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Foreword

The present volume contains contributions presented at the ninth European Confer-
ence on Complex Systems, held at Université Libre de Bruxelles, Brussels, from 2
to 7 September 2012, under the sponsorship of the Complex Systems Society.

The volume is divided into seven parts. The first six parts comprise contributions
to the main conference, whether oral or poster, compiled according to the six confer-
ence main tracks. The last part includes contributions to some of satellite meetings
hosted at the conference.

We are pleased to acknowledge the invaluable help of the colleagues who assisted
in the organization of this event, starting with the Organizing Committee members,
Vincent Blondel, Timoteo Carletti, Enrico Carlon, Anne De Wit, Pierre Gaspard, Al-
bert Goldbeter, Renaud Lambiotte, and Carlo Vanderzande, and the Steering Com-
mittee, responsible for the development and support of the ECCS conference series,
whose members are Fatihcan Atay, Vittoria Colizza, Thomas Gilbert, Janusz Holyst,
Jürgen Jost, Markus Kirkilionis (Chair), Kristian Lindgren, Andras Lorincz, Jorge
Louçã, Roberto Serra, Mina Teicher, Stefan Thurner, and Jeff Johnson (President of
the Complex Systems Society). The six Track Committees were skillfully chaired
by Claude Baesens, András Lörincz, Eve Mitleton-Kelly, Jacques Demongeot, Pe-
ter Allen, and Sorin Solomon, who benefited from the support of Anne De Wit,
Pierre Gaspard, Hugues Bersini, Serge Massar, Annick Castiaux, Stéphane Vannit-
sem, Geneviève Dupont, Tom Lenaerts, Renaud Lambiotte, Nicolas Vandewalle,
Vincent Blondel, Timoteo Carletti, Natasa Golo, as well as of many anonymous
referees. The eighteen satellite meetings hosted at the conference were masterfully
organized by independent committees to whom we are indebted. In addition, we
wish to thank the students and staff members at the Université Libre de Bruxelles,
without whom the conference could not have been organized.

We wish to express our gratitude to Theo Geisel who delivered the inaugural
talk, as well as to the eight invited keynote speakers Charles H. Bennett, Jean-Louis
Deneubourg, Manfred Eigen, Santo Fortunato, Peter Grassberger, Jean-Marie Lehn,
Raymond Kapral, and Sylvia Walby.

Finally, it is our pleasure to thank the sponsors who enthusiastically supported
this conference: the Université Libre de Bruxelles, the Fonds de la Recherche
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Scientifique—FNRS, the Belgian Science Policy Office-Belspo, ASSYST—Action
for the Science of complex SYstems and Socially intelligent icT, funded under
the CORDIS Seventh Framework Programme, Naxys—Namur Center for Com-
plex Systems, Springer Complexity, Oxford University Press, Cambridge University
Press, Groupe De Boeck, World Scientific, Wolfram Research, and Star Alliance.

Thomas Gilbert, Conference Chair
Gregoire Nicolis, Program Chair

Markus Kirkilionis, Chair of the Steering Committee
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Chapter 1
Aggregation and Emergence in Agent-Based
Models: A Markov Chain Approach

Sven Banisch, Ricardo Lima, and Tanya Araújo

Abstract We analyze the dynamics of agent-based models (ABMs) from a Marko-
vian perspective and derive explicit statements about the possibility of linking a
microscopic agent model to the dynamical processes of macroscopic observables
that are useful for a precise understanding of the model dynamics. In this way the
dynamics of collective variables may be studied, and a description of macro dynam-
ics as emergent properties of micro dynamics, in particular during transient times,
is possible.

1.1 Introduction

Our work is a contribution to interweaving two lines of research that have devel-
oped in almost separate ways: Markov chains and agent-based models (ABMs).
The former represents the simplest form of a stochastic process while the latter
puts a strong emphasis on heterogeneity and social interactions. The usefulness of
the Markov chain formalism in the analysis of more sophisticated ABMs has been
discussed by [7], who look at 10 well-known social simulation models by repre-
senting them as a time-homogeneous Markov chain. Among these models are the
Schelling segregation model [11], the Axelrod model of cultural dynamics [1] and
the sugarscape model from [6]. The main idea of [7] is to consider all possible con-
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figurations of the system as the state space of the Markov chain. Despite the fact that
all the information of the dynamics on the ABM is encoded in a Markov chain, it is
difficult to learn directly from this fact, due to the huge dimension of the configura-
tion space and its corresponding Markov transition matrix. The work of Izquierdo
and co-workers mainly relies on numerical computations to estimate the stochastic
transition matrices of the models.

