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Introduction

In 1920 Łukasiewicz introduced his three valued logic ([223]), the first model of
multiple-valued logic. The n-valued propositional logic for n > 3 was constructed
in 1922 and the ℵ0-valued Łukasiewicz-Tarski logic in 1930 ([224]). The first com-
pleteness theorem for ℵ0-valued Łukasiewicz-Tarski logic was given by Wajsberg
in 1935. As a direct generalization of two-valued calculus, Post introduced in 1921
an n-valued propositional calculus distinct from that of Łukasiewicz ([239]).

In the early 1940s Gr.C. Moisil was the first to develop the theory of n-
valued Łukasiewicz algebras with the intention of algebraizing Łukasiewicz’s logic
([226, 227]), but an example of A. Rose from 1956 established that for n ≥ 5 the
Łukasiewicz implication can no longer be defined on a Łukasiewicz algebra. Conse-
quently, the structures introduced by Moisil are models for Łukasiewicz logic only
for n= 3 and n= 4. These algebras are now called Łukasiewicz-Moisil algebras or
LM algebras for short ([14]).

The loss of implication has led to another type of logic, today called Moisil
logic, distinct from the Łukasiewicz system. The logic corresponding to n-valued
Łukasiewicz-Moisil algebras was created by Moisil in 1964. The fundamental con-
cept of Moisil logic is nuancing. During 1954–1973 Moisil introduced the θ -valued
LM algebras without negation, applied multiple-valued logics to switching theory
and studied algebraic properties of LM algebras (representation, ideals, residuation)
([228]). Moisil’s works have been continued by many mathematicians ([149, 151]).
A. Iorgulescu introduced and studied θ -valued LM algebras with negation ([170]),
while V. Boicescu defined and investigated n-valued LM algebras without negation
([13]).

Today these multiple-valued logics have been developed into fuzzy logics, which
connect quantum mechanics, mathematical logic, probability theory, algebra and
soft computing.

In 1958 Chang defined MV-algebras ([38]) as the algebraic counterpart of ℵ0-
valued Łukasiewicz logic and he gave another completeness proof of this logic
([39]).

An MV-algebra is an algebra (A,⊕,−,0) with a binary operation ⊕, a unary
operation − and a constant 0 satisfying the following equations:

vii



viii Introduction

(MV1) (x ⊕ y)⊕ z= x ⊕ (y ⊕ z);
(MV2) x ⊕ y = y ⊕ x;
(MV3) x ⊕ 0= x;
(MV4) (x−)− = x;
(MV5) x ⊕ 0− = 0−;
(MV6) (x− ⊕ y)− ⊕ y = (y− ⊕ x)− ⊕ x.

Studies on MV-algebras have been developed in [5–8, 22, 77, 81, 87, 89, 91, 120,
139, 146, 147, 153, 213, 214, 217–219, 247].

Starting from the systems of positive implicational calculus, weak systems of
positive implicational calculus and BCI and BCK systems, in 1966 Y. Imai and K.
Iséki introduced the BCK-algebras ([168]).

In 1977 R. Grigolia introduced MVn-algebras to model the n-valued Łukasiewicz
logic ([157]) and it was proved that there is a connection between n-valued
Łukasiewicz algebras and MVn-algebras ([171–173, 191, 216]).

One of the most famous results in the theory of MV-algebras was Mundici’s
theorem from 1986 which states that the category of MV-algebras is equivalent to
the category of Abelian �-groups with strong unit ([229]).

The non-commutative generalizations of MV-algebras called pseudo-MV alge-
bras were introduced by G. Georgescu and A. Iorgulescu in [135] and [137] and
they can be regarded as algebraic semantics for a non-commutative generalization
of a multiple-valued reasoning ([215]). The pseudo-MV algebras were introduced
independently by J. Rachůnek ([241]) under the name of generalized MV-algebras.

A. Dvurečenskij proved in [97] that any pseudo-MV algebra is isomorphic with
some interval in an �-group with strong unit, that is, the category of pseudo-MV
algebras is equivalent to the category of unital �-groups.

Residuation is a fundamental concept of ordered structures and categories and
Ward and Dilworth were the first to introduce the concept of a residuated lattice as
a generalization of ideal lattices of rings ([262]). The theory of residuated lattices
was used to develop algebraic counterparts of fuzzy logics ([256]) and substructural
logics ([234]).

A residuated lattice is defined as an algebra A= (A,∧,∨,�,→,�, e) of type
(2,2,2,2,2,0) satisfying the following conditions:

(A1) (A,∧,∨) is a lattice;
(A2) (A,�, e) is a monoid;
(A3) x � y ≤ z iff x ≤ y → z iff y ≤ x � z for any x, y, z ∈ A (pseudo-

residuation).

A residuated lattice with a constant 0 (which can denote any element) is called a
pointed residuated lattice or full Lambek algebra (FL-algebra, for short). If x ≤ e

for all x ∈A, then A is called an integral residuated lattice. An FL-algebra A which
satisfies the condition 0≤ x ≤ e for all x ∈A is called FLw-algebra or bounded in-
tegral residuated lattice ([129]). In this case we put e = 1, so that an FLw-algebra
will be denoted (A,∧,∨,�,→,�,0,1). Clearly, if A is an FLw-algebra, then
(A,∧,∨,0,1) is a bounded lattice.

In order to formalize the multiple-valued logics induced by continuous t-norms
on the real unit interval [0,1], P. Hájek introduced in 1998 a very general multiple-
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valued logic, called Basic Logic (or BL) ([158]). Basic Logic turns out to be a com-
mon ingredient in three important multiple-valued logics: ℵ0-valued Łukasiewicz
logic, Gödel logic and Product logic. The Lindenbaum-Tarski algebras for Basic
Logic are called BL-algebras ([23, 82, 220–222, 255–257]). Apart from their log-
ical interest, BL-algebras have important algebraic properties and they have been
intensively studied from an algebraic point of view.

The well-known result that a t-norm on [0,1] has residuum if and only if the
t-norm is left-continuous makes clear that BL is not the most general t-norm based
logic. In fact, a weaker logic than BL, called Monoidal t-norm based logic (MTL,
for short) was defined in [117] and proved in [197] to be the logic of left-continuous
t-norms and their residua. The algebraic counterpart of this logic is MTL-algebra,
also introduced in [117].

G. Georgescu and A. Iorgulescu introduced in [136] the pseudo-BL algebras as
a natural generalization of BL-algebras in the non-commutative case. A pseudo-BL
algebra is an FLw-algebra which satisfies the conditions:

(A4) (x → y)� x = x � (x � y)= x ∧ y (pseudo-divisibility);
(A5) (x → y)∨ (y → x)= (x � y)∨ (y � x)= 1 (pseudo-prelinearity).

Properties of pseudo-BL algebras were deeply investigated by A. Di Nola, G.
Georgescu and A. Iorgulescu in [85] and [86]. Some classes of pseudo-BL algebras
were investigated in [143] and the corresponding propositional logic was established
by Hájek in [158] and [159].

A more general structure than the pseudo-BL algebra is the weak pseudo-BL
algebra or pseudo-MTL algebra introduced by P. Flondor, G. Georgescu and A.
Iorgulescu in [122]. Pseudo-MTL algebras are FLw-algebras satisfying condition
(A5) and they include as a particular case the weak BL-algebras which is an alter-
native name for MTL-algebras.

Properties of pseudo-MTL algebras are also studied in [46, 144, 181].
An FLw-algebra which satisfies condition (A4) is called a divisible residuated

lattice or bounded R�-monoid. Properties of divisible residuated lattices were stud-
ied by A. Dvurečenskij, J. Rachůnek and J. Kühr ([105, 111, 205, 240]).

