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Preface

Bruno Buchberger passed the milestone of his 60th birthday on October 22, 2002.
All the contributors to this book helped to celebrate this event, by presenting

invited talks at the birthday conference “Logic, Mathematics and Computer Sci-
ence - LMCS2002” presented in Professor Buchberger’s renovated medieval castle
at RISC in Hagenberg, Austria. Because of the superb spirit and the success of
this symposium, the idea was launched to make these talks available to a larger
audience. After more than a decade, the plan has finally come true, in the form of
this collection of mathematical essays. Two of them are almost unchanged versions
of the LMCS2002 talks: Stephen Wolfram’s “New Directions in the Foundations
of Mathematics” and Doron Zeilberger’s “Towards a Symbolic Computational
Philosophy (and Methodology!) for Mathematics”. The essay “On the Role of
Logic and Algebra in Software Engineering” by Manfred Broy is a slightly edited
version of his LMCS2002 talk. Henk Barendregt significantly expanded his talk
on “Foundations of Mathematics from the Perspective of Computer Verifcation”.
In their mathematical essence all these contributions are still fully up-to-date, and
they rekindle the inspiring atmosphere of the Buchberger Symposium.

I want to take the opportunity to thank Ralf Hemmecke for editorial assistance
and, last but not least, Martin Peters and Ruth Allewelt from Springer for their help
and almost infinite patience.

Hagenberg, Austria Peter Paule
May 2013
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Foundations of Mathematics
from the Perspective of Computer Verification

Henk Barendregt

To Bruno Buchberger independently of any birthday

Abstract In the philosophy of mathematics one speaks about Formalism,
Logicism, Platonism and Intuitionism. Actually one should add also Calculism.
These foundational views can be given a clear technological meaning in the context
of Computer Mathematics, that has as aim to represent and manipulate arbitrary
mathematical notions on a computer. We argue that most philosophical views
over-emphasize a particular aspect of the mathematical endeavor.

1 Mathematics

The ongoing creation of mathematics, that started 5 or 6 millennia ago and is
still continuing at present, may be described as follows. By looking around and
abstracting from the nature of objects and the size of shapes homo sapiens created
the subjects of arithmetic and geometry. Higher mathematics later arose as a tower
of theories above these two, in order to solve questions at the basis. It turned out
that these more advanced theories often are able to model part of reality and have
applications. By virtue of the quantitative, and even more qualitative, expressive
force of mathematics, every science needs this discipline. This is the case in order
to formulate statements, but also to correct conclusions (Fig. 1).
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Fig. 1 The triangle of
mathematical activities

The mathematical endeavor consists in a stylized way of three activities1:
defining, calculating and proving.2 The three started in this order, but over the
centuries they became more and more intertwined. Indeed, before one can do
arithmetic, one has to have numbers and an analogous statement holds for geometry.
Having numbers one wants to add and multiply these; having polygons one wants
to calculate their area. At some point the calculations became complex and one
discovered shortcuts. One role of proofs is that they are an essential tool to establish
the correctness of calculations and constructions.

1.1 Egyptian-Chinese-Babylonian vs Greek Mathematics

Different appreciations of the three sides of the triangle of mathematical activities
gave rise to various explicit foundational views. Before entering into these we will
argue that different implicit emphases on the sides of the triangle also did lead
to different forms of mathematics. In the Egyptian-Chinese-Babylonian tradition
emphasis was put on calculation. One could solve e.g. linear and quadratic
equations. This was done in a correct way, but a developed notion of proof was
lacking. In the Greek tradition the emphasis was on proofs. Using these one can
show that there are infinitely many primes, or that

p
2 is irrational, something

impossible to do by mere computation alone. But the rigor coming from geometric
proofs also had its limitations. Euclid3 [51] gives a geometric proof that .xCy/2 D
x2C2xy Cy2, but no similar results for .xCy/3 (although such a result could have
been proved geometrically) or .x C y/4, let alone .x C y/n.

1I learned this from Gilles Barthe (1996, personal communication).
2The activity of solving can be seen as a particular instance of computing (or of proving, namely
that of an existential statement 9x:P.x/ in a constructive setting).
3App. 325–265 BC.
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Then came Archimedes (287–212 BC), who was well versed in both calculating
and proving. Another person developing mathematics toward the synthesis of these
two traditions was the Persian mathematician al-Khowârizmı̂ (app. 780–850 AD),
who showed that the algorithms for addition and multiplication of decimal numbers
(as we learn them at school) are provably correct.

