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Preface

This volume contains a selection of short refereed papers related to the presen-
tations given at OR 2012, the International Annual Conference of the German
Operations Research Society. The conference was held from September 4–7, 2012,
at Leibniz Universität Hannover. More than 500 participants from about 40
countries attended more than 300 contributed talks in 18 different streams, ranging
from ‘‘Applied Probability’’ to ‘‘Traffic and Transportation’’.

Special attention was given to those OR-problems that are related to the
numerous aspects and interactions of ‘‘Energy, Markets and Mobility’’. The choice
of this main topic reflected not only current challenges of society at large, but also
important strengths of the hosting institutions, Leibniz Universität Hannover, as
well as its business environment in the German state of Lower Saxony. A large
number of presentations, both invited and contributed, addressed this field.
However, the conference also provided ample opportunity to present and learn
about the newest developments in operations research in general.

As in previous years, the presentations of the prize winners were one of the
highlights of the conference. The excellent works submitted mainly by junior
researchers again confirmed how attractive and vivid operations research is as a
field of both theory development and application.

The editors of this book served as the local organizing committee. We are
deeply indebted to the many institutions, firms, and individuals who worked hard
and often invisibly or donated generously to make the conference a success. To all
of them this volume is dedicated.

Stefan Helber
Michael Breitner

Daniel Rösch
Cornelia Schön

Johann-Matthias Graf von der Schulenburg
Philipp Sibbertsen

Marc Steinbach
Stefan Weber

Anja Wolter
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A Genetic Algorithm for the Unequal Area Facility
Layout Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
Udo Buscher, Birgit Mayer and Tobias Ehrig

viii Contents

http://dx.doi.org/10.1007/978-3-319-00795-3_8
http://dx.doi.org/10.1007/978-3-319-00795-3_9
http://dx.doi.org/10.1007/978-3-319-00795-3_9
http://dx.doi.org/10.1007/978-3-319-00795-3_10
http://dx.doi.org/10.1007/978-3-319-00795-3_11
http://dx.doi.org/10.1007/978-3-319-00795-3_12
http://dx.doi.org/10.1007/978-3-319-00795-3_12
http://dx.doi.org/10.1007/978-3-319-00795-3_13
http://dx.doi.org/10.1007/978-3-319-00795-3_13
http://dx.doi.org/10.1007/978-3-319-00795-3_14
http://dx.doi.org/10.1007/978-3-319-00795-3_14
http://dx.doi.org/10.1007/978-3-319-00795-3_15
http://dx.doi.org/10.1007/978-3-319-00795-3_15
http://dx.doi.org/10.1007/978-3-319-00795-3_15
http://dx.doi.org/10.1007/978-3-319-00795-3_16
http://dx.doi.org/10.1007/978-3-319-00795-3_16


A New Theoretical Framework for Robust Optimization
Under Multi-Band Uncertainty . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
Christina Büsing and Fabio D’Andreagiovanni

Relevant Network Distances for Approximate Approach
to Large p-Median Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123
Jaroslav Janacek and Marek Kvet

Impact of Utility Function to Service Center Location
in Public Service System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129
Michal Kohani, Lubos Buzna and Jaroslav Janacek

How Does Network Topology Determine the Synchronization
Threshold in a Network of Oscillators? . . . . . . . . . . . . . . . . . . . . . . . 135
Lubos Buzna, Sergi Lozano and Albert Díaz-Guilera

Approximating Combinatorial Optimization Problems
with Uncertain Costs and the OWA Criterion . . . . . . . . . . . . . . . . . . 141
Adam Kasperski and Paweł Zieliński
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Product Line Design with Pricing Kits

