Springer Theses Recognizing Outstanding Ph.D. Research

Lina K. Blusch

The Siamese-Twin Porphyrin and Its Copper and Nickel Complexes: A Non-Innocent Twist

Springer Theses

Recognizing Outstanding Ph.D. Research

For further volumes: http://www.springer.com/series/8790

Aims and Scope

The series "Springer Theses" brings together a selection of the very best Ph.D. theses from around the world and across the physical sciences. Nominated and endorsed by two recognized specialists, each published volume has been selected for its scientific excellence and the high impact of its contents for the pertinent field of research. For greater accessibility to non-specialists, the published versions include an extended introduction, as well as a foreword by the student's supervisor explaining the special relevance of the work for the field. As a whole, the series will provide a valuable resource both for newcomers to the research fields described, and for other scientists seeking detailed background information on special questions. Finally, it provides an accredited documentation of the valuable contributions made by today's younger generation of scientists.

Theses are accepted into the series by invited nomination only and must fulfill all of the following criteria

- They must be written in good English.
- The topic should fall within the confines of Chemistry, Physics, Earth Sciences, Engineering and related interdisciplinary fields such as Materials, Nanoscience, Chemical Engineering, Complex Systems and Biophysics.
- The work reported in the thesis must represent a significant scientific advance.
- If the thesis includes previously published material, permission to reproduce this must be gained from the respective copyright holder.
- They must have been examined and passed during the 12 months prior to nomination.
- Each thesis should include a foreword by the supervisor outlining the significance of its content.
- The theses should have a clearly defined structure including an introduction accessible to scientists not expert in that particular field.

Lina K. Blusch

The Siamese-Twin Porphyrin and Its Copper and Nickel Complexes: A Non-Innocent Twist

Doctoral Thesis accepted by the Georg-August-University Göttingen, Germany

Author Dr. Lina K. Blusch Institute of Inorganic Chemistry Georg-August-University Göttingen Göttingen Germany Supervisor Prof. Dr. Franc Meyer Institute of Inorganic Chemistry Georg-August-University Göttingen Göttingen Germany

ISSN 2190-5053 ISSN 2190-5061 (electronic) ISBN 978-3-319-01673-3 ISBN 978-3-319-01674-0 (eBook) DOI 10.1007/978-3-319-01674-0 Springer Cham Heidelberg New York Dordrecht London

Library of Congress Control Number: 2013946220

© Springer International Publishing Switzerland 2013

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed. Exempted from this legal reservation are brief excerpts in connection with reviews or scholarly analysis or material supplied specifically for the purpose of being entered and executed on a computer system, for exclusive use by the purchaser of the work. Duplication of this publication or parts thereof is permitted only under the provisions of the Copyright Law of the Publisher's location, in its current version, and permission for use must always be obtained from Springer. Permissions for use may be obtained through RightsLink at the Copyright Clearance Center. Violations are liable to prosecution under the respective Copyright Law. The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use.

While the advice and information in this book are believed to be true and accurate at the date of publication, neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or omissions that may be made. The publisher makes no warranty, express or implied, with respect to the material contained herein.

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

Parts of this thesis have been published in the following journal articles:

"The Siamese-Twin Porphyrin: A Pyrazole-Based Expanded Porphyrin Providing a Bimetallic Cavity" L. K. Frensch, K. Pröpper, M. John, S. Demeshko, C. Brückner, F. Meyer, Angew. Chem. **2011**, 123, 1456–1460; Angew. Chem. Int. Ed. **2011**, 50, 1420–1424.

"Siamese-Twin Porphyrin: A Pyrazole-Based Expanded Porphyrin of Persistent Helical Conformation" L. K. Blusch, Y. Hemberger, K. Pröpper, B. Dittrich, F. Witterauf, M. John, G. Bringmann, C. Brückner, and F. Meyer, Chem. Eur. J. **2013**, *19*, 5868–5880.

"Hidden Non-Innocence in an Expanded Porphyrin: Electronic Structure of the Siamese-Twin Porphyrin's Dicopper Complex in Different Oxidation States" L. K. Blusch, K. E. Craigo, V. Martin-Diaconescu, E. Bill, A. B. McQuarters, S. Dechert, S. DeBeer, N. Lehnert, F. Meyer, DOI: 10.1021/ja406176e.