When calculus was invented by Newton (1643–1727) and Leibniz (1646–1716)
the dichotomy between proving and computing was reinforced. Newton derived
Kepler’s laws of planetary movement from his own law of gravitation. For this he
had to develop calculus and use it in a nontrivial way. He wanted to convince others
of the correctness of what he did, and went in his Principia into great detail to arrive
at his conclusions geometrically, i.e. on the Greek tradition.4 Leibniz [83] on the
other hand used calculus with a focus on computations. For this he invented the
infinitesimals, whose foundation was not entirely clear. But the method worked so
well that this tradition still persists in physics textbooks. Euler could do marvelous
things with this computational version of calculus, but he needed to use his good
intuitio in order to avoid contradictions. Mathematicians in Britain, on the other
hand, “did fall behind” by the Greek approach of Newton, as stated by Kline
(1908–1992) [77], pp. 380–381. Only in the nineteenth century, by the work of

4Newton also did many important things for the synthesis of the two styles of doing mathematics.

His binomial formula .x C y/n D Pn
kD0.

n
k
/xn�kyk involves computing and reasoning. It also

makes sense for n a rational number. Also his fast method of computing digits of � , see [96] or [21]
pp. 142–143, is impressive. By computing twice

Z 1
4

0

p
x � x2dx;

one time using calculus, another time using planar geometry and employing the binomial formula
for n D 1

2
, Newton derived

� D 24.

p
3

32
C 1

12
� 1

160
� 1

3;584
� 1

36;864
� 5

1;441;792
� 7

13;631;488
: : :/

D 24.

p
3

32
C 1

3

1

22
� 1

5

1

25
� 1

7

1

29
� 1

9

1

212
�

1X

kD4

2k � 3

.2k C 1/23kC5
/;

using modern notation. Newton knew how to compute
p
3 and this series converges quite fast.

In this way he obtained � D 3:14159265897928, the last two digits are a roundoff error for 32.
Ludolph van Ceulen (1539–1610) spent several decades of his life in order to compute 32 digits
(later 35 digits published on his tomb in Leiden), see his [119], while with Newton’s method this
could have been done in a day or so. As opposed to Newton it should be admitted that van Ceulen
was more precise about the validity of the digits he obtained.
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Cauchy (1789–1857) and Weierstrass5 (1815–1897), the computational and proving
styles of doing calculus were unified and mathematics flourished as never before.6

In the last third of the twentieth century the schism between computing and
proving reappeared. Computer Algebra Systems are good at symbolic computing,
but they cannot keep track of assumptions and use them to check whether the side
conditions necessary for certain computations actually hold, nor provide proofs of
the correctness of their results. Proof-verification Systems at first were not good at
computing and at providing proofs for the correctness of the result of a computation.
This situation is changing now.

1.2 Progress on Foundations

During the development of mathematics, notations have been introduced to help
the mathematicians to remember what they defined and how, and what they did
compute and prove. A particularly useful notation came from Vieta (1540–1603),
who introduced variables to denote arbitrary quantities. Together with the usual
notations for the algebraic operations of addition and multiplication, this made
finding solutions to numerical problems easier. The force of calculus consists for
a good part in the possibility that functions can be manipulated in a symbolic way.

During the last 150 years general formal systems have been introduced for
defining, computing and reasoning. These are the formal systems for ontology,
computability and logic. The mathematical notations that had been used throughout
the centuries now obtained a formal status. If a student who states the Archimedian
axiom as “For all x and all �>0 there exists an n2N such that n� is bigger”
a teacher could say only something like: “I do not exactly understand you.” If the
student is asked to use a formal statement to express what he or she means and
answers “8x8�>0 9n2N:n�>” the teacher can now say that this is demonstrably
not a WFF (well formed formula). This little example is enough to show that these

5Poincaré (1854–1912) made a distinction between logicians using “Analysis”, among which he
placed Weierstrass, and intuitive mathematicians, using “Synthesis”, like Klein. He mentioned that
the intuitive mathematicians are better in discovery, although some logicians have this capacity as
well. Poincaré added that we need both types of mathematicians: Les deux sortes d’esprits sont
également nécessaires aux progrès de la science; les logiciens, comme les intuitifs, ont fait de
grandes choses que les autres n’auraient pas pu faire. Qui oserait dire s’il aimerait mieux que
Weierstrass n’eût jamais écrit, ou s’il préférerait qu’il n’y eût pas eu de Riemann? See [102],
Chap. 1: L’intuition et la logique en mathématiques.
6In the nineteenth century the infinitesimals of Leibniz were abolished (at least in mainstream
mathematics). But in the twentieth century they came back as non-standard reals. One way of
doing this is by considering h > 0 as infinitesimal if 8n2N:h< 1

n
; for this it is necessary to work

in a non-Archimedian extension of R, which can be obtained as RI =D, where I is an infinite set
andD is an ultra-filter on P.I /. This approach is due to Robinson (1918–1974), see his [105]. The
other way consist of infinitesimals h > 0, such that h2 D 0. This time the trick is to work in an
intuitionistic context where the implication h2 D 0 ) h D 0 does not hold, see [94] and [23].