Pseudo-BCK algebras were introduced in 2001 by G. Georgescu and A.
Iorgulescu ([138]) as non-commutative generalizations of BCK-algebras. Proper-
ties of pseudo-BCK algebras and their connection with other fuzzy structures were
established by A. Iorgulescu in [179–182].

For a guide through the pseudo-BCK algebras realm we refer the reader to the
monograph [186].

Another generalization of pseudo-BL algebras was given in [148], where pseudo-
hoops were defined and studied. Pseudo-hoops were originally introduced by Bos-
bach in [15] and [16] under the name of complementary semigroups. It was proved
that a pseudo-hoop has the pseudo-divisibility condition and it is a meet-semilattice,
so a bounded R�-monoid can be viewed as a bounded pseudo-hoop together with
the join-semilattice property. In other words, a bounded pseudo-hoop is a meet-
semilattice ordered residuated, integral and divisible monoid.

Other topics in multiple-valued logic algebras have been studied in [34, 36, 92,
132, 141, 150, 248].
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The notion of a state is an analogue of a probability measure and it has a very
important role in the theory of quantum structures ([108]). The basic idea of states is
an averaging of events (elements) of a given algebraic structure. Since in the case of
Łukasiewicz∞-valued logic the set of events has the structure of an MV-algebra, the
theory of probability on this logic is based on the notion of a state defined on an MV-
algebra. Besides mathematical logic, Riečan and Neubrunn studied MV-algebras
as fields of events in generalized probability theory ([250]). Therefore, the study
of states on MV-algebras is a very active field of research ([40, 83, 84, 119, 133,
246]) which arises from the general problem of investigating probabilities defined
for logical systems.

States on an MV-algebra (A,⊕,− ,0) were first introduced by D. Mundici in
[230] as functions s :A−→ [0,1] satisfying the conditions:

s(1)= 1 (normality);
s(x ⊕ y)= s(x)+ s(y) if x � y = 0 (additivity),

where x � y = (x− ⊕ y−)−.
They are analogous to finitely additive probability measures on Boolean algebras

and play a crucial role in MV-algebraic probability theory ([249]).
States on other commutative and non-commutative algebraic structures have been

defined and investigated by many authors ([20, 21, 102, 133, 134, 140, 142, 258,
259]).

The aim of this book is to present new results regarding non-commutative
multiple-valued logic algebras and some of their applications. Almost all the results
are based on the author’s recent papers ([42–75]).

The book consists of nine chapters.
The Chap. 1 is devoted to pseudo-BCK algebras. After presenting the basic

definitions and properties, we prove new properties of pseudo-BCK algebras with
pseudo-product and pseudo-BCK algebras with pseudo-double negation. Examples
of proper pseudo-BCK algebras, good pseudo-BCK algebras and pseudo-BCK lat-
tices are given, and the orthogonal elements in a pseudo-BCK algebra are charac-
terized. Finally, we define the maximal and normal deductive systems of a pseudo-
BCK algebra with pseudo-product and we study their properties.

In Chap. 2 we recall the basic properties of pseudo-hoops, we introduce the no-
tions of join-center and cancellative-center of pseudo-hoops and we define and study
algebras on subintervals of pseudo-hoops. Additionally, new properties of a pseudo-
hoop are proved.

Chapter 3 is devoted to residuated lattices. We investigate the properties of the
Boolean center of an FLw-algebra and we define and study the directly indecom-
posable FLw-algebras. One of the main results consists of proving that any linearly
ordered FLw-algebra is directly indecomposable. Finally, we define and study FLw-
algebras of fractions relative to a meet-closed system.

In Chap. 4 we present some specific properties of other non-commutative
multiple-valued logic algebras: pseudo-MTL algebras, bounded R�-monoids,
pseudo-BL algebras and pseudo-MV algebras. As main results, we extend to the
case of pseudo-MTL algebras some results regarding prime filters proved for



Introduction xi

pseudo-BL algebras. The Glivenko property for a good pseudo-BCK algebra is
defined and it is shown that a good pseudo-hoop has the Glivenko property.

Chapter 5 deals with special classes of non-commutative residuated structures:
local, perfect and Archimedean structures. The local bounded pseudo-BCK(pP)
algebras are characterized in terms of primary deductive systems, while the per-
fect pseudo-BCK(pP) algebras are characterized in terms of perfect deductive sys-
tems. One of the main results consists of proving that the radical of a bounded
pseudo-BCK(pP) algebra is a normal deductive system. We also prove that any
linearly ordered pseudo-BCK(pP) algebra and any locally finite pseudo-BCK(pP)
algebra are local. Other results state that any local FLw-algebra and any locally
finite FLw-algebra are directly indecomposable. The classes of Archimedean and
hyperarchimedean FLw-algebras are introduced and it is proved that any locally fi-
nite FLw-algebra is hyperarchimedean and any hyperarchimedean FLw-algebra is
Archimedean.

Chapter 6 is devoted to the presentation of states on multiple-valued logic alge-
bras. We introduce the notion of states on pseudo-BCK algebras and we study their
properties. One of the main results consists of proving that any Bosbach state on
a good pseudo-BCK algebra is a Riečan state, however the converse turns out not
to be true. We also prove that every Riečan state on a good pseudo-BCK algebra
with pseudo-double negation is a Bosbach state. In contrast to the case of pseudo-
BL algebras, we show that there exist linearly ordered pseudo-BCK algebras having
no Bosbach states and that there exist pseudo-BCK algebras having normal filters
which are maximal, but having no Bosbach states.

Some specific properties of states on FLw-algebras, pseudo-MTL algebras,
bounded R�-monoids and subinterval algebras of pseudo-hoops are proved.

A special section is dedicated to the existence of states on the residuated struc-
tures, showing that every perfect FLw-algebra admits at least a Bosbach state and
every perfect pseudo-BL algebra has a unique state-morphism.

Finally, we introduce the notion of a local state on a perfect pseudo-MTL algebra
and we prove that every local state can be extended to a Riečan state.

In Chap. 7 we generalize measures on BCK algebras introduced by A. Dvurečen-
skij in [94] and [108] to pseudo-BCK algebras that are not necessarily bounded. In
particular, we show that if A is a downwards-directed pseudo-BCK algebra and m

a measure on it, then the quotient over the kernel of m can be embedded into the
negative cone of an Abelian, Archimedean �-group as its subalgebra. This result
will enable us to characterize nonzero measure-morphisms on downwards-directed
pseudo-BCK algebras as measures whose kernel is a maximal filter. We study state-
measures on pseudo-BCK algebras with strong unit and we show how to character-
ize state-measure-morphisms as extremal state-measures or as state-measures whose
kernel is a maximal filter. In particular, we show that for unital pseudo-BCK alge-
bras that are downwards-directed, the quotient over the kernel can be embedded into
the negative cone of an Abelian, Archimedean �-group with strong unit. We gener-
alize to pseudo-BCK algebras the identity between de Finetti maps and Bosbach
states, following the results proved by Kühr and Mundici in [211] who showed that
de Finetti’s coherence principle, which has its origins in Dutch bookmaking, has
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a strong relationship with MV-states on MV-algebras. We also generalize this for
state-measures on unital pseudo-BCK algebras that are downwards-directed.

Chapter 8 is devoted to generalized states on residuated structures. The study
of these generalized states is motivated by their interpretation as a new type of se-
mantics for non-commutative fuzzy logics. Usually, the truth degree of sentences
in a fuzzy logic is a number in the interval [0,1] or, more generally, an element
of an FLw-algebra. Similarly, for generalized states, the probability of sentences is
evaluated in an arbitrary FLw-algebra.