Believe those who are seeking the truth. Doubt those who find it.

André Guide

Supervisor's Foreword

The highly impressive dissertation by Mrs. Blusch describes, for the first time, the formal fusion of two porphyrin-like chromophores into an expanded porphyrin dubbed Siamese-twin porphyrin, whereby the fusion points are pyrazole moieties. The design of expanded porphyrins has become a key topic in contemporary porphyrin chemistry. This is because these systems contribute to the general understanding of the factors controlling the conformation of larger π -conjugated oligopyrrolic macrocycles, and particularly how structural and conformational effects modulate and interconvert aromatic/anti-aromatic/non-aromatic conjugated π -systems.

The Siamese-twin porphyrin structure was long sought-after, but all previous attempts had been unsuccessful and it was only once Mrs. Blusch became involved that this novel expanded porphyrin could firstly be made. The availability of this unprecedented type of macrocycle now opens up an entirely new field of study. As described in this thesis, physicochemical investigations (using multi-nuclear, 1D and 2D NMR spectroscopy, UV-vis spectroscopy, and mass spectrometry) characterize the connectivity of the macrocycle and support the conclusions derived with respect to macrocycle conformation, the electronic coupling of the two near-isolated π -conjugated systems present in the macrocycle, its acid/base properties, and its conformational flexibility. The intrinsically helimeric (chiral) conformation of the twin porphyrin was shown spectroscopically as well as by single crystal diffractometry and rationalized using computational studies.

One more and major aspect of the twin-porphyrins is evaluated: the Siamesetwin porphyrin contains two pseudoplanar $\{N_4\}$ porphyrin-like coordination sites that each can accommodate a transition metal ion. Once metalated, the twinporphyrin features a bimetallic complex in which the metals are bridged by two pyrazoles. Mrs. Blusch prepared the homobimetallic nickel(II) and copper(II) complexes as well as the heterometallic nickel(II)/copper(II) analog and characterized them by X-ray diffractometry, spectro-electrochemistry, cyclic voltammetry, SQUID magnetometry, X-ray absorption, and MCD spectroscopy, some of this in collaboration with specialty groups. Much of the investigations were focused on defining the degree of electronic coupling of the two metal centers and the involvement of the non-innocent ligand framework in redox events. An unusual ferromagnetic coupling of the two adjacent pyrazolate-bridged copper(II) ions and a sequence of multiple redox processes were found, whereby initial oxidations appear to be largely ligand-based. This now offers exciting prospects for exploiting novel metal-metal as well as metal-ligand cooperativity effects when activating and transforming substrates at the metalated Siamese-twin porphyrin.

28 February 2013, Göttingen

Prof. Dr. Franc Meyer

Acknowledgments

At the beginning I would like to thank my mentor Prof. Franc Meyer for his support, the scientific freedom combined with his precious guidance and advice, for this challenging and versatile project and the supply of several analytical devices and funding. Further, I would like to thank him for the possibility to participate at national and international conferences, the introduction to the scientific community, and the opportunity to do research at the University of Connecticut in Prof. Brückner's laboratory. With respect to this, I also would like to thank Prof. Christian Brückner for his support, the good collaboration, his expertise in porphyrin chemistry, and the possibility to accommodate me in his laboratory. Special thanks are accredited to Prof. Ulf Diederichsen for being my correferent and writing several endorsements for scholarship application processes.

I further would like to thank all my collaborators, who are Yasmin Hemberger, Franziska Witterauf, Prof. Gerhard Bringmann, Dr. Eckhard Bill, Prof. Nicolai Lehnert, Kevin Pröpper, Birger Dittrich, Prof. Serena DeBeer, and Dr. Vlad Martin-Diaconescu for the good communication and teamwork.

I gratefully acknowledge the funding of the "Fonds der Chemischen Industrie" and the DAAD without whom the fruitful international experiences would not have been realized.

I thank the people from the analytic laboratories, the mass spectrometry division, Dr. Michael John, and Wolfgang Zolke from the NMR spectroscopy division Dr. Claudia Stückl for measuring several EPR spectra and the scientific discussions and my bachelor students and all other students who supported me in the laboratory. Thank to Adam, Kai, Andreas, and Jörg for the wonderful atmosphere in our common laboratory. I thank Anne, Adam, Kai, Antonia, Sven, Anett, Michael, Les, Jill, Michelle, Victoria, Esther, and Kristian for correcting parts of the present Ph.D. work and the whole Meyer group for the pleasant atmosphere throughout my Ph.D. time.

