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Preface to the Second Edition

Thirteen years have passed by since the publication of the first edition of this book.
Its favorable reception encouraged us to work on this second edition. We took ad-
vantage of this opportunity to update the references and to correct several mistakes
which (inevitably) occurred in the first edition. Furthermore we added several new
sections in Chaps. 2, 3 and 5. In Chap. 2 we give an introduction to Jaynes’ treatment
of probability theory as a form of logic employed to judge rational expectations and
to his famous maximum entropy principle. Additionally, we now also discuss limit-
ing distributions for extreme values. In Chap. 3 we added a section on the Caldeira-
Leggett model which allows to derive a (generalized) Langevin equation starting
from the deterministic Newtonian description of the dynamics. Furthermore there is
now also a section about the first passage time problem for unbounded diffusion as
an example of the power of renewal equation techniques and a discussion of the ex-
treme excursions of Brownian motion. Finally we extended the section on Nelson’s
stochastic mechanics by giving a detailed discussion on the treatment of the tun-
nel effect. Chapter 5 of the first edition contained a discussion of credit risk, which
was based on the commonly accepted understanding at that time. This discussion
has been made obsolete by the upheavals on the financial market occurring since
2008, and we changed it accordingly. We now also address a problem that has been
discussed much in the recent literature, the (possible) non-stationarity of financial
time series and its consequences. Furthermore, we extended the discussion of micro-
scopic modeling approaches by introducing agent based modeling techniques. These
models allow to correlate the behavior of the agents—the microscopic ‘degrees of
freedom’ of the financial market—with the features of the simulated financial time
series, thereby providing insight into possible underlying mechanisms. Finally, we
also augmented the discussion about the description of extreme events in financial
time series.
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vi Preface to the Second Edition

We would like to extend the acknowledgments of the first edition to thank
M. Ebert, T. Preis and T. Schwiertz for fruitful collaborations on the modeling
of financial markets. Without their contribution Chap. 5 would not have its present
form.

Halle and Strasbourg, Wolfgang Paul
February 2013 Jörg Baschnagel



Preface to the First Edition

Twice a week, the condensed matter theory group of the University of Mainz meets
for a coffee break. During these breaks we usually exchange ideas about physics,
discuss administrative duties, or try to tackle problems with hardware and software
maintenance. All of this seems quite natural for physicists doing computer simula-
tions.

However, about two years ago a new topic arose in these routine conversations.
There were some Ph.D. students who started discussions about the financial market.
They had founded a ‘working group on finance and physics’. The group met fre-
quently to study textbooks on ‘derivatives’, such as ‘options’ and ‘futures’, and to
work through recent articles from the emerging ‘econophysics’ community which
is trying to apply well-established physical concepts to the financial market. Fur-
thermore, the students organized special seminars on these subjects. They invited
speakers from banks and consultancy firms who work in the field of ‘risk manage-
ment’. Although these seminars took place in the late afternoon and sometimes had
to be postponed at short notice, they were better attended than some of our regular
group seminars. This lively interest evidently arose partly for the reason that banks,
insurance companies, and consultancy firms currently hire many physicists. Sure
enough, the members of the ‘working group’ found jobs in this field after graduat-
ing.

It was this initiative and the professional success of our students that encouraged
us to expand our course on ‘Stochastic Processes’ to include a part dealing with ap-
plications to finance. The course, held in the winter semester 1998/1999, was well
attended and lively discussions throughout all parts gave us much enjoyment. This
book has accrued from these lectures. It is meant as a textbook for graduate students
who want to learn about concepts and ‘tricks of the trade’ of stochastic processes and
to get an introduction to the modeling of financial markets and financial derivatives
based on the theory of stochastic processes. It is mainly oriented towards students
with a physics or chemistry background as far as our decisions about what consti-
tuted ‘simple’ and ‘illustrative’ examples are concerned. Nevertheless, we tried to
keep our exposition so self-contained that it is hopefully also interesting and helpful
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viii Preface to the First Edition

to students with a background in mathematics, economics or engineering. The book
is also meant as a guide for our colleagues who may plan to teach a similar course.

The selection of applications is a very personal one and by no means exhaus-
tive. Our intention was to combine classical subjects, such as random walks and
Brownian motion, with non-conventional themes.

One example of the latter is the financial part and the treatment of ‘geomet-
ric Brownian motion’. Geometric Brownian motion is a viable model for the time
evolution of stock prices. It underlies the Black-Scholes theory for option pricing,
which was honored by the Nobel Prize for economics in 1997.

An example from physics is Nelson’s ‘stochastic mechanics’. In 1966, Nel-
son presented a derivation of non-relativistic quantum mechanics based on Brown-
ian motion. The relevant stochastic processes are energy-conserving diffusion pro-
cesses. The consequences of this approach still constitute a field of active research.