We define the generalized states of type I and type II and generalized state-
morphisms and we study the relationship between them. We prove that any perfect
FLw-algebra admits strong type I and type II states. Some conditions are given for
a generalized state of type I on a linearly ordered bounded R�-monoid to be a state
operator. The notion of a strong perfect FLw-algebra is introduced and it is proved
that any strong perfect FLw-algebra admits a generalized state-morphism. The no-
tion of a generalized Riečan state is also introduced and the main results are proved
based on the Glivenko property defined for the non-commutative case. The main re-
sults consist of proving that any order-preserving type I state is a generalized Riečan
state and in some particular conditions the two states coincide. We introduce the no-
tion of a generalized local state on a perfect pseudo-MTL algebra A and we prove
that, if A is relatively free of zero divisors, then every generalized local state can be
extended to a generalized Riečan state.

Chapter 9 deals with residuated structures with internal states. We define the
notions of state operator, strong state operator, state-morphism operator, weak state-
morphism operator and we study their properties. We prove that every strong state
pseudo-hoop is a state pseudo-hoop and any state operator on an idempotent pseudo-
hoop is a weak state-morphism operator. It is proved that for an idempotent pseudo-
hoop A a state operator on Reg(A) can be extended to a state operator on A. One of
the main results of this chapter consists of proving that every perfect pseudo-hoop
admits a nontrivial state operator. Other results compare the state operators with
states and generalized states on a pseudo-hoop. Some conditions are given for a state
operator to be a generalized state and for a generalized state to be a state operator.

We hope that this book will be useful to graduate students and researchers in the
area of algebras of multiple-valued logics.

I wish to firstly thank my adviser George Georgescu for guiding many of my
steps in this field.

This manuscript owes a lot to Afrodita Iorgulescu for her careful reading and
remarks.

I am also in debt to Anatolij Dvurečenskij for his suggestions and fruitful collab-
orations.

On a personal note, I am very grateful to my parents for all their support and
encouragement over the years.

Last but not least I wish to thank my husband for his wonderful companionship.

Lavinia Corina CiunguIowa City, USA
May 2013



Contents

1 Pseudo-BCK Algebras . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1 Definitions and Properties . . . . . . . . . . . . . . . . . . . . . 2
1.2 Pseudo-BCK Algebras with Pseudo-product . . . . . . . . . . . 15
1.3 Pseudo-BCK Algebras with Pseudo-double Negation . . . . . . 22
1.4 Good Pseudo-BCK Algebras . . . . . . . . . . . . . . . . . . . 28
1.5 Deductive Systems and Congruences . . . . . . . . . . . . . . . 35

2 Pseudo-hoops . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
2.1 Definitions and Properties . . . . . . . . . . . . . . . . . . . . . 55
2.2 Join-Center and Cancellative-Center of Pseudo-hoops . . . . . . 73
2.3 Algebras on Subintervals of Pseudo-hoops . . . . . . . . . . . . 74

3 Residuated Lattices . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
3.1 Definitions and Properties . . . . . . . . . . . . . . . . . . . . . 79
3.2 The Lattice of Filters of an FLw-Algebra . . . . . . . . . . . . . 88
3.3 Boolean Center of an FLw-Algebra . . . . . . . . . . . . . . . . 92
3.4 Directly Indecomposable FLw-Algebras . . . . . . . . . . . . . 96
3.5 FLw-Algebras of Fractions Relative to a Meet-Closed System . . 102

4 Other Non-commutative Multiple-Valued Logic Algebras . . . . . 107
4.1 Pseudo-MTL Algebras . . . . . . . . . . . . . . . . . . . . . . . 107
4.2 Bounded Residuated Lattice-Ordered Monoids . . . . . . . . . . 115
4.3 Pseudo-BL Algebras . . . . . . . . . . . . . . . . . . . . . . . . 118
4.4 Pseudo-MV Algebras . . . . . . . . . . . . . . . . . . . . . . . 123
4.5 The Glivenko Property . . . . . . . . . . . . . . . . . . . . . . . 131

5 Classes of Non-commutative Residuated Structures . . . . . . . . . 135
5.1 Local Pseudo-BCK Algebras with Pseudo-product . . . . . . . . 135
5.2 Perfect Residuated Structures . . . . . . . . . . . . . . . . . . . 138

5.2.1 Perfect Pseudo-BCK Algebras with Pseudo-product . . . 138
5.2.2 Perfect Pseudo-MTL Algebras . . . . . . . . . . . . . . 145
5.2.3 Perfect Pseudo-MV Algebras . . . . . . . . . . . . . . . 147

5.3 Archimedean Residuated Structures . . . . . . . . . . . . . . . . 149

xiii



xiv Contents

6 States on Multiple-Valued Logic Algebras . . . . . . . . . . . . . . 155
6.1 States on Bounded Pseudo-BCK Algebras . . . . . . . . . . . . 157
6.2 Bosbach States on Subinterval Algebras of a Bounded

Pseudo-hoop . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173
6.3 States on FLw-Algebras . . . . . . . . . . . . . . . . . . . . . . 176
6.4 On the Existence of States on Residuated Structures . . . . . . . 184
6.5 Local States on Perfect Pseudo-MTL Algebras . . . . . . . . . . 186

7 Measures on Pseudo-BCK Algebras . . . . . . . . . . . . . . . . . 191
7.1 Measures on Pseudo-BCK Algebras . . . . . . . . . . . . . . . . 191
7.2 Pseudo-BCK Algebras with Strong Unit . . . . . . . . . . . . . 198
7.3 Coherence, de Finetti Maps and Borel States . . . . . . . . . . . 204

8 Generalized States on Residuated Structures . . . . . . . . . . . . 209
8.1 Generalized Bosbach States on FLw-Algebras . . . . . . . . . . 210
8.2 Generalized State-Morphisms . . . . . . . . . . . . . . . . . . . 224
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Chapter 1
Pseudo-BCK Algebras

BCK algebras were originally introduced by K. Isèki in [194] with a binary opera-
tion ∗ modeling the set-theoretical difference and with a constant element 0, that is,
a least element. Another motivation is from classical and non-classical propositional
calculi modeling logical implications. Such algebras contain as a special subfamily
the family of MV-algebras where some important fuzzy structures can be studied.
For more about BCK algebras, see [167, 174–179, 182–187, 189, 192, 193, 225].

Pseudo-BCK algebras were introduced by G. Georgescu and A. Iorgulescu in
[138] as algebras with “two differences”, a left- and right-difference, instead of one
∗ and with a constant element 0 as the least element. In [112], a special subclass of
pseudo-BCK algebras, called Łukasiewicz pseudo-BCK algebras, was introduced
and it was shown that each such algebra is always a subalgebra of the positive cone
of some �-group (not necessarily Abelian). The class of Łukasiewicz pseudo-BCK
algebras is a variety whereas the class of pseudo-BCK algebras is not; it is only a
quasivariety because it is not closed under homomorphic images. Nowadays pseudo-
BCK algebras are used in a dual form, with two implications, → and � and with
one constant element 1, that is the greatest element. Thus such pseudo-BCK alge-
bras are in the “negative cone” and are also called “left-ones”. Further properties of
pseudo-BCK algebras and their connection with other fuzzy structures were estab-
lished by A. Iorgulescu in [179–182]. For a guide through the pseudo-BCK algebras
realm, see the monograph [186]. Studies on pseudo-BCK algebras were also devel-
oped in [107, 163, 190, 206, 208–210].