Finally, I thank my husband for being my husband and his strong support in any way and also my family for their continuous support.

Contents

1	Gen	eral Introduction	1
	1.1	Porphyrins	1
		1.1.1 Natural Porphyrins	2
		1.1.2 Synthetic Porphyrins	6
	1.2	Expanded Porphyrins	10
		1.2.1 Aromaticity in Large Systems	11
		1.2.2 Complexes of Expanded Porphyrins	13
		1.2.3 Applications	15
	1.3	Oxidoreductase Enzymes	16
		1.3.1 Monooxygenases.	16
	1.4	Pyrazole: A Common Motif in Dinuclear Complexes.	17
	Refe	erences	19
2	Obj	ective	23
	Refe	erence	24
_	-		
3	Rou	te to the Siamese-Twin Porphyrin	25
	3.1	Cyclization Strategies.	26
	3.2	Synthesis of Building Blocks	27
		3.2.1 The Pyrazole Precursor	27
		3.2.2 The Pyrrole Precursor	29
		3.2.3 Pyrrole/Pyrazole Hybrids	30
		3.2.4 Dipyrromethane/Dipyrromethene Units	32
	3.3	Cyclization Reactions.	32
		3.3.1 Route A	33
		3.3.2 Route B	33
		3.3.3 Route C	34
	3.4	Oxidation Reaction Toward the Siamese-Twin Porphyrin	37
	Refe	erences	40
4	Siar	nese-Twin Porphyrin LH4	41
•	4.1	The Twist	41
		4.1.1 NMR Spectroscopy	41
		I I I I I I I I I I I I I I I I I I I	

		4.1.2 \$	Solid-State Structure and UV-Vis Spectroscopy	45
		4.1.3 (Drigin of the Twist	47
		4.1.4 A	Aromaticity	47
	4.2	pH Depe	endency	49
		4.2.1 N	NMR Spectroscopy	50
		4.2.2 I	IV-Vis Spectroscopy	54
		423 I	OFT Calculations	56
	43	Chiral R	esolution	56
	44	Redox P	Pronerties	62
	Refe	rences		64
5	Nicł	el and C	opper Complexes	67
-	5.1	Compari	ison of Optical Properties	70
	5.2	Dicoppe	r(II) Complex LCu_2	71
		5.2.1 8	Solid-State Structure	71
		5.2.2 N	Magnetic Properties.	73
		5.2.3 N	MCD Spectroscopy	78
		5.2.4 (Chiral Resolution	81
	5.3	Mono- a	and Di-Nickel(II) Complexes LH ₂ Ni and LNi ₂	81
		5.3.1 \$	Solid-State Structures	81
		5.3.2 r	bH Dependency	85
		5.3.3 N	MCD Spectroscopy	87
		5.3.4 (Chiral Resolution	88
	5.4	Heterobi	imetallic Copper(II) Nickel(II) Complex LCuNi	88
		5.4.1 N	Magnetic Properties.	88
	Refe	rences		91
6	Red	ox Prope	rties	93
	6.1	Dicoppe	r Complex	95
		6.1.1 F	Electrochemical Oxidation/Reduction	97
		6.1.2 (Chemical Oxidation.	98
		6.1.3 I	Localization of the Redox Center in LCu_2^+	100
		6.1.4 I	ocalization of the Redox Center in LCu_2^{2+}	102
	6.2	Mono- a	and Di-Nickel Complexes	107
		6.2.1 F	Electrochemical Oxidation/Reduction	108
		6.2.2 (Chemical Oxidation.	110
		6.2.3 I	ocalization of the Redox Center in LNi ₂ ⁺	111
	6.3	Copper	Nickel Complex.	117
	0.0	6.3.1 F	Electrochemical Oxidation/Reduction	118
		6.3.2 (Chemical Oxidation.	120
		6.3.3 I	ocalization of the Redox Center in LCuNi ⁺	120
		6.3.4 I	ocalization of the Redox Center in LCuNi ²⁺	122
	Refe	rences		124