A final example comprises stable distributions. In the 1930s the mathematicians
Lévy and Khintchine searched for all possible limiting distributions which could
occur for sums of random variables. They discovered that these distributions have
to be ‘stable’, and formulated a generalization of the central limit theorem. Whereas
the central limit theorem is intimately related to Brownian diffusive motion, stable
distributions offer a natural approach to anomalous diffusion, i.e., subdiffusive or
superdiffusive behavior. Lévy’s and Khintchine’s works are therefore not only of
mathematical interest; progressively they find applications in physics, chemistry,
biology and the financial market.

All of these examples should show that the field of stochastic processes is copious
and attractive, with applications in fields as diverse as physics and finance. The
theory of stochastic processes is the ‘golden thread’ which provides the connection.
Since our choice of examples is naturally incomplete, we have added at the end
of each chapter references to the pertinent literature from which we have greatly
profited, and which we believe to be excellent sources for further information. We
have chosen a mixed style of referencing. The reference section at the end of the
book is in alphabetical order to group the work of a given author and facilitate its
location. To reduce interruption of the text we cite these references, however, by
number.

In total, the book consists of five chapters and six appendices, which are struc-
tured as follows. Chapter 1 serves as an introduction. It briefly sketches the history
of probability theory. An important issue in this development was the problem of
the random walk. The solution of this problem in one dimension is given in detail in
the second part of the chapter. With this, we aim to provide an easy stepping stone
onto the concepts and techniques typical in the treatment of stochastic processes.

Chapter 2 formalizes many of the ideas of the previous chapter in a mathematical
language. The first part of the chapter begins with the measure theoretic formaliza-
tion of probabilities, but quickly specializes to the presentation in terms of probabil-
ity densities over Rd . This presentation will then be used throughout the remainder
of the book. The abstract definitions may be skipped on first reading, but are in-
cluded to provide a key to the mathematical literature on stochastic processes. The
second part of the chapter introduces several levels of description of Markov pro-
cesses (stochastic processes without memory) and their interrelations, starting from
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the Chapman-Kolmogorov equation. All the ensuing applications will be Markov
processes.

Chapter 3 revisits Brownian motion. The first three sections cover classical appli-
cations of the theory of stochastic processes. The chapter begins with random walks
on a d-dimensional lattice. It derives the probability that a random walker will be
at a lattice point r after N steps, and thereby answers ‘Polya’s question’: What is
the probability of return to the origin on a d-dimensional lattice? The second sec-
tion discusses the original Brownian motion problem, i.e., the irregular motion of a
heavy particle immersed in a fluid of lighter particles. The same type of motion can
occur in an external potential which acts as a barrier to the motion. When asking
about the time it takes the particle to overcome that barrier, we are treating the so-
called ‘Kramers problem’. The solution of this problem is given in the third section
of the chapter. The fourth section treats the mean field approximation of the Ising
model. It is chosen as a vehicle to present a discussion of the static (probabilistic)
structure as well as the kinetic (stochastic) behavior of a model, using the various
levels of description of Markov processes introduced in Chap. 2. The chapter con-
cludes with Nelson’s stochastic mechanics to show that diffusion processes are not
necessarily dissipative (consume energy), but can conserve energy. We will see that
one such process is non-relativistic quantum mechanics.

Chapter 4 leaves the realm of Brownian motion and of the central limit theo-
rem. It introduces stable distributions and Lévy processes. The chapter starts with
some mathematical background on stable distributions. The distinguishing feature
of these distributions is the presence of long-ranged power-law tails, which might
lead to the divergence of even the lowest-order moments. Physically speaking, these
lower-order moments set the pertinent time and length scales. For instance, they
define the diffusion coefficient in the case of Brownian motion. The divergence of
these moments therefore implies deviations from normal diffusion. We present two
examples, one for superdiffusive behavior and one for subdiffusive behavior. The
chapter closes with a special variant of a Lévy process, the truncated Lévy flight,
which has been proposed as a possible description of the time evolution of stock
prices.

The final chapter (Chap. 5) deals with the modeling of financial markets. It dif-
fers from the previous chapters in two respects. First, it begins with a fairly verbose
introduction to the field. Since we assume our readers are not well acquainted with
the notions pertaining to financial markets, we try to compile and explain the termi-
nology and basic ideas carefully. An important model for the time evolution of asset
prices is geometric Brownian motion. Built upon it is the Black-Scholes theory for
option pricing. As these are standard concepts of the financial market, we discuss
them in detail. The second difference to previous chapters is that the last two sec-
tions have more of a review character. They do not present well-established knowl-
edge, but rather current opinions which are at the moment strongly advocated by
the physics community. Our presentation focuses on those suggestions that employ
methods from the theory of stochastic processes. Even within this limited scope, we
do not discuss all approaches, but present only a selection of those topics which we
believe to fit well in the context of the previous chapters and which are extensively
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discussed in the current literature. Among those topics are the statistical analysis of
financial data and the modeling of crashes.