Consider an ABM defined by a set N of agents, each one characterized by in-
dividual attributes that are taken from a finite list of possibilities. We denote the
set of possible attributes by S and we call the configuration space � the set of all
possible combination of attributes of the agents, i.e. � = SN . This also incorporates
models where agents move on a lattice (e.g. in the sugarscape model) because we
can treat the sites as “agents” and use an attribute to encode whether a site is occu-
pied or not. The updating process of the attributes of the agents at each time step
typically consists of two parts. First, a random choice of a subset of agents is made
according to some probability distribution ω. Then the attributes of the agents are
updated according to a rule, which depends on the subset of agents selected at this
time. With this specification, ABMs can be represented by a so-called random map
representation which may be taken as an equivalent definition of a Markov chain
[10]. Hence, ABMs are Markov chains on � with transition matrix P̂ . For a class
of ABMs we can compute transition probabilities P̂ (x, y) for any pair x, y ∈ � of
agent configurations. We refer to the process (�, P̂ ) as micro chain.

When performing simulations of an ABM we are actually not interested in all
the dynamical details but rather in the behavior of variables at the macroscopic
level (such as average opinion, number of communities, etc.). The formulation of
an ABM as a Markov chain (�, P̂ ) enables the development of a mathematical
framework for linking the micro-description of an ABM to a macro-description of
interest. Namely, from the Markov chain perspective, the transition from the micro
to the macro level is a projection of the Markov chain with state space � onto a new
state space X by means of a (projection) map Π from � to X. The meaning of the
projection Π is to lump sets of micro configurations in � according to the macro
property of interest in such a way that, for each X ∈ X, all the configurations of �
in Π−1(X) share the same property.

The price to pay in passing from the micro to the macrodynamics in this sense
[5, 8] is that the projected system is, in general, no longer a Markov chain: long
memory (even infinite) may appear in the projected system. In particular, well
known conditions for lumpability [8] make it possible to decide whether the macro
model is still Markov. Conversely, this setting can also provide a suitable framework
to understand how aggregation may lead to the emergence of long range memory
effects.

1.2 Application to the Voter Model

We illustrate these ideas at the example of the Voter Model (VM) (see Refs. [4, 9]).
In the VM, S = {0,1} meaning that each agent is characterized by an attribute xi ,
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Fig. 1.1 The micro chain for
the VM with 3 agents and its
projection onto a random
walk obtained by
agglomeration of states with
the same number of black
agents b

i = 1, . . . ,N which takes a value among two possible alternatives. The set of all
possible combinations of attributes of the agents is � = {0,1}N , that is, the set of
all bit-strings of length N . At each time step in the iteration process, an agent i is
chosen at random along with one of its neighboring agents j . If the states (xi, xj )
are not equal already, agent i adopts the state of j (by setting xi = xj ). At the micro-
scopic level of all possible configurations of agents the VM corresponds therefore to
an absorbing random walk on the N -dimensional hypercube. It is well known that
the model has the two absorbing states (1, . . . ,1) and (0, . . . ,0). For a system of
three agents this is shown in Fig. 1.1.

Opinion models as the VM are a nice examples where our projection construction
is particularly meaningful. There, we consider the projectionΠb that maps each x ∈
� into Xb ∈ X where b is the number of agents in x with opinion 1. The projected
configuration space is then made of the Xb where 0≤ b ≤N (see Fig. 1.1). Markov
chain theory, in particular lumpability, allows us to determine conditions for which
the macro chain on X = (X0, . . . ,Xb, . . . ,XN) is again a Markov chain. We find
that this requires that the probability distribution ωmust be invariant under the group
SN of all the permutations of N agents and therefore uniform. This underlines the
theoretical importance of homogeneous or complete mixing in the analysis of the
VM and related models.

In this way our method enables the use of Markov chain instruments in the math-
ematical analysis of ABMs. In Markov chains with absorbing states (and therefore
in the ABM) the asymptotic status is quite trivial. As a result, it is the understanding
of the transient that becomes the interesting issue. In order to analyze the transient
dynamics for the macro dynamics, all that is needed is to compute the fundamental
matrix F of the Markov chain [8]. For the binary VM we are able to derive a closed
form expression for the elements in F for arbitrary N which provides us with all the
information needed to compute the mean quantities and variances of the transient
dynamics of the model. In addition, we show in the VM with three opinion alterna-
tives (S = {0,1,2}) how restrictions in communication (bounded confidence) lead
to stable co-existence of different opinions because new absorbing states emerge in
the macro chain.
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1.3 Some Results