Pascal Lutter

1 Introduction

Product design and pricing are important business decisions. On the one hand, prod-
uct characteristics induced by product design should match different customer pref-
erences. On the other hand, product pricing should utilize customers’ willingness-
to-pay (WTP) as much as possible to enhance profit. The resulting conflicts should
be anticipated as well as possible to find a compromise between both clients’ and
corporate interests. Such approaches are being pursued in the literature and there are
many specific mathematical programming models. All models support the design
and pricing of only complete products. Following the increasing use of modular-
ization and mass customization, it is possible to offer customized products at lower
costs. Besides solely offering a variety of different product variants, it is also possi-
ble to allow customers to configure the product according to their own preferences.
Pricing kits are innovative modular pricing systems in the form of list prices for
modular product components and help to determine a corresponding pricing system
for individual product components. Applications can be found in the configuration
of personal computers or in the automotive sector. Previous descriptions in literature
left the crucial aspect of pricing unanswered.

With this contribution, a mathematical optimization model is developed in order
to determine a profit maximizing pricing kit. After a brief presentation of current
methods for measuring customer preferences, product configuration and pricing, the
new concept of pricing kits will be defined and a mathematical formulation will be
provided. Then different forms of integration are discussed and compared with pure
product line design models in a simulation study. The paper concludes with a brief
outlook.
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4 P. Lutter

2 Product Line Design and Pricing

Hereinafter a product will be defined as a pool of characteristics. The characteristics
of products are determined by their attributes m and corresponding attribute levels a.
One attribute illustrates one component that is observable or at least conceptually
ascertainable. For example, the internal memory of a PC is an attribute whose levels
are given by its memory size. The combination of particular levels of a given set of
attributes to a complete product is called product design, e.g. a PC is described by the
attributes processor, operating system, memory, hard drive, optical drive, video card
and monitor. Choosing all attributes at their lowest levels one gets a simple office
PC. Another product variant emerges by varying attribute levels.

2.1 Modeling Customer Choice

The anticipation of customer choice requires knowledge of the corresponding pref-
erences in terms of utility for each attribute and level ukma . In practice, Conjoint
Analysis is a common method for investigating customer utility. With these observed
utility values, a corresponding WTP can be calculated in order to predict customer
decisions for any specific combination of product and price. To anticipate decisions
of customers, a deterministic approach, the so-called First-Choice (FC) Rule, also
known as the Maximum Utility Rule [6], is applied. This rule assumes perfectly
rational customer choices and the exact knowledge of customer utility as well as all
other factors that might affect customer choice. Even though these assumptions seem
to be very restrictive, the resulting predictions have the same quality as other rules
of choice [4].

2.2 Pure Product Line Design and Pricing

Since heterogeneity of demand is increasing and globalization of markets is rising,
the pressure on businesses to shape their products in line with the market conditions
is growing. In a wider sense product line design contains both determination of
quantity of product configurations and price setting. Existing mathematical models
can be subdivided into single-stage and two-stage approaches. Single-stage models,
also known as product line design (PLD) models, generate a predetermined quantity
of different product variants as well as their corresponding prices [5]. It is important
to mention that these models assume that product attributes cannot be customized
afterwards. Hence, it is not possible to change some product attribute levels due to
customer requests. If components are exchanged ex post, all product prices have to be
recalculated in order to prevent cannibalization effects. The basis for PLD approaches
forms the attribute level, so that product configuration and price setting takes place
simultaneously, whereas two-stage models, also known as product line selection
(PLS) models, address the level of complete products. In the first step the overall
set of possible products is reduced to a smaller amount, so that in a second step the
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final choice of products and their prices can be found in a subset of all possibilities
of products [3]. It remains unclear how product preselection of the first stage has
to take place, since PLS approaches only provide models for the second stage. In
a comparison of these two approaches, the PLS approaches can only approximate
PLD solutions [6].