Finally, some more technical algebra has been relegated to the appendices and
we have tried to provide a comprehensive subject index to the book to enable the
reader to quickly locate topics of interest.

One incentive for opening or even studying this book could be the hope that it
holds the secret to becoming rich. We regret that this is (probably) an illusion. One
does not necessarily learn how to make money by reading this book, at least not if
this means how to privately trade successfully in financial assets or derivatives. This
would require one to own a personal budget which is amenable to statistical treat-
ment, which is true neither for the authors nor probably for most of their readers.
However, although it does not provide the ‘ABC’ to becoming a wizard investor,
reading this book can still help to make a living. One may acquire useful knowledge
for a prospective professional career in financial risk management. Given the com-
plexity of the current financial market, which will certainly still grow in the future,
it is important to understand at least the basic parts of it.

This will also help to manage the largest risk of them all which has been ex-
pressed in a slogan-like fashion by the most successful investor of all time, Warren
Buffet [23]:

Risk is not knowing what you’re doing.

In order to know what one is doing, a thorough background in economics, a lot of
experience, but also a familiarity with the stochastic modeling of the market are
important. This book tries to help in the last respect.

To our dismay, we have to admit that we cannot recall all occasions when
we obtained advice from students, colleagues and friends. Among others, we are
indebted to C. Bennemann, K. Binder, H.-P. Deutsch, H. Frisch, S. Krouchev,
A. Schäcker and A. Werner. The last chapter on the financial market would not
have its present form without the permission to reproduce artwork from the research
of J.-P. Bouchaud, M. Potters and coworkers, of R.N. Mantegna, H.E. Stanley and
coworkers, and of A. Johansen, D. Sornette and coworkers. We are very grateful that
they kindly and quickly provided the figures requested. Everybody who has worked
on a book project knows that the current standards of publishing can hardly be met
without the professional support of an experienced publisher like Springer. We have
obtained invaluable help from C. Ascheron, A. Lahee and many (unknown) others.
Thank you very much.

Mainz, Wolfgang Paul
October 1999 Jörg Baschnagel
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Chapter 1
A First Glimpse of Stochastic Processes

In this introductory chapter we will give a short overview of the history of prob-
ability theory and stochastic processes, and then we will discuss the properties of
a simple example of a stochastic process, namely the random walk in one dimen-
sion. This example will introduce us to many of the typical questions that arise in
situations involving randomness and to the tools for tackling them, which we will
formalize and expand on in subsequent chapters.

1.1 Some History

Let us start this historical introduction with a quote from the superb review article
On the Wonderful World of Random Walks by E.W. Montroll and M.F. Shlesinger
[145], which also contains a more detailed historical account of the development of
probability theory:

Since traveling was onerous (and expensive), and eating, hunting and wenching generally
did not fill the 17th century gentleman’s day, two possibilities remained to occupy the empty
hours, praying and gambling; many preferred the latter.

In fact, it is in the area of gambling that the theory of probability and stochastic
processes has its origin. People had always engaged in gambling, but it was only
through the thinking of the Enlightenment that the outcome of a gambling game
was no longer seen as a divine decision, but became amenable to rational thinking
and speculation. One of these 17th century gentlemen, a certain Chevalier de Méré,
is reported to have posed a question concerning the odds at a gambling game to
Pascal (1623–1662). The ensuing exchange of letters between Pascal and Fermat
(1601–1665) on this problem is generally seen as the starting point of probability
theory.

The first book on probability theory was written by Christiaan Huygens (1629–
1695) in 1657 and had the title De Ratiociniis in Ludo Aleae (On Reasoning in the
Game of Dice). The first mathematical treatise on probability theory in the mod-
ern sense was Jakob Bernoulli’s (1662–1705) book Ars Conjectandi (The Art of
Conjecturing), which was published posthumously in 1713. It contained

W. Paul, J. Baschnagel, Stochastic Processes, DOI 10.1007/978-3-319-00327-6_1,
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2 1 A First Glimpse of Stochastic Processes

• a critical discussion of Huygens’ book,
• combinatorics, as it is taught today,
• probabilities in the context of gambling games, and
• an application of probability theory to daily problems, especially in economics.

We can see that even at the beginning of the 18th century the two key ingredients
responsible for the importance of stochastic ideas in economics today are already
discernable: combine a probabilistic description of economic processes with the
control of risks and odds in gambling games, and you get the risk-management in
financial markets that has seen such an upsurge of interest in the last 30 years.

A decisive step in the stochastic treatment of the price of financial assets was
made in the Ph.D. thesis of Louis Bachelier (1870–1946), Théorie de la Spéculation,
for which he obtained his Ph.D. in mathematics on March 19, 1900. His advisor was
the famous mathematician Henri Poincaré (1854–1912), who is also well known for
his contributions to theoretical physics. The thesis is very remarkable at least for
two reasons:

• It already contained many results of the theory of stochastic processes as it stands
today which were only later mathematically formalized.