The micro chains obtained via the random map representations helps to understand
the role of the collection of (deterministic) interaction rules used in the model from
one side and of the probability distribution ω governing the sequential choice of the
rules used to update the system at each time step from the other side. The importance
of this probability distribution is to encode social relations and exchange actions. In
our setting it becomes explicit how the symmetries in ω translate into symmetries
of the micro chain. If we decide to remain at a Markovian level, then the partition,
or equivalently the collective variables to be used to build the macro model must
be compatible with the symmetry of the probability distribution ω. In order to ac-
count for an increased level of heterogeneity the partition of the configuration space
defining the macro-level has to be refined. A first result into this direction is that the
symmetry group of agent permutations on ω informs us about ensembles of agent
configurations that can be interchanged without affecting the probabilistic structure
of micro chain. Consequently, these ensembles can be lumped into the same macro
state and the dynamical process projected onto these states is still a Markov chain. It
is clear, however, that, in absence of any symmetry, there is no other choice than to
stay at the micro-level because no Markovian description at a macro-level is possible
in this case.

In our opinion, a well posed mathematical basis for linking a micro-description of
an ABM to a macro-description may help the understanding of many of the proper-
ties observed in ABMs and therefore provide information about the transition from
the interaction of individual actors to the complex macroscopic behaviors observed
in social systems. We summarize our main results below:

1. We formulate agent-based models as Markov chains at the micro level with ex-
plicit transition probabilities.

2. This allows the use of lumpability arguments to link between the micro and the
macro level.

3. In case of a non-lumpable macro description this explains the emergence non-
trivial dynamical effects (long memory).

4. In the Voter Model, homogeneous mixing leads to a macroscopic Markov chain
which underlines the theoretical importance of homogeneous mixing.

5. This chain can be solved including mean convergence times and variances.
6. The stable co-existence of different opinions with in the bounded confidence

model follows from the emergence of new absorbing states in the macro chain.
7. Heterogeneous mixing requires refinement and we show how to exploit the sym-

metries in the mixing distribution (ω) to obtain a proper refinement.

For further reading, see Refs. [2, 3].
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Chapter 2
Chemically-Driven Miscible Viscous Fingering:
How Can a Reaction Destabilize Typically Stable
Fluid Displacements?

L.A. Riolfo, Y. Nagatsu, P.M.J. Trevelyan, and A. De Wit

Abstract We experimentally demonstrate that chemical reactions, by producing
changes in viscosity at the miscible interface between two fluids, can be the very
source of viscous fingering in systems that are otherwise stable in the absence of
a reaction. We explain how, depending on whether the reaction product is more or
less viscous than the reactants, different patterns develop in the reaction zone.

2.1 Background

Viscous fingering (VF) is the hydrodynamic instability that classically appears when
a fluid with a given viscosity displaces another more viscous one in porous me-
dia or a Hele-Shaw cell [1]. It has diverse implications in various fields such as
hydrology [2], petroleum recovery [1], liquid crystal [3], polymer processing [4],
chromatography [5] or CO2 sequestration to name a few [6].

Experimental [7, 8] and theoretical [9, 10] studies have shown that chemical
reactions, by modifying the viscosity of the solutions at hand, can influence miscible
VF. Changes in the viscosity profile, induced by a chemical reaction, give rise to
variations in the displacement evolution and hence different patterns are observed.

The present work, going further, presents experimental demonstration of reaction-
driven viscous fingering of the interface between a more viscous liquid displacing
a less viscous one, a displacement that in absence of reaction would typically be
stable. It has been theoretically predicted [9, 10] that the necessary condition for
such a reactive displacement to undergo fingering is to yield a reaction product with
a viscosity either larger or smaller than the viscosity of the reactants. Specifically,
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if μi and μd denote the viscosity of the invading solution and that of the displaced
solution respectively, purely chemically-driven VF of the classically stable μi > μd
situation should occur provided μr , the viscosity in the reaction zone, is either larger
than μi or smaller than μd [9, 10].

We study here both scenarios, viscosity maximum (μr > μi ) and minimum
(μr < μd ), exploiting the viscosity dependence of polymer solutions on pH. From
the experimental findings, the different fingering patterns are analyzed as a function
of the viscosity contrast generated by the chemical reaction [11].

The article organizes as follows: In the next section we explain the experimental
set up and the chemicals utilized in the experiments. Also in this second section we
present our experimental findings. In Sect. 2.3 we discuss and explain the evolution
on the displacements presented in the second section. Finally, conclusions are drawn
while highlighting the possible impact of this experimental work.