7	Sun	imary a	and Outlook	127	
8	Experimental Section				
	8.1	Instru	ments and Materials	129	
	8.2	Ligan	d Synthesis	132	
		8.2.1	3.5-Bis-(hydroxy(phenyl)methyl)-4-phenyl-		
			1 <i>H</i> -pyrazole (13).	132	
		8.2.2	3,5-Bis-(chloro(phenyl)methyl)-4-phenyl-		
			1 <i>H</i> -pyrazole hydrochloride (7)	133	
		8.2.3	3,5-Bis-(1 <i>H</i> -pyrrole-2-yl-benzyl)-1 <i>H</i> -pyrazole (24a)	133	
		8.2.4	3,5-Bis-(3,4-diethyl-1 <i>H</i> -pyrrole-2-yl-benzyl)-		
			1 <i>H</i> -pyrazole (24b)	134	
		8.2.5	3,5-Bis-(3,4-diethyl-5-formyl-1 <i>H</i> -pyrrole-2-		
			yl-benzyl)-1 H -pyrazole (25)	135	
		8.2.6	Siamese-twin Porphyrinogen 6d	136	
		8.2.7	Siamese-twin Porphyrin LH ₄	137	
		8.2.8	Siamese-twin Porphyrin LH_6^{2+}	138	
	8.3	Comp	lex Synthesis	139	
		8.3.1	Siamese-twin Porphyrin Dicopper(II) Complex LCu ₂	139	
		8.3.2	Siamese-twin Porphyrin Dinickel(II) Complex LNi ₂	140	
		8.3.3	Siamese-twin Porphyrin Mononickel(II)		
			Complex LH ₂ Ni	141	
		8.3.4	Siamese-twin Porphyrin Copper(II) Nickel(II)		
			Complex LCuNi	142	
		8.3.5	General Procedure Toward LM ₂ ⁺	143	
		8.3.6	General Procedure Toward LM_2^{2+}	143	
	Refe	erences		144	
Ap	opend	ix		147	
Sc	ientif	ic Cont	tributions	153	
Cı	ırricu	lum V i	itae	155	
In	dex .			157	

Abbreviations

AM1	Austin model 1
antiferro	Antiferromagnetic
Bn	Benzyl
BP86	Becke-Perdew-1986
Bz	Benzoyl
CA	Chloranil
CD	Circular dichroism
COSY	Correlation spectroscopy
СТ	Charge transfer
CV	Cyclic voltammetry
D	Donor atom
DBU	1,8-Diazabicyclo[5.4.0]undec-7-ene
DDQ	2,3-Dichloro-5,6-dicyano-1,4-benzoquinone
DFc	Decamethylferrocene
DFT	Density functional theory
DMF	Dimethylformamide
DMSO	Dimethylsulfoxide
EDG	Electron donating group
EPR	Electron paramagnetic resonance
ESI	Electrospray ionization
Et	Ethyl
EWG	Electron withdrawing group
ex	Exchange
EXAFS	Extended X-ray absorption fine structure
Fc	Ferrocene
ferro	Ferromagnetic
h	Hour
HMBC	Heteronuclear multiple-bond correlation
HOMO	Highest occupied molecular orbital
HPLC	High pressure liquid chromatography
HR	High resolution
IAM	Independent atom model
IBX	2-Iodoxybenzoic acid
IR	Infrared

IV	Intervalence
LC	Liquid chromatography
lcp	Left circular polarized
LĹ	Ligand-to-ligand
LUMO	Lowest unoccupied molecular orbital
m. p.	Melting point
Me	Methyl
min	Minute
MM	Metal-to-metal
MRI	Magnetic resonance imaging
MS	Mass spectrometry
NIR	Near infrared
NLO	Non-linear optics
NMR	Nuclear magnetic resonance
NOE	Nuclear overhauser effect
OAc	Acetate
OEP	Octaethylporphyrin
PDT	Photodynamic therapy
Ph	Phenyl
ppm	Parts per million
PS	Polystyrene
ру	Pyridine
pyr	Pyrrole
pz	Pyrazole
r. t.	Room temperature
rcp	Right circular polarized
sMMO	Soluble methane monooxygenase
SQUID	Superconducting quantum interference device
SVP	Split valence polarization
SWV	Square wave voltammetry
t	Total
TEMPO	2,2,6,6-Tetramethyl-1-piperidinyloxy
TFA	Trifluoroacetic acid
TLC	Thin layer chromatography
TPP	Tetraphenylporphyrin
UV-vis	Ultraviolet-visible
VTVH	Variable temperature variable field
XAS	X-ray absorption spectroscopy
ZFS	Zero field splitting