• It was so completely ignored that even Poincaré forgot that it contained the so-
lution to the Brownian motion problem when he later started to work on that
problem.

Brownian motion is the archetypical problem in the theory of stochastic processes.
In 1827 the Scottish botanist Robert Brown had reported the observation of a very
irregular motion displayed by a pollen particle immersed in a fluid. It was the ki-
netic theory of gases, dating back to the book Hydrodynamica, sive de viribus et
motibus fluidorum commentarii (Hydrodynamics, or commentaries on the forces
and motions of fluids) by Daniel Bernoulli (1700–1782), published in 1738, which
would provide the basis for Einstein’s (1879–1955) and Smoluchowski’s (1872–
1917) successful treatments of the Brownian motion problem in 1905 and 1906,
respectively. Through the work of Maxwell (1831–1879) and Boltzmann (1844–
1906), Statistical Mechanics, as it grew out of the kinetic theory of gases, was the
main area of application of probabilistic concepts in theoretical physics in the 19th
century.

In the Brownian motion problem and all its variants—whether in physics, chem-
istry and biology or in finance, sociology and politics—one deals with a phe-
nomenon (motion of the pollen particle, daily change in a stock market index) that is
the outcome of many unpredictable and sometimes unobservable events (collisions
with the particles of the surrounding liquid, buy/sell decisions of the single investor)
which individually contribute a negligible amount to the observed phenomenon, but
collectively lead to an observable effect. The individual events cannot sensibly be
treated in detail, but their statistical properties may be known, and, in the end, it is
these that determine the observed macroscopic behavior.



1.2 Random Walk on a Line 3

Fig. 1.1 Random walker on a 1-dimensional lattice of sites that are a fixed distance �x apart. The
walker jumps to the right with probability p and to the left with q = 1 − p

Another problem, which is closely related to Brownian motion and which we will
examine in the next section, is that of a random walker. This concept was introduced
into science by Karl Pearson (1857–1936) in a letter to Nature in 1905:

A man starts from a point 0 and walks l yards in a straight line: he then turns through any
angle whatever and walks another l yards in a straight line. He repeats this process n times.
I require the probability that after these n stretches he is at a distance between r and r + δr

from his starting point 0.

The solution was provided in the same volume of Nature by Lord Rayleigh
(1842–1919), who pointed out that he had solved this problem 25 years earlier when
studying the superposition of sound waves of equal frequency and amplitude but
with random phases.

The random walker, however, is still with us today and we will now turn to it.

1.2 Random Walk on a Line

Let us assume that a walker can sit at regularly spaced positions along a line that
are a distance �x apart (see Fig. 1.1); so we can label the positions by the set of
whole numbers, Z. Furthermore we require the walker to be at position 0 at time 0.
After fixed time intervals �t the walker either jumps to the right with probability p

or to the left with probability q = 1 − p; so we can work with discrete time points,
labeled by the natural numbers including zero, N0.

Our aim is to answer the following question: What is the probability p(m,N)

that the walker will be at position m after N steps?
For m < N there are many ways to start at 0, go through N jumps to nearest-

neighbor sites, and end up at m. But since all these possibilities are independent of
each other we have to add up their probabilities. For all these ways we know that the
walker must have made m + l jumps to the right and l jumps to the left; and since
m + 2l = N , the walker must have made

• (N + m)/2 jumps to the right and
• (N − m)/2 jumps to the left.

So whenever N is even, so is m. Furthermore we know that the probability for the
next jump is always p to the right and q to the left, irrespective of what the path of
the walker up to that point was. The probability for a sequence of left and right jumps
is the product of the probabilities of the individual jumps. Since the probability of
the individual jumps does not depend on their position in the sequence, all paths
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starting at 0 and ending at m have the same overall probability. The probability for
making exactly (N + m)/2 jumps to the right and exactly (N − m)/2 jumps to the
left is

p
1
2 (N+m)q

1
2 (N−m).

To finally get the answer to our question, we have to find out how many such paths
there are. This is given by the number of ways to make (N +m)/2 out of N jumps to
the right (and consequently N − (N + m)/2 = (N − m)/2 jumps to the left), where
the order of the jumps does not matter (and repetitions are not allowed):

N !
(N+m

2 )!(N−m
2 )! .

