peter et al.

Table 2 Results on the power tool data set

Power tools

Class 1 2 3 4 5 6 7 8

Approach a b a b a b a b a b a b a b a b

Accuracy 98.7 98.9 98.1 99.5 98.8 98.9 98.7 98.2 97.4 99.1 96.8 97.3 98.4 98.4 95.9 99.0

Std. Dev 0.7 0.9 0.9 0.6 0.9 0.9 0.9 1.3 1.4 1.1 1.4 1.4 1.1 1.6 2.3 2.7

Avg Imp. 0.3 1.4 0.01 −0.5 1.7 0.6 0 3.1

Fig. 5 Box plots showing the results of the complete classifier on the power tool data set

were satisfied with the results. Therefore we may safely assume that discretization is
good and it would be hard to achieve better discretization. We applied the beam search
(minimal length: 10) to this data set 30 times with and without the series constraint.
In each iteration we randomly partitioned the data set into 80 % training and 20 %
test. As a result of the good discretization we assume that the accuracy results would
be nearly the same, but may be improved by applying different thresholds to one
class or in between classes.

Table 2 shows the result. If we sum up the average improvements for all the
individual classes, the new graphs performed 6.6 % better. Most of the pattern graphs
learned with series constraints perform better (up to 3 %) and are only slightly worse
for one class #4 (−0.5 %). However improvements ‘per-class’ are not significant. So
far, each rule has predicted just one class. Next we combine the individual rules to a
single, multi-class classifier: we only classify an instance if and only if one pattern
graph has a valid mapping on the instance. In case none or more than one pattern
graph matches we predict “unknown”. The box plot in Fig. 5 and Table 3 shows the
result of this classifier, where we use the same pattern graphs as in Table 2, thus the
results origin from the same 30 runs with random training and test sets.

We can see that by using series constraints the overall accuracy has improved by
an average of 5.8 %. It is also interesting to note that in all 30 iterations, the lowest
accuracy of the new approach is at least as good as the average result without the series

Pattern Graphs: Combining Multivariate Time Series 17

Table 3 Mean accuracy and
standard deviation of the
complete classifier for the
powertool dataset

Approach Old New

Accuracy 84.7 90.5
Std. Dev 3.2 2.8

constraints. Additionally the mean accuracy using the new approach is nearly equal
to the best result obtained without the series constraints (−1.5 %). By inspecting
the learned pattern graphs, we observed that one or two additional series constraints
were derived per class. Depending on the class, the thresholds were slightly different,
which explains the improved accuracy as the number of false positives was able to
be reduced, without increasing the number of false negatives.

7 Conclusion

In this paper we have shown, that the results of pattern learning algorithms for labelled
sequences rely heavily on discretization of the source time series. The quality of the
learned patterns varies considerably when the discretization changes. In order to
overcome the problem of finding good discretization, which is time consuming and
not always possible, we introduced an algorithm capable of mining labelled intervals
together with the corresponding time series. The first experiment has shown that, in
comparison to the approach without the series constraint, the quality of the patterns
is higher resulting in and allowing for a more robust approach compared to a priori
discretization. Furthermore we have shown that even in situations, where discretiza-
tion already performs well, the quality of the patterns may be increased, because
different levels of discretization for different classes and even different thresholds
within one class may be utilized.

For future work the synergies of labelled intervals and numeric time series may
be improved further as, so far, we have only used simple constraints (≤, ≥). But it is
possible to use more sophisticated constraints on mean values or standard deviation.
This kind of constraint may provide further insight into the patterns.

Acknowledgments We would like to thank Stefan Mock from the Robert Bosch GmbH for kindly
providing the data.

References

1. Basile, T.M.A., Mauro, N.D., Ferilli, S., Esposito, F.: Relational temporal data mining for
wireless sensor networks (2009).

2. Batal, I., Valizadegan, H., Cooper, G.F., Hauskrecht, M.: A pattern mining approach for clas-
sifying multivariate temporal data. In: Bioinformatics and Biomedicine (BIBM), 2011 IEEE
International Conference on, pp. 358–365. IEEE (2011).

18 S. Peter et al.

3. Berlingerio, M., Pinelli, F., Nanni, M., Giannotti, F.: Temporal mining for interactive work-
flow data analysis. In: Proceedings of the 15th ACM SIGKDD international conference on
Knowledge discovery and data mining, KDD ’09, pp. 109–118. ACM, New York, NY, USA
(2009).

4. Chen, Y.C., Jiang, J.C., Peng, W.C., Lee, S.Y.: An efficient algorithm for mining time interval-
based patterns in large database. In: Proc. Int. Conf. Inf. Knowl. Mngmt., pp. 49–58. ACM
(2010).

5. Höppner, F.: Discovery of temporal patterns - learning rules about the qualitative behaviour of
time series. 2168, pp. 192–203. Freiburg, Germany (2001).

6. Kalbfleisch, J.G.: Probability and statistical inference: probability, vol. 2. Springer-Verlag
(1985).

7. Mörchen, F.: Unsupervised pattern mining from symbolic temporal data. SIGKDD Explor.
Newsl.9(1), 41–55 (2007).

8. Mörchen, F., Ultsch, A.: Optimizing time series discretization for knowledge discovery. In:
Proc. Int. Conf. Knowl. Disc. and Data Mining, pp. 660–665. ACM (2005).

9. Mörchen, F., Ultsch, A.: Efficient mining of understandable patterns from multivariate interval
time series. pp. 181–215. Springer (2007).

10. Peter, S., Höppner, F., Berthold, M.R.: Learning pattern graphs for multivariate temporal pattern
retrieval. In: Proc Int Symp Intel. Data, Analysis (2012).

11. Peter, S., Höppner, F., Berthold, M.R.: Pattern graphs: A knowledge-based tool for multivariate
temporal pattern retrieval. In: 6th IEEE International Conference on Intelligent Systems (IS’12)
(2012).

12. Smyth, P., Goodman, R.M.: An information theoretic approach to rule induction from databases.
IEEE Trans. Knowledge Discovery and Engineering 4(4), 301–316 (1992).

Knowledge Discovery and Data Mining I