3 Pricing Kits

A pricing kit is a pricing system in terms of list prices for standardized, combinable,
complementary as well as substitutive and individually alienable components that
can be provided as a complete product at the market. In contrast to product line
design where customers are offered fixed products, customers can customize their
own product. Precondition for pricing kits are the so-called product kits. A product
kit consists of standardized and combinable performance based components [2].
Therefore, it shows the close link to the principle of modularization [1, 7]. Essential
for this concept is the transition from the idea of impersonal mass production to a new
approach of an individual product design. This concept still differs from complete
made-to-measure production because of the use of standardized components. Pricing
kits provide the opportunity to set individual prices for all attribute levels. Thus, prices
for individual products can easily be calculated. A popular example for the successful
usage of this pricing system is the well-known computer company Dell.

3.1 Pricing Kit Model

In the following it is assumed that all relevant customers are allocated in K homoge-
nous customer segments, each consisting of Sk customers. A product consists of M
attributes with each Am levels per attribute m. For each customer segment k the WTP
for all attribute levels Rkma is known. Furthermore, the variable costs Cma for all
attribute levels are given. The binary variables xkma represent the customer choice
with xkma = 1 if the chosen product consists of attribute m with level a and otherwise
xkma = 0. The realized net benefit per segment k for attribute m is represented by skm .
The price for all attributes and corresponding levels is given by pma . It is assumed
that a product necessarily consists of all attributes. In cases of optional attributes a
further attribute level can be implemented with Cma = 0. Finally, it is assumed that
the company acts as a monopolist and all customers purchase one product at most.
To determine a pricing system in terms of a pricing kit maximizing the contribution
margin, the following model is proposed:

max
K∑

k=1

Sk

M∑

m=1

Am∑

a=1

xkma (pma − Cma) (1)
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s.d. skm =
Am∑

a=1

xkma (Rkma − pma) ∀k,m (2)

skm ≥ Rkma

Am∑

a∩=1

xkma∩ − pma ∀k,m, a (3)

M∑

m=1

skm ≥ 0 ∀k (4)

Am∑

a=1

xkma =
Am∩∑

a=1

xkm∩a ∀k,m,m∩ (5)

Am∑

a=1

xkma ≤ 1 ∀k,m (6)

xkma ∈ {0, 1} ∀k,m, a (7)

skm, pma ∈ R ∀k,m, a (8)

The objective function (1) maximizes the contribution margin, which is the sum
of products of the segment-related contribution margins with the corresponding seg-
ment size. Segment-specific contribution margins can be calculated as the difference
between the costs and the price of the individual product. Customers’ behavior is
forecasted using the First Choice Rule: For each attribute customers choose the level
which generates the highest net benefit. If the sum of all net benefits is non-negative
the product is bought. This behavior is implemented in (2)–(4). (2) calculates the net
benefit for all attributes, (3) assures rationality of customer choice and (4) guarantees
non-negativity of net benefit of purchased products. The complete specification from
the acquired product is ensured with (5), whereas (6) guarantees that each attribute
contains not more than one attribute level. Altogether, these restrictions assure that all
customized products consist of exactly M attributes each with one level. Finally, the
domain of the decision variables is given in (7) and (8). The model can be linearized
introducing customer individual prices pkma which are equal to pma if customer
k buys attribute m in level a and 0 otherwise. The resulting formulation can be
solved using standard solvers like Xpress.

3.2 Integration of Pricing Kits

Offering pure pricing kits (PK) is a straightforward way of using pricing kits. In
such cases, the entire product line only consists of a single pricing kit. For many
products, this seems to be an inadequate consideration of consumers behavior. One
cannot assume that each customer segment consists of willingness and necessary
knowledge to choose the right product components. Although there may exist many
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consumers who are familiar with the product in general and take pleasure in a full
customization of the product, there are also customers showing lower interest in
product customization. In particular, those customers could be deterred by a pure
PK. A combination of pricing kits and pre-configured products could overcome
this drawback. Promising extensions are combined pricing kits (CPK) and upgrade
pricing kits (UPK). CPK consist of one or more product variants as well as a pricing
kit, while UPK consist of basic product variants that can be customized exchanging
certain components. This causes several advantages compared to PK. First, customers
with low product involvement can easily afford a fully functional basic version.
Second, customers with high product involvement are able to customize the product
according to their preferences. The main advantage from a corporate perspective is
the use of several basic types and different pricing kits which lead to a better price
discrimination.