The probability of being at position m after N jumps is therefore given as

p(m,N) = N !
(N+m

2 )!(N−m
2 )!p

1
2 (N+m)(1 − p)

1
2 (N−m), (1.1)

which is the binomial distribution. If we know the probability distribution p(m,N),
we can calculate all the moments of m at fixed time N . Let us denote the number of
jumps to the right as r = (N + m)/2 and write

p(m,N) = pN(r) = N !
r!(N − r)!p

rqN−r (1.2)

and calculate the moments of pN(r). For this purpose we use the property of the
binomial distribution that pN(r) is the coefficient of ur in (pu + q)N . With this
trick it is easy, for instance, to convince ourselves that pN(r) is properly normalized
to one

N∑

r=0

pN(r) =
[

N∑

r=0

(
N

r

)
urprqN−r

]

u=1

= [
(pu + q)N

]
u=1 = 1. (1.3)

The first moment or expectation value of r is:

〈r〉 =
N∑

r=0

rpN(r)

=
[

N∑

r=0

r

(
N

r

)
urprqN−r

]

u=1

=
[

N∑

r=0

(
N

r

)
u

d

du

(
urprqN−r

)
]

u=1

=
[
u

d

du

N∑

r=0

(
N

r

)
urprqN−r

]

u=1

=
[
u

d

du
(pu + q)N

]

u=1

= [
Nup(pu + q)N−1]

u=1
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leading to

E[r] ≡ 〈r〉 = Np. (1.4)

In the same manner, one can derive the following for the second moment:

E
[
r2]≡ 〈

r2〉=
[(

u
d

du

)2

(pu + q)N
]

u=1
= Np + N(N − 1)p2. (1.5)

From this one can calculate the variance or second central moment

Var[r] ≡ σ 2 := 〈(
r − 〈r〉)2〉= 〈

r2〉− 〈r〉2 (1.6)

of the distribution, which is a measure of the width of the distribution

σ 2 = Npq. (1.7)

The relative width of the distribution

σ

〈r〉 =
√

q

p
N−1/2 (1.8)

goes to zero with increasing number of performed steps, N . Distributions with this
property are called (strongly) self-averaging. This term can be understood in the
following way: The outcome for r after N measurements has a statistical error of
order σ . For self-averaging systems this error may be neglected relative to 〈r〉, if
the system size (N ) becomes large. In the large-N limit the system thus ‘averages
itself’ and r behaves as if it was a non-random variable (with value 〈r〉). This self-
averaging property is important, for instance, in statistical mechanics.

Figure 1.2 shows a plot of the binomial distribution for N = 100 and p = 0.8.
As one can see, the distribution has a bell-shaped form with a maximum occurring
around the average value 〈r〉 = Np = 80, and for this choice of parameters it is
almost symmetric around its maximum.

When we translate the results for the number of steps to the right back into the
position of the random walker we get the following results

〈m〉 = 2N

(
p − 1

2

)
(1.9)

and

〈
m2〉 = 4Np(1 − p) + 4N2

(
p − 1

2

)2

, (1.10)

σ 2 = 〈
m2〉− 〈m〉2 = 4Npq. (1.11)

In the case of symmetric jump rates, this reduces to

〈m〉 = 0 and
〈
m2〉= N. (1.12)
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Fig. 1.2 Plot of the binomial
distribution for a number of
steps N = 100 and the
probability of a jump to the
right p = 0.8

This behavior, in which the square of the distance traveled is proportional to time,
is called free diffusion.

1.2.1 From Binomial to Gaussian

The reader may be familiar with the description of particle diffusion in the context of
partial differential equations, i.e., Fick’s equation. To examine the relation between
our jump process and Fickian diffusion, we will now study approximations of the
binomial distribution which will be valid for large number of jumps (N → ∞), i.e.,
for long times.

Assuming N � 1 we can use Stirling’s formula to approximate the factorials in
the binomial distribution

lnN ! =
(

N + 1

2

)
lnN − N + 1

2
ln 2π + O

(
N−1). (1.13)

Using Stirling’s formula, we get

lnp(m,N) =
(

N + 1

2

)
lnN −

(
N + m

2
+ 1

2

)
ln

[
N

2

(
1 + m

N

)]

−
(

N − m

2
+ 1

2

)
ln

[
N

2

(
1 − m

N

)]

+ N + m

2
lnp + N − m

2
lnq − 1

2
ln 2π.
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Now we want to derive an approximation to the binomial distribution close to its
maximum, which is also close to the expectation value 〈m〉. So let us write

m = 〈m〉 + δm = 2Np − N + δm,

which leads to

N + m

2
= Np + δm

2
and

N − m

2
= Nq − δm

2
.

Using these relations, we get

lnp(m,N) =
(

N + 1

2

)
lnN − 1

2
ln 2π

+
(

Np + δm

2

)
lnp +

(
Nq − δm

2

)
lnq

−
(

Np + δm

2
+ 1

2

)
ln

[
Np

(
1 + δm

2Np

)]

−
(

Nq − δm

2
+ 1

2

)
ln

[
Nq

(
1 − δm

2Nq

)]

= −1

2
ln(2πNpq) −

(
Np + δm

2
+ 1

2

)
ln

(
1 + δm

2Np

)

−
(

Nq − δm

2
+ 1

2

)
ln

(
1 − δm

2Nq

)
.