In this chapter we prove new properties of pseudo-BCK algebras with pseudo-
product and pseudo-BCK algebras with pseudo-double negation and we show that
every pseudo-BCK algebra can be extended to a good one. Examples of proper
pseudo-BCK algebras, good pseudo-BCK algebras and pseudo-BCK lattices are
given and the orthogonal elements in a pseudo-BCK algebra are characterized. Fi-
nally, we define the maximal and normal deductive systems of a pseudo-BCK alge-
bra with pseudo-product and we study their properties.

L.C. Ciungu, Non-commutative Multiple-Valued Logic Algebras,
Springer Monographs in Mathematics, DOI 10.1007/978-3-319-01589-7_1,
© Springer International Publishing Switzerland 2014
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2 1 Pseudo-BCK Algebras

1.1 Definitions and Properties

Definition 1.1 A pseudo-BCK algebra (more precisely, reversed left-pseudo-BCK
algebra) is a structure A = (A,≤,→,�,1) where ≤ is a binary relation on A,
→ and � are binary operations on A and 1 is an element of A satisfying, for all
x, y, z ∈A, the axioms:

(psBCK1) x → y ≤ (y → z) � (x → z), x � y ≤ (y � z)→ (x � z);
(psBCK2) x ≤ (x → y) � y, x ≤ (x � y)→ y;
(psBCK3) x ≤ x;
(psBCK4) x ≤ 1;
(psBCK5) if x ≤ y and y ≤ x, then x = y;
(psBCK6) x ≤ y iff x → y = 1 iff x � y = 1.

A pseudo-BCK algebra A = (A,≤,→,�,1) is commutative if →=�. Any
commutative pseudo-BCK algebra is a BCK-algebra.

In the sequel we will refer to the pseudo-BCK algebra (A,≤,→,�,1) by its
universe A.

Proposition 1.1 The structure (A,≤,→,�,1) is a pseudo-BCK algebra iff the
algebra (A,→,�,1) of type (2,2,0) satisfies the following identities and quasi-
identity:

(psBCK′
1) (x → y) � [(y → z) � (x → z)] = 1;

(psBCK′
2) (x � y)→[(y � z)→ (x � z)] = 1;

(psBCK′
3) 1→ x = x;

(psBCK′
4) 1 � x = x;

(psBCK′
5) x → 1= 1;

(psBCK′
6) (x → y = 1 and y → x = 1) implies x = y.

Proof Obviously, any pseudo-BCK algebra satisfies (psBCK′
1)–(psBCK′

6).
Conversely, assume that an algebra (A,→,�,1) satisfies (psBCK′

1)–(psBCK′
6).

Applying (psBCK′
3) and (psBCK′

1) we get:

x �
[
(x → y) � y

]= (1→ x) �
[
(x → y) � (1→ y)

]= 1.

Similarly, by (psBCK′
4) and (psBCK′

2) we have:

x → [
(x � y)→ y

]= (1 � x)→ [
(x � y)→ (1 � y)

]= 1.

Applying (psBCK′
3) and (psBCK′

2) we have:

x → x = 1→ (x → x)= (1 � 1)→ [
(1 � x)→ (1 � x)

]= 1.

Similarly, by (psBCK′
4) and (psBCK′

1) we get:

x � x = 1 � (x � x)= (1→ 1) �
[
(1→ x) � (1→ x)

]= 1.

Moreover, if x → y = 1 then x � y = x � [(x → y) � y] = 1 and similarly, if
x � y = 1 then x → y = x →[(x � y)→ y] = 1.
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Fig. 1.1 Example of proper pseudo-BCK algebra

It follows that x → y = 1 iff x � y = 1.
We deduce that the relation ≤ defined by x ≤ y iff x → y = 1 is a partial order

on A which makes (A,≤,→,�,1) a pseudo-BCK algebra. �

In the sequel, we shall use either (A,≤,→,�,1) or (A,→,�,1) for a pseudo-
BCK algebra.

Example 1.1 Consider A= {o1, a1, b1, c1, o2, a2, b2, c2,1}with o1 < a1, b1 < c1 <

1 and a1, b1 incomparable, o2 < a2, b2 < c2 < 1 and a2, b2 incomparable. Assume
that any element of the set {o1, a1, b1, c1} is incomparable with any element of the
set {o2, a2, b2, c2} (see Fig. 1.1).

Consider the operations →, � given by the following tables:

→ o1 a1 b1 c1 o2 a2 b2 c2 1
o1 1 1 1 1 o2 a2 b2 c2 1
a1 o1 1 b1 1 o2 a2 b2 c2 1
b1 a1 a1 1 1 o2 a2 b2 c2 1
c1 o1 a1 b1 1 o2 a2 b2 c2 1
o2 o1 a1 b1 c1 1 1 1 1 1
a2 o1 a1 b1 c1 o2 1 b2 1 1
b2 o1 a1 b1 c1 c2 c2 1 1 1
c2 o1 a1 b1 c1 o2 c2 b2 1 1
1 o1 a1 b1 c1 o2 a2 b2 c2 1

� o1 a1 b1 c1 o2 a2 b2 c2 1
o1 1 1 1 1 o2 a2 b2 c2 1
a1 b1 1 b1 1 o2 a2 b2 c2 1
b1 o1 a1 1 1 o2 a2 b2 c2 1
c1 o1 a1 b1 1 o2 a2 b2 c2 1
o2 o1 a1 b1 c1 1 1 1 1 1
a2 o1 a1 b1 c1 b2 1 b2 1 1
b2 o1 a1 b1 c1 b2 c2 1 1 1
c2 o1 a1 b1 c1 b2 c2 b2 1 1
1 o1 a1 b1 c1 o2 a2 b2 c2 1
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Then (A,≤,→,�,1) is a proper pseudo-BCK algebra.

We recall the definition of an �-group. The language of lattice-ordered groups
(�-groups) involves both the group operations and the binary lattice operations.

By a lattice-ordered group (�-group) we will mean an ordered group (G,≤)

such that (G,≤) is a lattice. The �-group G is called an �u-group if there exists
an element u > 0 such that for any x ∈G there is an n ∈ N such that x ≤ nu. The
element u is called a strong unit.

For details regarding �-groups we refer the reader to [2, 12, 76].

Example 1.2 Let (G,∨,∧,+,−,0) be an �-group.
On the negative cone G− = {g ∈G | g ≤ 0} we define:

g → h := h− (g ∨ h)= (h− g)∧ 0,

g � h := −(g ∨ h)+ h= (−g + h)∧ 0.

Then (G−,≤,→,�,0) is a pseudo-BCK algebra.

Remark 1.1 (Definition of union) Let (Ai,≤,→i ,�i ,1i )i∈I be a collection of
pseudo-BCK algebras such that:

(i) 1i = 1 for all i ∈ I ,
(ii) Ai ∩Aj = {1} for all i, j ∈ I , i �= j .

Let A=⋃
i∈I Ai and define:

x → y :=
{

x →i y if x, y ∈Ai, i ∈ I

y otherwise,

x � y :=
{

x �i y if x, y ∈Ai, i ∈ I

y otherwise.

Then (A,≤,→,�,1) is a pseudo-BCK algebra called the union of the pseudo-
BCK algebras (Ai,≤,→i ,�i ,1i )i∈I .

Note that the notion of union defined above is not related to the notion of ordinal
sum defined in Chap. 2.

Proposition 1.2 In any pseudo-BCK algebra A the following properties hold:

(psbck-c1) x ≤ y implies y → z≤ x → z and y � z≤ x � z;
(psbck-c2) x ≤ y, y ≤ z implies x ≤ z;
(psbck-c3) x → (y � z)= y � (x → z), x � (y → z)= y → (x � z);
(psbck-c4) z≤ y → x iff y ≤ z � x;
(psbck-c5) z→ x ≤ (y → z)→ (y → x), z � x ≤ (y � z) � (y � x);
(psbck-c6) x ≤ y → x, x ≤ y � x;
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(psbck-c7) 1→ x = x = 1 � x;
(psbck-c8) x → x = x � x = 1;
(psbck-c9) x → 1= x � 1= 1;
(psbck-c10) x ≤ y implies z→ x ≤ z→ y and z � x ≤ z � y;
(psbck-c11) [(y → x) � x]→ x = y → x, [(y � x)→ x]� x = y � x.