4 Computational Results

In the evaluation of the proposed pricing kit as well as with its extensions a broad sim-
ulation study was conducted, which examines the decision situation under certainty
as well as under uncertainty. The performance of proposed models is tested against
pure PLD strategies using random instances with 4–6 different customer segments
of the same size.

All models are solved in their linear formulation using Xpress. The instances differ
with respect to variable costs and the structure of willingness-to-pay. The observed
products have 6–8 attributes with 2–4 levels. In contrast to the new models it turns
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out that competitive margins are only achieved offering every customer segment its
own product variant. Almost equal margins are generated using the new models with
two or less pre-configured product variants.

To take account of uncertainties, the influence of another customer segment that
has not been considered in the optimization is analyzed. For this purpose, all models
were optimized using 4 basic segments. Then the purchase probability of a different
test segment is estimated. Three different types of WTP structure are considered.
The results are illustrated in Fig. 1. One can draw the conclusion that the pure PLD
strategy performs significantly worse than the new pricing strategies. This results
from the fact that pricing kits and its extensions provide much more flexibility in the
product configuration. Hence, the possibility to change some attribute levels leads to
significantly higher purchase probabilities.

5 Outlook

In this paper a mathematical model to determine a pricing kit that maximizes contri-
bution margin was presented and compared with traditional strategies of pure prod-
uct line design. Further enhancements of pricing kits were discussed and analyzed.
It turns out that the proposed pricing strategies are not inferior to the tradi-
tional strategies in deterministic situations and show a clear advantage in cases of
uncertainty.
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Sparsity of Lift-and-Project Cutting Planes

Matthias Walter

1 Introduction

This work is an extended abstract of the author’s diploma thesis and contains the most
important concepts and results. It is about a numerical property of a certain cutting
plane method in mixed-integer (linear) programming. Many practical problems can
be modeled as MIPs. Examples are settings where decisions are modeled with binary
variables which are then connected via linear constraints.

Solving MIPs is NP-hard in general, nevertheless large problems can be solved
using the combination of many different techniques which evolved during the past
decades. Typically, a so-called branch & cut method is used which utilizes the linear
relaxation to bound the quality of subproblems. The relaxation is created by omitting
the integrality constraints and is a linear program (LP). The set of feasible solutions
of such an LP is a polyhedron, the intersection of finitely many halfspaces. Without
loss of generality we assume that it is a rational polyhedron of the following form:

P = {x ∀ Q
n : Ax ≥ b}

where A ∀ Q
m×n and b ∀ Q

m associated to a linear objective function cᵀx which is
to be minimized.

A solution x ∀ Q
n is feasible for the MIP if xi ∀ Z for all i ∀ I where I

is a specified subset of the variables. One of the most important observations in
mixed-integer programming is that the convex hull

PI := conv{x ∀ P : xi ∀ Z ∩i ∀ I }

of all feasible points is again a polyhedron.
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Applying a bounding procedure based on the LP-relaxation improves the running
time dramatically compared to pure enumeration techniques when solving a mixed-
integer program. This effect is stronger if the relaxation P approximates PI more
tightly. Hence a fundamental way of improving solver software is by adding more
valid inequalities, so-called cutting planes (see [1, 6]).