Expanding the logarithm

ln(1 ± x) = ±x − 1

2
x2 + O

(
x3)

yields

lnp(m,N) � −1

2
ln(2πNpq) − 1

2

(δm)2

4Npq
− δm(q − p)

4Npq
+ (δm)2(p2 + q2)

16(Npq)2
.

We should remember that the variance (squared width) of the binomial distribution
was σ 2 = 4Npq . When we want to approximate the distribution in its center and up
to fluctuations around the mean value of the order (δm)2 = O(σ 2), we find for the
last terms in the above equation:

δm(q − p)

4Npq
= O

(
(Np)−1/2) and

(δm)2(p2 + q2)

16(Npq)2
= O

(
(Np)−1).

These terms can be neglected if Np → ∞. We therefore finally obtain

p(m,N) → 2√
2π4Npq

exp

[
−1

2

(δm)2

4Npq

]
, (1.14)
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which is the Gaussian (C.F. Gauss (1777–1855)) or normal distribution. The factor 2
in front of the exponential comes from the fact that for fixed N (odd or even) only
every other m (odd or even, respectively) has a non-zero probability, so �m = 2.

This distribution is called ‘normal’ distribution because of its ubiquity. Whenever
one adds up random variables, xi , with finite first and second moments, so 〈xi〉 < ∞
and 〈x2

i 〉 < ∞ (in our case the jump distance of the random walker is such a variable
with first moment (p−q)�x and second moment (p+q)(�x)2 = (�x)2), then the
sum variable

SN := 1

N

N∑

i=1

xi

is distributed according to a normal distribution for N → ∞. This is the gist of the
central limit theorem, to which we will return in the next chapter.

There are, however, also cases where either 〈x2
i 〉 or even 〈xi〉 does not ex-

ist. In these cases the limiting distribution of the sum variable is not a Gaussian
distribution but a so-called stable or Lévy distribution, named after the mathe-
matician Paul Lévy (1886–1971), who began to study these distributions in the
1930s. The Gaussian distribution is a special case of these stable distributions. We
will discuss the properties of these distributions, which have become of increas-
ing importance in all areas of application of the theory of stochastic processes, in
Chap. 4.

We now want to leave the discrete description and perform a continuum limit.
Let us write

x = m�x, i.e., 〈x〉 = 〈m〉�x,

t = N�t, (1.15)

D = 2pq
(�x)2

�t
,

so that we can interpret

p(m�x,N�t) = 2�x√
2π2Dt

exp

[
−1

2

(x − 〈x〉)2

2Dt

]

as the probability of finding our random walker in an interval of width 2�x around
a certain position x at time t . We now require that

�x → 0, �t → 0, and 2pq
(�x)2

�t
= D = const. (1.16)

Here, D, with the units length2/time, is called the diffusion coefficient of the walker.
For the probability of finding our random walker in an interval of width dx around
the position x, we get

p(x, t)dx = 1√
2π2Dt

exp

[
−1

2

(x − 〈x〉)2

2Dt

]
dx. (1.17)
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When we look closer at the definition of 〈x〉 above, we see that another assumption
was buried in our limiting procedure:

〈x〉(t) = �x〈m〉 = 2

(
p − 1

2

)
N�x = 2

(
p − 1

2

)
�x

�t
t.

So our limiting procedure also has to include the requirement

�x → 0, �t → 0 and
2(p − 1

2 )�x

�t
= v = const. (1.18)

As we have already discussed before, when p = 1/2 the average position of the
walker stays at zero for all times and the velocity of the walker vanishes. Any asym-
metry in the transition rates (p 
= q) produces a net velocity of the walker. However,
when v = 0, we have 〈x〉 = 0 and 〈x2〉 = 2Dt . Finally, we can write down the prob-
ability density for the position of the random walker at time t ,

p(x, t) = 1√
2π2Dt

exp

[
−1

2

(x − vt)2

2Dt

]
, (1.19)

with starting condition

p(x,0) = δ(x)

and boundary conditions

p(x, t)
x→±∞−→ 0.

By substitution one can convince oneself that (1.19) is the solution of the following
partial differential equation:

∂

∂t
p(x, t) = −v

∂

∂x
p(x, t) + D

∂2

∂x2
p(x, t), (1.20)

which is Fick’s equation for diffusion in the presence of a constant drift velocity.
To close the loop, we now want to derive this evolution equation for the probabil-

ity density starting from the discrete random walker. For this we have to rethink our
treatment of the random walker from a slightly different perspective, the perspective
of rate equations.