Proof

(psbck-c1) Since x ≤ y, applying (psBCK6), (psBCK1) and (psBCK4) we get 1 =
x → y ≤ (y → z) � (x → z), so (y → z) � (x → z)= 1 for all z ∈A.
Applying (psBCK6) again we get y → z≤ x → z.
Similarly, y � z≤ x � z.

(psbck-c2) By (psbck-c1), x ≤ y implies y → z ≤ x → z. Since y ≤ z we have
y → z= 1, so x → z= 1. Applying (psBCK6) we get x ≤ z.

(psbck-c3) Applying (psBCK1) we have y → x ≤ (x → z) � (y → z) and by
(psbck-c1) we get [(x → z) � (y → z)]� u≤ (y → x) � u for any u ∈A.
From this inequality, replacing z with u � z, x with x � z and u with (u �
x) � [y → (u � z)] we get

[[
(x � z)→ (u � z)

]
�

[
y → (u � z)

]]
�

[
(u � x) �

[
y → (u � z)

]]

≤ [
y → (x � z)

]
�

[
(u � x) �

[
y → (u � z)

]]
.

By (psBCK1) we have u � x ≤ (x � z)→ (u � z) and applying (psbck-c1) it
follows that the left-hand side of the above inequality is equal to 1.
Thus the right-hand side is also equal to 1, so y → (x � z)≤ (u � x) � [y →
(u � z)].
Replacing x with y → z and u with x we get

y → [
(y → z) � z

]≤ [
x � (y → z)

]
�

[
y → (x � z)

]
.

But, by (psBCK2) we have y ≤ (y → z) � z, so y →[(y → z) � z] = 1.
It follows that [x � (y → z)]� [y → (x � z)] = 1.
Therefore x � (y → z)≤ y → (x � z).
On the other hand, by (psBCK2) we have x ≤ (x � z)→ z and applying (psbck-
c1) we get [(x � z)→ z]� (y → z)≤ x � (y → z).
By (psBCK1) we have y → x ≤ (x → z) � (y → z) and replacing x with x � z

we get y → (x � z)≤ [(x � z)→ z]� (y → z)≤ x � (y → z).
We conclude that x → (y � z)= y � (x → z).
Similarly, x � (y → z)= y → (x � z).

(psbck-c4) From z≤ y → x, by (psBCK2) and (psbck-c1) we have

y ≤ (y → x) � x ≤ z � x.

Similarly, from y ≤ z � x we get z≤ (z � x)→ x ≤ y → x.
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(psbck-c5) Applying (psBCK1) we have y → z≤ (z→ x) � (y → x) and accord-
ing to (psbck-c1) we get

[
(z→ x) � (y → x)

]→ (y → x)≤ (y → z)→ (y → x).

By (psBCK2) it follows that z → x ≤ [(z → x) � (y → x)] → (y → x), and
applying (psbck-c2) we conclude that z→ x ≤ (y → z)→ (y → x).
Similarly, from y � z ≤ (z � x) → (y � x) we get z � x ≤ (y � z) �
(y � x).

(psbck-c6) Since y ≤ 1= x → x, it follows by (psbck-c4) that x ≤ y � x.
Similarly, from y ≤ 1= x � x we get x ≤ y → x.

(psbck-c7) By (psbck-c6) we have x ≤ 1→ x and x ≤ 1 � x.
By (psBCK2) we get 1≤ (1→ x) � x and 1≤ (1 � x)→ x.
It follows that (1 → x) � x = 1 and (1 � x) → x = 1, so 1 → x ≤ x and
1 � x ≤ x. Thus 1→ x = x = 1 � x.

(psbck-c8) and (psbck-c9) are consequences of the axiom (psBCK6).
(psbck-c10) Applying (psbck-c7), (psBCK6) and (psBCK1) we have:

z→ y = 1 � (z→ y)= (x → y) � (z→ y)≥ z→ x and

z � y = 1→ (z � y)= (x � y)→ (z � y)≥ z � x.

(psbck-c11) By (psBCK2) we have y ≤ (y → x) � x and y ≤ (y � x)→ x.
Applying (psbck-c1) we get

[
(y → x) � x

]→ x ≤ y → x and
[
(y � x)→ x

]
� x ≤ y � x.

On the other hand, by (psBCK2) we have:

y → x ≤ [
(y → x) � x

]→ x and y � x ≤ [
(y � x)→ x

]
� x.

We conclude that

[
(y → x) � x

]→ x = y → x and
[
(y � x)→ x

]
� x = y � x. �

Proposition 1.3 Let (A,≤,→,�,1) be a pseudo-BCK algebra.
If

∨
i∈I xi exists, then so does

∧
i∈I (xi → y) and

∧
i∈I (xi � y) and we have:

(psbck-c12) (
∨

i∈I xi)→ y =∧
i∈I (xi → y), (

∨
i∈I xi) � y =∧

i∈I (xi � y).

Proof If we let x =∨
i∈I xi , it follows that xi ≤ x and applying (psbck-c1) we have

x → y ≤ xi → y for all i ∈ I . Let z be a lower bound of {xi → y | i ∈ I }. Then, by
(psbck-c4), z ≤ xi → y implies xi ≤ z � y for all i ∈ I , so x ≤ z � y. Applying
(psbck-c4) again, we get z≤ x → y.

Thus x → y is the g.l.b. of {xi → y | i ∈ I }.
We conclude that

∧
i∈I (xi → y) exists and (

∨
i∈I xi)→ y =∧

i∈I (xi → y).
Similarly,

∧
i∈I (xi � y) exists and (

∨
i∈I xi) � y =∧

i∈I (xi � y). �
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Fig. 1.2 Example of bounded pseudo-BCK algebra

Definition 1.2 If there is an element 0 of a pseudo-BCK algebra (A,≤,→,�,1),
such that 0 ≤ x (i.e. 0 → x = 0 � x = 1), for all x ∈ A, then 0 is called the zero
of A. A pseudo-BCK algebra with zero is called a bounded pseudo-BCK algebra
and it is denoted by (A,≤,→,�,0,1).

Example 1.3 Consider A= {0, a, b, c,1} with 0 < a,b < c < 1 and a, b incompa-
rable (see Fig. 1.2).

Consider the operations →, � given by the following tables:

→ 0 a b c 1
0 1 1 1 1 1
a 0 1 b 1 1
b a a 1 1 1
c 0 a b 1 1
1 0 a b c 1

� 0 a b c 1
0 1 1 1 1 1
a b 1 b 1 1
b 0 a 1 1 1
c 0 a b 1 1
1 0 a b c 1

Then (A,≤,→,�,0,1) is a bounded pseudo-BCK algebra. (As we will see later,
A is even a pseudo-BCK lattice.)

Let (A,≤,→,�,0,1) be a bounded pseudo-BCK algebra. We define two nega-
tions − and ∼: for all x ∈A,

x− := x → 0, x∼ := x � 0.

In the sequel we will use the following notation:

x−− = (
x−

)−; x∼∼ = (
x∼

)∼; x−∼ = (
x−

)∼; x∼− = (
x∼

)−
.

Example 1.4 Let (G,∨,∧,+,−,0) be an �-group with a strong unit u≥ 0. On the
interval [−u,0] we define:

x → y := (y − x)∧ 0, x � y := (−x + y)∧ 0.