2.2 Methods

Experiments are carried out in a horizontal Hele-Shaw cell consisting of two trans-
parent glass plates 100 mm wide, 500 mm long and 14 mm thick separated by a gap
width b= 0.25 mm. The fluids are injected linearly at a constant flow rate q . As the
displacing more viscous fluid, we use aqueous polymer solutions. When these so-
lutions displace a less viscous dyed non-reactive solution, no instability is observed
at the miscible interface between the fluids. However, if the displaced fluid reacts
with the polymer, generating a maximum or a minimum in the viscosity profile,
the interface can become unstable undergoing fingering. In the displacement exper-
iments where the maximum develops, a more viscous aqueous solution of 0.30 %wt
polyacrylic acid (PAA—1250000 MW—Sigma Aldrich) displaces a dyed 0.06M
sodium hydroxide (NaOH) aqueous solution. The liquids react at the miscible inter-
face. The reaction product, sodium polyacrylate (SPA), typically presents a viscosity
larger than that of both reactants. The chemical reaction at the miscible interface is
PAA + NaOH → SPA.

On the other hand, in the case where the minimum in viscosity develops,
a sodium polyacrylate (SPA—2100000–6600000 MW—Wako) aqueous solution
0.125 %wt pushes a less viscous 60 %wt glycerol aqueous solution containing 0.5M
HCl. In this case the polymer reacts with the acid producing PAA, which here has a
viscosity lower than that of both reactants. The reaction is then SPA + HCl→ PAA
+ NaCl.

Figure 2.1 shows the temporal evolution of reaction-driven VF observed in a lin-
ear displacement for both cases. When the maximum in viscosity develops, fingers
grow behind the reactive interface (Fig. 2.1(a)). On the other hand, in the case of
a minimum in viscosity, the interface undergoes fingers that grow towards the dis-
placed fluid (Fig. 2.1(b)).
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Fig. 2.1 Temporal evolution of reaction-driven VF in a linear displacement. (a) A more viscous
solution of PAA displaces from left to right a less viscous aqueous dyed solution of NaOH in
concentration 0.06M. Flow rate q = 0.5 ml/min. Time from top to bottom t = 75, 150 and 225 s.
(b) A more viscous SPA solution displaces from left to right an aqueous dyed solution of 60 %wt
glycerol + HCl 0.5M. Flow rate q = 0.25 ml/min. Time t = 140, 280 and 360 s. Field of view of
each image = 4 cm × 8 cm

2.3 Results

In order to understand the systems’ evolution we analyze experimentally the vis-
cosity contrasts generated during the displacement experiments. We measure the
viscosity of the pure reactants and estimate the viscosity developed in the reaction
zone as the viscosity of a mixture of the pure reactants. The respective viscosities
are measured with a rotational viscosimeter (Brookfield—Pro Extra II) at the shear
rate corresponding to the experimental conditions.

In the displacement experiments with a maximum in viscosity the reactants vis-
cosity are: invading fluid (0.3 %wt PAA) μi = 870 cp, displaced fluid (0.06M
NaOH) μd = 1 cp. Hence, the initial viscosity contrast is stable, because the more
viscous fluid displaces the more mobile one. However, in the reaction zone the vis-
cosity developed is approximately μr = 3880 cp. Therefore, an unstable contrast of
viscosity is developed between the invading fluid and the reaction zone: μi < μr
and we have locally a less viscous fluid pushing a more viscous one. As the unstable
region is located between the invading fluid and the reaction zone, the fingers should
develop in this region. This is consistent with the experiments (Fig. 2.1(a)), where
the fingers develop behind the reaction zone toward the invading fluid.

In the displacement with a minimum in viscosity, the viscosities are: invading
fluid (0.125 %wt SPA) μi = 794 cp, displaced solution (60 % glycerol + 0.5M
HCl) μd = 10 cp. The viscosity falls to μr = 5 cp in the reaction zone. Therefore,
even if the initial viscosity contrast is stable, locally an unstable region develops in
time between the reaction zone and the displaced fluid (μr < μd ). The development
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of the instability is then predicted to occur in the region between the reaction zone
and the displaced fluid. This conjecture from the viscosity profiles agrees with the
experimental findings exposed in Fig. 2.1(b).

We show here that depending on the unstable viscosity contrast developed during
the displacement different patterns develop, and the interface deforms towards op-
posite directions, either in the displacement direction if a viscosity minimum devel-
ops, or against the displacement direction if a maximum in viscosity is chemically
induced.