How does the probability of the discrete random walker being at position m at
time N change in the next time interval �t? Since our walker is supposed to perform
one jump in every time interval �t , we can write

p(m,N + 1) = pp(m − 1,N) + qp(m + 1,N). (1.21)

The walker has to jump to position m either from the position to the left or to the
right of m. This is an example of a master equation for a stochastic process. In the
next chapter we will discuss for which types of stochastic processes this evolution
equation is applicable.
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In order to introduce the drift velocity, v, and the diffusion coefficient, D, into
this equation let us rewrite the definition of D:

D = 2pq
(�x)2

�t

= (2p − 1)(1 − p)
(�x)2

�t
+ (1 − p)

(�x)2

�t

= v(1 − p)�x + (1 − p)
(�x)2

�t

= vq�x + q
(�x)2

�t
.

We therefore can write

q = (D − vq�x)
�t

(�x)2
, (1.22)

p = (D + vp�x)
�t

(�x)2
. (1.23)

Inserting this into (1.21) and subtracting p(m,N) we get

p(m,N + 1) − p(m,N)

�t
= vp

�x
p(m − 1,N) − vq

�x
p(m + 1,N)

+ D
p(m + 1,N) − 2p(m,N) + p(m − 1,N)

(�x)2

+
(

2D

(�x)2
− 1

�t

)
p(m,N)

and from this

p(m,N + 1) − p(m,N)

�t
= −vp

p(m,N) − p(m − 1,N)

�x

− vq
p(m + 1,N) − p(m,N)

�x

+ D
p(m + 1,N) − 2p(m,N) + p(m − 1,N)

(�x)2

+
(

2D

(�x)2
− 1

�t
+ vp

�x
− vq

�x

)
p(m,N).

Reinserting the definitions of v and D into the last term, it is easy to show that it
identically vanishes. When we now perform the continuum limit of this equation
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keeping v and D constant, we again arrive at (1.20). The Fickian diffusion equation
therefore can be derived via a prescribed limiting procedure from the rate equation
(1.21). Most important is the unfamiliar requirement (�x)2/�t = const which does
not occur in deterministic motion and which captures the diffusion behavior, x2 ∝ t ,
of the random walker.

1.2.2 From Binomial to Poisson

Let us now turn back to analyzing the limiting behavior of the binomial distribution.
The Gaussian distribution is not the only limiting distribution we can derive from
it. In order to derive the Gaussian distribution, we had to require that Np → ∞ for
N → ∞. Let us ask the question of what the limiting distribution is for

N → ∞, p → 0, Np = const.

Again we are only interested in the behavior of the distribution close to its maximum
and expectation value, i.e., for r ≈ Np; however, now r  N , and

pN(r) = N !
r!(N − r)!p

rqN−r

= N(N − 1) · · · (N − r + 1)(N − r)!
r!(N − r)! pr(1 − p)N−r

≈ (Np)r

r! (1 − p)N,

where we have approximated all terms (N − 1) up to (N − r) by N . So we arrive at

lim
N→∞,p→0
Np=const

(Np)r

r!
(

1 − Np

N

)N

= 〈r〉r
r! e−〈r〉. (1.24)

This is the Poisson distribution which is completely characterized by its first mo-
ment. To compare the two limiting regimes for the binomial distributions which we
have derived, take a look at Figs. 1.3 and 1.4.

For the first figure we have chosen N = 1000 and p = 0.8, so that 〈r〉 = Np =
800. The binomial distribution and the Gaussian distribution of the same mean and
width are already indistinguishable. The Poisson distribution with the same mean
is much broader and not a valid approximation for the binomial distribution in
this parameter range. The situation is reversed in Fig. 1.4, where again N = 1000
but now p = 0.01, so that 〈r〉 = Np = 10  N . Now the Poisson distribution is
the better approximation to the binomial distribution, capturing especially the fact
that for these parameters the distribution is not symmetric around the maximum,
as a comparison with the Gaussian distribution (which is symmetric by definition)
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Fig. 1.3 Plot of the binomial
distribution for a number of
steps N = 1000 and the
probability of a jump to the
right p = 0.8 (open circles).
This is compared with the
Gaussian approximation with
the same mean and width
(solid curve) and the Poisson
distribution with the same
mean (dashed curve)

Fig. 1.4 Plot of the binomial
distribution for a number of
steps N = 1000 and the
probability of a jump to the
right p = 0.01 (open circles).
This is compared with the
Gaussian approximation with
the same mean and width
(solid curve) and the Poisson
distribution with the same
mean (dashed curve)

shows. For large r the binomial and Poisson distributions show a larger probabil-
ity than the Gaussian distribution, whereas the situation is reversed for r close to
zero.

To quantify such asymmetry in a distribution, one must look at higher moments.
For the Poisson distribution one can easily derive the following recurrence relation
between the moments,

〈
rn
〉= λ

(
d

dλ
+ 1

)〈
rn−1〉 (n ≥ 1), (1.25)
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where λ = Np = 〈r〉. So we have for the first four moments

〈
r0〉 =

∞∑

r=0

pN(r) = 1,

〈
r1〉 = λ,

〈
r2〉 = λ(1 + λ) ⇒ σ 2 = λ,

〈
r3〉 = λ3 + 3λ2 + λ,

〈
r4〉 = λ4 + 6λ3 + 7λ2 + λ.