Chapter 1 General Introduction

Porphyrins are planar aromatic macrocycles and ubiquitous in nature [1]. Their monometallic complexes are involved in many key processes of life, such as: respiration and photosynthesis [2–4]. Since their discovery, these exceptional systems stimulated enormous interest. Their isolation and subsequent total synthesis shed light on their constitution and function and in turn this research was rewarded with several nobel prizes [5]. With the synthetic procedures in hand, a range of synthetic modifications [6] were made viable utilizing the attachment of various backbone residues, replacement of subheterocyclic units and the expansion of the core structure. The latter opens a completely new subfield of porphyrinoids: the class of expanded porphyrins [7–11]. These higher analogs of porphyrins are excellent candidates to study fundamental questions of aromaticity [12, 13] and with their larger cavities they provide ligand scaffolds capable of supporting late transition metal or even bimetallic complexes [14–16]. Sessler, Osuka, Kim, Latos-Grazynski, Chandrashekar and Vogel pioneered the field, which has developed rapidly within the last 40 years.

In the present work, a novel expanded porphyrin system with biomimetic elements is introduced: the Siamese-twin porphyrin [17]. Inspired by the mechanisms of cytochrome P450 and the bimetallic active center of methane monooxygenase [3, 4], it was designed to combine their motifs and to yield fascinating redox properties.

1.1 Porphyrins

After the short introduction, the porphyrinic macrocycle is now described in more detail (Fig. 1.1). Pyrrole, as the basic unit of porphyrins, is an aromatic fivemembered nitrogen heterocycle and belongs to the group of azoles [18, 19]. Due to its six π -electrons distributed over five atoms, pyrroles are π -excessive and therefore good π -donors. Its new nomenclature of arabic numbers is not consistently used. Particularly, in porphyrin chemistry, the old greek letters are common, because they retain its validation when pyrrole is part of the porphyrinic scaffold.

DOI: 10.1007/978-3-319-01674-0_1, © Springer International Publishing Switzerland 2013

and Nickel Complexes: A Non-Innocent Twist, Springer Theses,

Fig. 1.1 *Left*: Pyrrole labeled according to the old (*Greek letters*) and new (*Arabic numbers*) nomenclature; *Right*: Chemical structure of the porphyrin system with labeling and the highlighted 18 π -electrons counting conjugation pathway (Sect. 1.2.1)

Porphyrin consists of all together four pyrrole units that are linked between their α -positions via methine bridges, also denoted as *meso* carbon atoms. Porphyrins are planar and have an extended π -system, in which only 18 out of 24 π -electrons contribute to the delocalized "conjugation pathway" which is highlighted in Fig. 1.1. Due to their delocalized system, the highest occupied molecular orbital (HOMO)–lowest unoccupied molecular orbital (LUMO) gap shrinks and light absorption is seen in the visible region, which explains their intense colors. Porphyrins show characteristic absorption at around 400 nm with an extinction coefficient of around 10⁵ m⁻¹cm⁻¹, the so called Soret-band [20, 21].

In its twice deprotonated form, porphyrins are tetradentate chelating ligands offering a rigid, square planar cavity (radius of 0.6 - 0.7 Å) [2]. Only with metal ions of distinct size in-plane coordination modes can be formed (Fig. 1.2) [22, 23]. With larger metal ions complexes can only be formed adopting an out-of-plane coordination mode. A change of the metal oxidation or spin state can introduce a geometry flip due to the change of the metal ion's size.

1.1.1 Natural Porphyrins

The most famous natural porphyrins are heme and chlorophyll (Fig. 1.3). The first is an iron porphyrin complex, which is part of many active sites of different proteins, such as hemoglobin and cytochrome P450. Chlorophyll is a magnesium porphyrin complex which is indispensible for photosynthesis [3]. In photosynthesis light energy is converted to chemical energy stored as glucose (Scheme 1.1).