Then ([−u,0],≤,→,�,−u,0) is a bounded pseudo-BCK algebra with x− =
−u − x and x∼ = −x − u. In a similar way, ((−u,0],≤,→,�,0) is a pseudo-
BCK algebra that is not bounded.
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Example 1.5 Let (G,∨,∧,+,−,0) be an �-group with a strong unit u≥ 0. On the
interval [0, u] we define:

x → y := (u− x + y)∧ u, x � y := (y − x + u)∧ u.

Then ([0, u],≤,→,�,0, u) is a bounded pseudo-BCK algebra with x− = u − x

and x∼ = −x + u. If on [0, u] we set →1=� and �1=→, then ([0, u],≤,→1,

�1,0, u) is isomorphic with ([−u,0],≤,→,�,−u,0) under the isomorphism
x �→ x − u, x ∈ [0, u].

Proposition 1.4 In a bounded pseudo-BCK algebra the following hold:

(psbck-c13) 1− = 0= 1∼, 0− = 1= 0∼;
(psbck-c14) x ≤ x−∼, x ≤ x∼−;
(psbck-c15) x → y ≤ y− � x−, x � y ≤ y∼ → x∼;
(psbck-c16) x ≤ y implies y− ≤ x− and y∼ ≤ x∼;
(psbck-c17) x → y∼ = y � x− and x � y− = y → x∼;
(psbck-c18) x−∼− = x−, x∼−∼ = x∼;
(psbck-c19) x → y−∼ = y− � x− = x−∼ → y−∼ and x � y∼− = y∼ → x∼ =

x∼− � y∼−;
(psbck-c20) x → y∼ = y∼− � x− = x−∼ → y∼ and x � y− = y−∼ → x∼ =

x∼− � y−;
(psbck-c21) (x → y∼−)∼− = x → y∼− and (x � y−∼)−∼ = x � y−∼.

Proof

(psbck-c13) Since 0 ≤ 0, by (psBCK6) we get 0 → 0 = 1 and 0 � 0 = 1, that is,
0− = 1 and 0∼ = 1.
Taking x = 1 and y = 0 in (psBCK2) we have 1 ≤ (1 → 0) � 0, hence (1 →
0) � 0 = 1. Thus by (psBCK6) we get 1 → 0 ≤ 0, so 1 → 0 = 0, i.e. 1− = 0.
Similarly, 1∼ = 0.

(psbck-c14) This follows by taking y = 0 in (psBCK2).
(psbck-c15) Applying (psBCK1) for z= 0 we get:

x → y ≤ (y → 0) � (x → 0)= y− � x− and

x � y ≤ (y � 0)→ (x � 0)= y∼ → x∼.

(psbck-c16) From x ≤ y, applying (psbck-c1) we get y → 0≤ x → 0, so y− ≤ x−.
Similarly, y∼ ≤ x∼.

(psbck-c17) By (psbck-c15), (psbck-c14) and (psbck-c1) we get:

x → y∼ ≤ y∼− � x− ≤ y � x− and x � y− ≤ y−∼ → x∼ ≤ y → x∼.

In the above inequalities we change x and y obtaining:

y → x∼ ≤ x � y− and y � x− ≤ x → y∼.

Thus x → y∼ = y � x− and x � y− = y → x∼.
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(psbck-c18) By (psbck-c14) and (psbck-c16) we get x∼−∼ ≤ x∼ and x−∼− ≤ x−.
By (psbck-c14), replacing x with x∼ and x− we get x∼ ≤ x∼−∼ and x− ≤
x−∼−, respectively. Thus x∼−∼ = x∼ and x−∼− = x−.

(psbck-c19) By (psbck-c17) we have: y � x− = x → y∼.
Replacing y with y− we get: y− � x− = x → y−∼.
Replacing x by x−∼ in the last equality we get: y− � x−∼− = x−∼ → y−∼.
Hence applying (psbck-c18) it follows that: y− � x− = x−∼ → y−∼.
Thus x → y−∼ = y− � x− = x−∼ → y−∼.
Similarly, x � y∼− = y∼ → x∼ = x∼− � y∼−.

(psbck-c20) The assertions follow by replacing in (psbck-c19) y with y∼ and y with
y−, respectively and applying (psbck-c18).

(psbck-c21) Applying (psbck-c3) and (psbck-c19) we have:

1= (
x → y∼−

)
�

(
x → y∼−

)= x → ((
x → y∼−

)
� y∼−

)

= x → ((
x → y∼−

)∼− � y∼−
)= (

x → y∼−
)∼− �

(
x → y∼−

)
.

Hence (x → y∼−)∼− ≤ x → y∼−.
On the other hand, by (psbck-c14) we have x → y∼− ≤ (x → y∼−)∼−, thus
(x → y∼−)∼− = x → y∼−. Similarly, (x � y−∼)−∼ = x � y−∼. �

We recall some notions and results regarding pseudo-BCK semilattices (see
[209]).

Definition 1.3 A pseudo-BCK join-semilattice is an algebra (A,∨,→,�,1) such
that (A,∨) is a join-semilattice, (A,→,�,1) is a pseudo-BCK algebra and x →
y = 1 iff x ∨ y = y.

Remark 1.2 It is easy to show that an algebra (A,∨,→,�,1) of type (2,2,2,0) is
a pseudo-BCK join-semilattice if and only if (A,∨) is a join-semilattice and (A,→,

�,1) satisfies (psBCK′
1)–(psBCK′

5) and the following identities:

(psBCK′
7) x ∨ [(x → y) � y] = (x → y) � y;

(psBCK′
8) x → (x ∨ y)= 1.

Definition 1.4 A pseudo-BCK meet-semilattice is an algebra (A,∧,→,�,1) such
that (A,∧) is a meet-semilattice, (A,→,�,1) is a pseudo-BCK algebra and x →
y = 1 iff x ∧ y = x.

Remark 1.3 It is easy to show that an algebra (A,∧,→,�,1) of type (2,2,2,0)

is a pseudo-BCK meet-semilattice if and only if (A,∧) is a meet-semilattice and
(A,→,�,1) satisfies the identities (psBCK′

1)–(psBCK′
5) and the identities:
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(psBCK′′
7) x ∧ [(x → y) � y] = x;

(psBCK′′
8) (x ∧ y)→ y = 1.

Example 1.6 Given a pseudo-hoop (A,�,→,�,1) (see Chap. 2), then (A,∧,

→,�,1) is a pseudo-BCK meet-semilattice, where x ∧ y = x � (x � y) =
(x → y)� x.

In the sequel by a pseudo-BCK semilattice we mean a pseudo-BCK join-
semilattice.

Definition 1.5 Let (A,≤,→,�,1) be a pseudo-BCK algebra. If the poset (A,≤)

is a lattice, then we say that A is a pseudo-BCK lattice.
A pseudo-BCK lattice is denoted by (A,∧,∨,→,�,1).

Example 1.7 Consider the bounded pseudo-BCK algebra (A,≤,→,�,0,1) from
Example 1.3. Since (A,≤) is a lattice, it follows that A is a pseudo-BCK lattice.

Let A be a pseudo-BCK algebra. For all x, y ∈A, define:

x ∨1 y = (x → y) � y, x ∨2 y = (x � y)→ y.

Proposition 1.5 In any bounded pseudo-BCK algebra A the following hold for all
x, y ∈A:

(1) 0∨1 x = x = 0∨2 x;
(2) x ∨1 0= x−∼, x ∨2 0= x∼−;
(3) 1∨1 x = x ∨1 1= 1= 1∨2 x = x ∨2 1;
(4) x ≤ y implies x ∨1 y = y and x ∨2 y = y;
(5) x ∨1 x = x ∨2 x = x.