In this way, we have provided experimental evidence of viscous fingering trig-
gered by a chemical reaction at the miscible interface between a more viscous solu-
tion displacing a less viscous one in a Hele-Shaw cell. Such a situation is classically
stable in the absence of a reaction as we have a fluid with low mobility invading
another more mobile one. The chemical reaction, by generating a product either
more or less viscous than both reactants, triggers in time a non-monotonic viscos-
ity profile. A locally unstable configuration with adverse mobility gradient develops
around the extremum. This leads to fingers developing respectively behind or ahead
of the reaction zone depending whether the viscosity profile exhibits a maximum or
a minimum.

This results may help to prevent undesirable mixing during fluids displacements,
such in the case of waste management in soils [12, 13], but also could lead to con-
trol of mixing enhancement in a unique direction in complex scenarios such as in
microfluidics [14].
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Chapter 3
Dynamical Localization in Kicked Rotator
as a Paradigm of Other Systems: Spectral
Statistics and the Localization Measure

Thanos Manos and Marko Robnik

Abstract We study the intermediate statistics of the spectrum of quasi-energies and
of the eigenfunctions in the kicked rotator, in the case when the corresponding sys-
tem is fully chaotic while quantally localized. As for the eigenphases, we find clear
evidence that the spectral statistics is well described by the Brody distribution, no-
tably better than by the Izrailev’s one, which has been proposed and used broadly
to describe such cases. We also studied the eigenfunctions of the Floquet operator
and their localization. We show the existence of a scaling law between the repulsion
parameter with relative localization length, but only as a first order approximation,
since another parameter plays a role. We believe and have evidence that a similar
analysis applies in time-independent Hamilton systems.

3.1 Introduction

One of the most important manifestations of quantum chaos of low-dimensional
classically fully chaotic (ergodic) Hamiltonian systems is the fact that in the (suf-
ficiently deep) semiclassical limit the statistical properties of the discrete energy
spectra obey the statistics of Gaussian Random Matrix Theory (RMT). The oppo-
site extreme are classically integrable systems, which quantally exhibit Poissonian
spectral statistics (see [1]).

Quantum kicked rotator (QKR) is a typical example in the field of quantum
chaos [2]. A typical property of the QKR is the chaos suppression for sufficiently
large time scales. The study of the statistical properties of the classical and quantum
(semiclassical) parameters in such systems is of great importance. Here we study in
detail the semiclassical region where k > K > 1, i.e. the regime of full correspon-
dence between quantum and classical diffusion (on the finite time scale t ≤ tD) and
the manifested quantum dynamical localization for t > tD . Furthermore, we are fo-
cused in the probability level spacing distributions in the regime where the system is
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classically strongly chaotic (K ≥ 7) but quantally localized, i.e in the intermediate
or soft quantum chaos, as it is described in the literature [5].

3.2 The Quantum Kicked Rotator Model

The QKR model [3] is described by the following function

Ĥ =−�
2

2I

∂2

∂θ2
+ ε0 cos θ

∞∑

m=−∞
δ(t −mT ), (3.1)

where � is Planck’s constant, I is the moment of inertia of the pendulum and ε0
is the perturbation strength. The motion after one period T of the ψ wave function
then can be described by the following mapping

ψ(θ, t + T )= Ûψ(θ, t), (3.2)
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where the ψ function is determined in the middle of the rotation, between two suc-
cessive kicks. The evolution operator Û of the system corresponds to one period.
Due to the instant action of the perturbation, this evolution can be written as the
product of three non-commuting unitary operators, the first and third of which corre-

sponds to the free rotation during half a period Ĝ(τ/2)= exp(i T �4I
∂2

∂θ2 ), τ ≡ �T/I ,

while the second B̂(k) = exp(−ik cos θ), k ≡ ε0/� describes the kick. The sys-
tem’s behavior depends only on two parameters, i.e. τ and k and its correspondence
with the classical systems is described by the relation K = kτ = ε0T/I . In the case
K ≡ kτ � 1 the motion is well-known to be strongly chaotic. The transition to clas-
sical mechanics is described by the limit k→∞, τ → 0 while K = const. In what
follows � = τ and T = I = 1. We shall consider mostly the semiclassical regime
k >K , where τ < 1.

In order to study how the localization affects the statistical properties of the
quasienergy spectra we use the model’s representation with a finite number N of
levels [4, 5]
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N∑

m=1

Unmψm(t), n,m= 1,2, . . . ,N. (3.4)

The finite unitary matrix Unm determines the evolution of a N -dimensional vector
(Fourier transform of ψ ) of the model
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