One method to generate valid cutting planes is lift-and-project and was introduced
in [3]. Here the polyhedron P is split into two polyhedra P1 and P2 via a disjunction
πᵀx ∀ (−≤, π0] ∈ [π0 + 1,+≤) where π ∀ Z

n and π0 ∀ Z. Then the convex hull
of the union P1 ∈ P2 is a stronger relaxation. All inequalities valid for this relaxation
which cut off a given point x̂ ∀ P can be found efficiently via the so-called cut
generating LP (CGLP). The point x̂ shall be separated via the cut αᵀx ≥ β.

min β − αᵀx̂ (CGLP)

s.t. αᵀ = wᵀA + w0π
ᵀ

αᵀ = vᵀA − v0π
ᵀ

β ⇒ wᵀb + w0π0

β ⇒ vᵀb − v0(π0 + 1)

w, v ∀ Q
m+

w0, v0 ∀ Q+

We call a cutting plane sparse if only a few of its coefficients αi are non-zero.
This property is especially relevant from a practical point of view since modern LP-
solvers only work with the non-zeros in memory and hence their number influences
the running time. In experiments we mostly measure density which is the converse
concept.

2 Normalization Constraints

Since (CGLP) is a polyhedral cone it must be truncated in order to be able to optimize
over it. This is done by so-called normalization constraints. The choice of a good
normalization is very important because there is a large number of possible lift-
and-project cutting planes. We now shortly present the most important ones that are
studied in literature and also suggest another one that attempts to generate sparser
cuts.

There are three “primal” normalizations which try to bound the αi or β.

n∑

i=1

|αi | = 1 (α1-NC)

|αi | ≥ 1 (∩i ∀ [n]) (α≤-NC)

|β| = 1 (β-NC)
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The other category of normalization constraints is based on the idea of bound-
ing the multipliers w,w0, v, and v0. All of the following truncations have a very
attractive property: There is a correspondence between the bases of (CGLP) and the
bases of the original LP (see [4]).

w0 + v0 = 1 (TNC)

m∑

i=1

wi + w0 +
m∑

i=1

vi + v0 = 1 (SNC)

The second normalization highly depends on the representation of a certain
inequality Ai,∗x ≥ bi in that a scaled version of a row (scaled by some λ > 1)
is preferred over the original row. This happens because it needs a smaller multiplier
to get the same result.

If we interpret the values of the multipliers as a resource with capacity equal to 1
we will (on average) use approximately half of it for w and half of it for v. This means
that the resulting cut is almost a convex combination of some inequalities of Ax ≥ b
scaled by 1/2. The scaling factor in turn means that incorporating a generated lift-
and-project cut into another lift-and-project cut is penalized. This fact is considered
as a reason that with the SNC the rank of the lift-and-project inequalities remains
small even after several rounds of cut generation. Because typical MIPs usually
have sparse rows rank 1 cuts with a small dual support (a small number of positive
multipliers) are sparse as well. A scaled variant was developed by Fischetti, Lodi
and Tramontani in [5].

m∑

i=1

||Ai,∗||2(wi + vi ) + ||π ||2(w0 + v0) = 1 (ENC)

It makes the choice of all constraints fair by rescaling the weights. Now we want to
additionally penalize dense constraints.

m∑

i=1

|supp
(

Ai,∗
) | · ||Ai,∗||2(wi + vi ) + ||π ||2(w0 + v0) = 1 (DNC)

Note that by |supp(x)| we denote the number of non-zeros of vector x .
The interpretation in terms of resources is simple. The CGLP is allowed to incor-

porate two sparser inequalities instead of a single dense inequality with the same
average of multipliers.
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3 Results

This section is divided into three parts. In the first, the impact of sparsity on the
running time of the simplex method is measured. The second summarizes the mea-
surements for the lift-and-project cutting planes and the third describes the main
result of the thesis.

3.1 Effects of Sparsity

Before testing the normalization constraints in practice we devised the following
experiment in order to quantify the effects of using dense rows. For each instance of
the MIPLIB 2003 [2] we created a valid very dense equation αᵀx = β as a linear
combination of other equations. We then ran CPLEX in order to solve the instance,
except that we hooked Algorithm 1 into the branching decision callback of CPLEX.