Proof

(1) 0∨1 x = (0→ x) � x = 1 � x = x and similarly 0∨2 x = x.
(2) x ∨1 0= (x → 0) � 0= x−∼ and similarly x ∨2 0= x∼−.
(3) We have: 1∨1 x = (1→ x) � x = 1 and x∨1 1= (x → 1) � 1= 1, so 1∨1 x =

x ∨1 1= 1. Similarly, 1∨2 x = x ∨2 1= 1.
(4) x ∨1 y = (x → y) � y = 1 � y = y. Similarly, x ∨2 y = y.
(5) This follows from the definitions of ∨1 and ∨2. �

Proposition 1.6 In any bounded pseudo-BCK algebra A the following hold for all
x, y ∈A:

(1) x ∨1 y−∼ = x−∼ ∨1 y−∼ and x ∨2 y∼− = x∼− ∨2 y∼−;
(2) x ∨1 y∼ = x−∼ ∨1 y∼ and x ∨2 y− = x∼− ∨2 y−;
(3) (x−∼ ∨1 y−∼)

−∼ = x−∼ ∨1 y−∼ and (x∼− ∨2 y∼−)
∼− = x∼− ∨2 y∼−.
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Proof

(1) Applying (psbck-c19) we have:

x ∨1 y−∼ = (
x → y−∼

)
� y−∼ = (

x−∼ → y−∼
)
� y−∼ = x−∼ ∨1 y−∼;

x ∨2 y∼− = (
x � y∼−

)→ y∼− = (
x∼− � y∼−

)→ y∼− = x∼− ∨2 y∼−.

(2) Applying (psbck-c20) we have:

x ∨1 y∼ = (
x → y∼

)
� y∼ = (

x−∼ → y∼
)
� y∼ = x−∼ ∨1 y∼;

x ∨2 y− = (
x � y−

)→ y− = (
x∼− � y−

)→ y− = x∼− ∨2 y−.

(3) Applying (psbck-c21) we have:

(
x−∼ ∨1 y−∼

)−∼ = [(
x−∼ → y−∼

)
� y−∼

]−∼ = (
x−∼ → y−∼

)
� y−∼

= x−∼ ∨1 y−∼;
(
x∼− ∨2 y∼−

)∼− = [(
x∼− � y∼−

)→ y∼−
]∼− = (

x∼− � y∼−
)→ y∼−

= x∼− ∨2 y∼−. �

Proposition 1.7 In any pseudo-BCK algebra the following hold for all x, y ∈A:

(psbck-c22) (x ∨1 y)→ y = x → y and (x ∨2 y) � y = x � y.

Proof This is a consequence of the property (psbck-c11). �

Lemma 1.1 Let A be a pseudo-BCK algebra. Then:

(1) x ∨1 y (y ∨1 x) is an upper bound of {x, y};
(2) x ∨2 y (y ∨2 x) is an upper bound of {x, y}
for all x, y ∈A.

Proof

(1) By (psBCK2) we have x ≤ (x → y) � y.
Since by (psbck-c6), y ≤ (x → y) � y, we conclude that x, y ≤ x ∨1 y.
Similarly we get x, y ≤ y ∨1 x.

(2) Similar to (1). �

Definition 1.6 Let A be a pseudo-BCK algebra.

(1) If x ∨1 y = y ∨1 x for all x, y ∈A, then A is called ∨1-commutative;
(2) If x ∨2 y = y ∨2 x for all x, y ∈A, then A is called ∨2-commutative.

Lemma 1.2 Let A be a pseudo-BCK algebra.
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(1) If for all x, y ∈ A, x ∨1 y (y ∨1 x) is the l.u.b. of {x, y}, then A is ∨1-
commutative;

(2) If for all x, y ∈ A, x ∨2 y (y ∨2 x) is the l.u.b. of {x, y}, then A is ∨2-
commutative.

Proof

(1) Suppose that for all x, y ∈ A, x ∨1 y (y ∨1 x) is the l.u.b. of {x, y}. Then by
Lemma 1.1, for all x, y ∈ A we have y ∨1 x ≤ x ∨1 y and x ∨1 y ≤ y ∨1 x.
Applying (psBCK5) we get x ∨1 y = y ∨1 x. Thus A is ∨1-commutative.

(2) Similar to (1). �

Proposition 1.8 Let A be a pseudo-BCK algebra.

(1) If A is ∨1-commutative, then x ∨1 y is the l.u.b. of {x, y}, for all x, y ∈A;
(2) If A is ∨2-commutative, then x ∨2 y is the l.u.b. of {x, y}, for all x, y ∈A.

Proof

(1) Let x, y ∈A. According to Lemma 1.1, x ∨1 y is an upper bound of {x, y}. Let
z be another upper bound of {x, y}, i.e. x ≤ z and y ≤ z. We will prove that
x ∨1 y ≤ z. Indeed, applying Proposition 1.5(4) and taking into consideration
that A is ∨1-commutative we have:

x ∨1 y → z= x ∨1 y → y ∨1 z= x ∨1 y → z∨1 y

= (
(x → y) � y

)→ (
(z→ y) � y

)
.

According to (psBCK1) we have (b→ c) � (a → c)≥ a → b and replacing a

with z→ y, b with x → y and c with y we get:

(
(x → y) � y

)→ (
(z→ y) � y

)≥ (z→ y) � (x → y)

≥ x → z
(
by (psBCK1)

)
.

Hence x ∨1 y → z ≥ x → z= 1 (since x ≤ z). It follows that x ∨1 y → z= 1,
thus x ∨1 y ≤ z. We conclude that x ∨1 y is the l.u.b. of {x, y}.

(2) Similar to (1). �

Theorem 1.1 If A is a pseudo-BCK algebra, then:

(1) A is ∨1-commutative iff it is a join-semilattice with respect to ∨1 (under ≤);
(2) A is ∨2-commutative iff it is a join-semilattice with respect to ∨2 (under ≤).

Proof This is a consequence of Lemma 1.2 and Proposition 1.8. �

Corollary 1.1 Let A be a pseudo-BCK algebra. Then:

(1) If A is ∨1-commutative, then x ∨1 y ≤ x ∨2 y, y ∨2 x for all x, y ∈A;
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(2) If A is ∨2-commutative, then x ∨2 y ≤ x ∨1 y, y ∨1 x for all x, y ∈A.

Proof

(1) According to Lemma 1.1, x ∨2 y, y ∨2 x are upper bounds of {x, y}. By Propo-
sition 1.8, x ∨1 y is the l.u.b. of {x, y}, thus x ∨1 y ≤ x ∨2 y, y ∨2 x.

(2) Similar to (1). �

Definition 1.7 A pseudo-BCK algebra is called sup-commutative if it is both ∨1-
commutative and ∨2-commutative.

Theorem 1.2 A pseudo-BCK algebra is sup-commutative iff it is a join-semilattice
with respect to both ∨1 and ∨2.

Proof This follows from Theorem 1.1. �

Corollary 1.2 If A is a sup-commutative pseudo-BCK algebra, then x∨1 y = x∨2 y

for all x, y ∈A.

Proof By Corollary 1.1, x ∨1 y ≤ x ∨2 y and x ∨2 y ≤ x ∨1 y, hence x ∨1 y =
x ∨2 y. �

Lemma 1.3 In a ∨1-commutative (∨2-commutative) bounded pseudo-BCK algebra
A, we have x−∼ = x (x∼− = x, respectively), for all x ∈A.

Proof Replacing y with 0 in the identity x ∨1 y = y ∨1 x, we get (x → 0) � 0 =
(0→ x) � x, i.e. x−∼ = x.