Algorithm 1 Pseudocode for Densification Experiment

1. Get the current optimal basis B from the node LP.
2. For d = 0, . . . , 9, carry out Steps 3.1,. . .,3.2.
3. Copy LP to LP√ and apply the CPLEX branching steps (bound tightening) to LP√.
4. Add αᵀ x = β to the first d rows of LP√.
5. Feed B as a warm-start basis into LP√.
6. Solve LP√ with the dual simplex method. Measure the number of simplex iterations (pivot steps)

and the solving time.
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Table 1 Relative densities of cuts for the MIPLIB 2003 instances in % (geometric mean).

Type Rank α≤-NC α1-NC β-NC TNC SNC ENC DNC

Primal density = 1 82.2 1.9 6.6 8.6 5.4 5.5 5.2
Primal density ≥ 10 86.9 3.5 11.6 23.3 11.5 14.0 10.7
Dual density = 1 23.2 1.8 1.8 2.8 1.2 1.2 1.2
Dual density ≥ 10 23.3 3.3 4.6 5.7 1.9 2.2 1.8

This procedure does not change the remaining behavior of CPLEX and hence the
LPs to be solved in Step 3.1 are essentially the same except that d inequalities were
“densified” with help of αᵀx = β. So from the polyhedral point of view the LPs
were the same, but nevertheless, the solving times were different as Fig. 1 shows.

3.2 Actual and Possible Sparsity

The goal of this part of the work was to compare the different normalizations with
respect to sparsity. First we observed that (α≤-NC) leads to horribly dense cuts and
approve former results stating that (β-NC) is instable. Interestingly, the cuts obtained
from (α1-NC) are the best when we are interested only in sparsity but, as shown in
[3], they are provably not as strong as other cuts.

Via a big-M-based MIP model we were able to force cut coefficients to zero.
Since the (CGLP) has the cut violation as an objective value we measured the cut
violation that can be obtained for a given maximal number of non-zero coefficients.
The result is that if we strive for a sparsest cut for it helps to allow cut violations of
20 % below. On the other hand, allowing weaker cut violations does not help much
for sparsity.

Another known result is that cuts of higher cut rank are typically denser than
rank-1 cuts. This effect is present especially for the multiplier-based normalizations.
Table 1 provides some details although many more can be found in the thesis.

3.3 Dual Sparsity

We also measured the dual density which is defined as the average number of non-
zero coefficients in the multiplier vectors w and v. Our experiments indicate a strong
correlation between the primal and dual density (see Fig. 2). From that we derived
our suggested improvement of the Euclidean normalization constraint introduced
in [5].

Among the four related multiplier-based normalizations this normalization (DNC)
performs best. It is ongoing work to evaluate the normalization in a realistic branch
& cut solving process.
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Fig. 2 Correlation between primal and dual density for instance pp08aCUTS

Acknowledgments I owe many thanks to my internship advisor Laci Ladanyi in the CPLEX group
at IBM as well as my university advisor Volker Kaibel. Additionally, I want to thank Andrea Lodi,
Tobias Achterberg and Roland Wunderling for several stimulating discussions.

References

1. Achterberg, T.: SCIP: solving constraint integer programs. Math. Program. Comput. 1(1), 141
(2009)

2. Achterberg, T., Koch, T., Martin, A.: MIPLIB 2003. Operations Res. Lett. 34, 361–372 (2006)
3. Balas, E., Ceria, S., Cornuéjols, G.: A lift-and-project cutting plane algorithm for mixed 0–1

programs. Math. Program. 58, 295324 (1993)
4. Balas, E., Perregaard, M.: A precise correspondence between lift-and-project cuts, simple

disjunctive cuts, and mixed integer gomory cuts for 0–1 programming. Math. Program. 94,
221–245 (2003)

5. Fischetti, M., Lodi, A., Tramontani, A.: On the separation of disjunctive cuts. Math. Program.
128, 205–230 (June 2011)