Similarly, replacing y with 0 in x ∨2 y = y ∨2 x, we get x∼− = x. �

Corollary 1.3 Let A be a sup-commutative, bounded pseudo-BCK algebra. Then
x−∼ = x∼− = x, for all x ∈A.

Proof This follows by replacing y with 0 in the equality x ∨1 y = x ∨2 y and ap-
plying Lemma 1.3. �

In a bounded pseudo-BCK algebra A, define, for all x, y ∈A:

x ∧1 y := (
x− ∨1 y−

)∼
,

x ∧2 y := (
x− ∨2 y−

)∼
.

Lemma 1.4 Let A be a pseudo-BCK algebra. Then for all x, y ∈A:

(1) x ∧1 y (y ∧1 x) is a lower bound of {x−∼, y−∼};
(2) x ∧2 y (y ∧2 x) is a lower bound of {x∼−, y∼−}.
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Proof

(1) By Lemma 1.1 we have x−, y− ≤ x− ∨1 y−, hence x ∧1 y = (x− ∨1 y−)∼ ≤
x−∼, y−∼. Thus x ∧1 y is a lower bound of {x−∼, y−∼}.

(2) Similar to (1). �

Proposition 1.9 Let A be a bounded pseudo-BCK algebra.

(1) If A is ∨1-commutative, then x ∧1 y (y ∧1 x) is the g.l.b. of {x, y} and x ∧1 y =
y ∧1 x, for all x, y ∈A;

(2) If A is ∨2-commutative, then x ∧2 y (y ∧2 x) is the g.l.b. of {x, y} and x ∧2 y =
y ∧2 x, for all x, y ∈A.

Proof

(1) By Lemma 1.3, x−∼ = x and y−∼ = y. Hence by Lemma 1.4, x ∧1 y is a lower
bound of {x, y}. Now let z be another lower bound of {x, y}, i.e. z ≤ x, y. It
follows that x−, y− ≤ z−, thus z− is an upper bound of {x−, y−}. Since A is
∨1-commutative, by Proposition 1.8, x− ∨1 y− is the l.u.b. of {x−, y−}, hence
x− ∨1 y− ≤ z−. Thus z= z−∼ ≤ (x− ∨1 y−)∼ = x ∧1 y, i.e. x ∧1 y is the g.l.b.
of {x, y}. Since A is ∨1-commutative, we have x− ∨1 y− = y− ∨1 x−, hence
by definition it follows that x ∧1 y = y ∧1 x, for all x, y ∈A.

(2) Similar to (1). �

Corollary 1.4 Let A be a bounded pseudo-BCK algebra.

(1) If A is ∨1-commutative, then A is a lattice with respect to ∧1, ∨1;
(2) If A is ∨2-commutative, then A is a lattice with respect to ∧2, ∨2.

Proof This follows by Propositions 1.8 and 1.9. �

Theorem 1.3 A bounded sup-commutative pseudo-BCK algebra A is a lattice with
respect to both ∨1, ∧1 and ∨2, ∧2 (under ≤) and for all x, y we have:

x ∨1 y = x ∨2 y, x ∧1 y = x ∧2 y.

Proof By Corollary 1.4, A is a lattice with respect to both ∧1, ∨1 and ∧2, ∨2.
By Corollary 1.2, x ∨1 y = x ∨2 y for all x, y ∈ A. By Proposition 1.9 we get:
x ∧2 y ≤ x ∧1 y and x ∧1 y ≤ x ∧2 y, hence x ∧1 y = x ∧2 y for all x, y ∈A. �

We recall that a downwards-directed set (or a filtered set) is a partially ordered
set (A,≤) such that whenever a, b ∈ A, there exists an x ∈ A such that x ≤ a and
x ≤ b.

Dually, an upwards-directed set is a partially ordered set (A,≤) such that when-
ever a, b ∈A, there exists an x ∈A such that a ≤ x and b ≤ x.

If X is a set, then a net in X will be a set {xi | i ∈ I }, where (I,≤) is an upwards-
directed set.
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We say that a pseudo-BCK algebra A satisfies the relative cancellation property,
(RCP) for short, if for every a, b, c ∈A,

a, b ≤ c and c→ a = c→ b, c � a = c � b imply a = b.

We note that a pseudo-BCK algebra A that is sup-commutative and satisfies the
(RCP) condition is said to be a Łukasiewicz pseudo-BCK algebra (see [112]).

Example 1.8 The pseudo-BCK algebra A from Example 1.3 is downwards-directed
with (RCP).

Proposition 1.10 Any downwards-directed sup-commutative pseudo-BCK algebra
has (RCP).

Proof Consider a, b, c ∈A such that a, b ≤ c and c→ a = c→ b, c � a = c � b.
There exists an x ∈A such that x ≤ a, b.

By (psbck-c1), from a ≤ c it follows that c � x ≤ a � x.
According to Proposition 1.5(4) and (psbck-c3) we have:

a � x = (c � x)∨1 (a � x)= (a � x)∨1 (c � x)

= [
(a � x)→ (c � x)

]
� (c � x)= [

c �
[
(a � x)→ x

]]
� (c � x)

= [
c � (a ∨2 x)

]
� (c � x)= [

c � (x ∨2 a)
]
� (c � x)

= (c � a) � (c � x).

Similarly, b � x = (c � b) � (c � x)= (c � a) � (c � x)= a � x.
We have: a = x ∨2 a = a ∨2 x = (a � x) → x = (b � x) → x = b ∨2 x =

x ∨2 b= b.
Thus A has (RCP). �

1.2 Pseudo-BCK Algebras with Pseudo-product

Definition 1.8 A pseudo-BCK algebra with the (pP) condition (i.e. with the pseudo-
product condition) or a pseudo-BCK(pP) algebra for short, is a pseudo-BCK algebra
(A,≤,→,�,1) satisfying the (pP) condition:

(pP) For all x, y ∈A, x � y exists where

x � y =min{z | x ≤ y → z} =min{z | y ≤ x � z}.

Example 1.9 Take A = {0, a1, a2, s, a, b,n, c, d,m,1} with 0 < a1 < a2 < s <

a,b < n < c,d < m < 1 (see Fig. 1.3).
Consider the operations →, � given by the following tables:
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Fig. 1.3 Example of bounded pseudo-BCK(pP) algebra

→ 0 a1 a2 s a b n c d m 1
0 1 1 1 1 1 1 1 1 1 1 1
a1 a1 1 1 1 1 1 1 1 1 1 1
a2 a1 a1 1 1 1 1 1 1 1 1 1
s 0 a1 a2 1 1 1 1 1 1 1 1
a 0 a1 a2 m 1 m 1 1 1 1 1
b 0 a1 a2 m m 1 1 1 1 1 1
n 0 a1 a2 m m m 1 1 1 1 1
c 0 a1 a2 m m m m 1 m 1 1
d 0 a1 a2 m m m m m 1 1 1
m 0 a1 a2 m m m m m m 1 1
1 0 a1 a2 s a b n c d m 1

� 0 a1 a2 s a b n c d m 1
0 1 1 1 1 1 1 1 1 1 1 1
a1 a2 1 1 1 1 1 1 1 1 1 1
a2 0 a1 1 1 1 1 1 1 1 1 1
s 0 a1 a2 1 1 1 1 1 1 1 1
a 0 a1 a2 m 1 m 1 1 1 1 1
b 0 a1 a2 m m 1 1 1 1 1 1
n 0 a1 a2 m m m 1 1 1 1 1
c 0 a1 a2 m m m m 1 m 1 1
d 0 a1 a2 m m m m m 1 1 1
m 0 a1 a2 m m m m m m 1 1
1 0 a1 a2 s a b n c d m 1