6. Wolter, K.: Implementation of cutting plane separators for mixed integer programs. Masters
thesis (2006)



Railway Track Allocation

Thomas Schlechte

1 Micro-Macro Transformation of Railway Networks

A major challenge is modeling railway systems to allow for resource and capacity
analysis. Railway capacity has basically two dimensions, a space dimension which
are the physical infrastructure elements as well as a time dimension that refers to the
train movements, i.e., occupation or blocking times, on the physical infrastructure.
Railway safety systems operate on the same principle all over the world. A train has
to reserve infrastructure blocks for some time to pass through. Two trains reserving
the same block of the infrastructure within the same point in time is called block
conflict. Therefore, models for railway capacity involve the definition and calculation
of reasonable running and associated reservation and blocking times to allow for a
conflict free allocation.

There are microscopic models that describe the railway system extremely detailed
and thorough. Microscopic models have the advantage that the calculation of the run-
ning times and the energy consumption of the trains is very accurate. A major strength
of microscopic models is that almost all technical details and local peculiarities are
adjustable and are taken into account. Railway system on a microscopic scale covers
the behavior of trains and the safety system completely and correctly. Those models
of the railway infrastructure are already very large even for very small parts of the
network. The reason is that all signals, incline changes, and switches around a railway
station have to be modeled to allow for precise running time calculations of trains.
In general microscopic models are used in simulation tools which are nowadays
present at almost all railway companies all over the world. The most important field
of application is to validate a single timetable and to decide whether a timetable is
operable and realizable in practice. However, microscopic models are inappropriate
for mathematical optimization because of the size and the high level of detail. Hence,
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most optimization approaches consider simplified, so called macroscopic, models.
The challenging part is to construct a reliable macroscopic model for the associated
microscopic model and to facilitate the transition between both models of different
scale.

In order to allocate railway capacity significant parts of the microscopic model
can be transformed into aggregated resource consumption in space and time. We
develop a general macroscopic representation of railway systems which is based on
minimal headway times for entering tracks of train routes and which is able to cope
with all relevant railway safety systems. We introduce a novel bottom-up approach
to generate a macroscopic model by an automatic aggregation of simulation data
produced by any microscopic model. The transformation aggregates and shrinks
the infrastructure network to a smaller representation, i.e., it conserves all resource
and capacity aspects of the results of the microscopic simulation by conservative
rounding of all times. The main advantage of our approach is that we can guarantee
that our macroscopic results, i.e., train routes, are feasible after re-transformation for
the original microscopic model. Because of the conservative rounding macroscopic
models tend to underestimate the capacity. Furthermore, we can control the accuracy
of our macroscopic model by changing the used fixed time discretization. Finally, we
provide a priori error estimations of our transformation algorithm, i.e., in terms of
exceeding of running and headway times. We implemented our new transformation
algorithm in a tool called NETCAST. The technical details can be found in [9].

2 Optimal Railway Track Allocation

The main application of railway track allocation is to determine the best operational
implementable realization of a requested timetable, which is the main focus of our
work. But, we want to mention that in a segregated railway system the track allocation
process directly gives information about the infrastructure capacity. Imaging the
case that two trains of a certain type, i.e., two train slots, are only in conflict in
one station. A potential upgrade of the capacity of that station allows for allocating
both trains. This kind of feedback to the department concerning network design is
very important. Even more long-term infrastructure decisions could be evaluated by
applying automatically the track allocation process, i.e., without full details only on
a coarse macroscopic level but with different demand expectations. Hence, suitable
extensions or simplifications of our models could support infrastructure decisions in
a quantifiable way. For example major upgrades of the German railway system like
the high-speed route from Erfurt to Nürnberg or the extension of the main station of
Stuttgart can be evaluated from a reliable resource perspective. The billions of euros
for such large projects can then be justified or ranked by reasonable quantifications
of the real capacity benefit with respect to the given expected demand.

The optimal track allocation problem for macroscopic railway models can be
formulated with a graph-theoretic model. In that model optimal track allocations
correspond to conflict-free paths in special time-expanded graphs.