We saw that the second central moment, σ 2, is a measure of the width of the dis-
tribution and in a similar way the normalized third central moment, or skewness, is
used to quantify the asymmetry of the distribution,

κ̂3 = 〈(r − 〈r〉)3〉
σ 3

= λ−1/2. (1.26)

The normalized fourth central moment, or kurtosis, measures the ‘fatness’ of the
distribution or the excess probability in the tails,

κ̂4 = 〈(r − 〈r〉)4〉 − 3〈(r − 〈r〉)2〉2

σ 4
= λ−1. (1.27)

Excess has to be understood in relation to the Gaussian distribution,

pG(x) = 1√
2πσ 2

exp

[
− (x − 〈x〉)2

2σ 2

]
, (1.28)

for which due to symmetry all odd central moments 〈(x−〈x〉)n〉 with n ≥ 3 are zero.
Using the substitution y = (x − 〈x〉)2/2σ 2 we find for the even central moments

〈(
x − 〈x〉)2n〉

G =
∫ +∞

−∞
(
x − 〈x〉)2n

pG(x)dx = (2σ 2)n√
π

∫ ∞

0
y(n+1/2)−1e−ydy

= (2σ 2)n√
π

Γ

(
n + 1

2

)
, (1.29)

where Γ (x) is the Gamma function [1]. From this one easily derives that κ̂4 is
zero for the Gaussian distribution. In fact, for λ = 〈r〉 → ∞, we again recover the
Gaussian distribution from the Poisson distribution.

1.2.3 Log–Normal Distribution

As a last example of important distribution functions, we want to look at the so-
called log–normal distribution, which is an example of a strongly asymmetric dis-
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tribution. Starting from the Gaussian distribution pG(x) and focusing for 〈x〉 � 1
on x > 0, we can define

x = lny, 〈x〉 = lny0, dx = dy

y
(1.30)

and get the log–normal distribution

pG(x)dx = pLN(y)dy = 1√
2πσ 2

exp

[
−[ln(y/y0)]2

2σ 2

]
dy

y
. (1.31)

The log–normal distribution is normalized in the following way,

∫ ∞

0
pLN(y)dy =

∫ +∞

−∞
pG(x)dx = 1. (1.32)

The moments are given by

〈
yn
〉 =

∫ ∞

0
ynpLN(y)dy

=
∫ +∞

−∞
enxpG(x)dx

= yn
0 en2σ 2/2

∫ +∞

−∞
pG

(
x − nσ 2)dx,

leading to
〈
yn
〉= yn

0 en2σ 2/2. (1.33)

The maximum of the distribution is at

ymax = y0e−σ 2
. (1.34)

A further quantity to characterize the location of a distribution is its median, which
is the point where the cumulative probability is equal to one-half,

F(ymed) =
∫ ymed

0
pLN(y)dy = 1

2
. (1.35)

With x = lny and xmed = lnymed, this is equivalent to

∫ xmed

−∞
pG(x)dx = 1

2
,

or, because of the symmetry of the Gaussian distribution,

xmed = 〈x〉 = lny0 ⇒ ymed = y0. (1.36)
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Fig. 1.5 Plot of the
log–normal distribution, with
vertical dashed lines
indicating the positions of the
maximum, median and mean
of the distribution

We therefore find the relative order

ymax = y0e−σ 2
< ymed = y0 < 〈y〉 = y0eσ 2/2.

In Fig. 1.5 we show the log–normal distribution for y0 = 40 and σ = 1. This
distribution shows a pronounced skewness around the maximum and a fat-tailed
behavior for large argument.

1.3 Further Reading

This section was split into two parts. The first one gave a short introduction to the
history of stochastic processes and the second one was devoted to the discussion of
the one-dimensional random walk.

Section 1.1

• The history of probability theory and the theory of stochastic processes, as we
have shortly sketched it, is nicely described in the review article by Montroll and
Shlesinger [145]. Those interested in more background information may want to
have a look at the books by Pearson [165] or Schneider [183] (in German).

Section 1.2

• The treatment of the random walk on the one-dimensional lattice can be found
in many textbooks and review articles on stochastic processes, noticeably that of
Chandrasekhar [26]. An elucidating treatment in the context of One-Step or Birth-
and-Death processes can be found in the book by van Kampen [101]. Further
literature for the random walk can be found at the end of Chap. 3.
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• The Fickian diffusion equation is a special case of a Fokker-Planck equation,
which we will discuss in the second part of Chap. 2. Its applications in the natural
sciences are widespread. All transport phenomena obeying the diffusion approx-
imation �x2/�t = const., can be modeled by this equation. Examples include
energy transport (following a temperature gradient), mass transport (following a
density gradient) and interdiffusion (following a concentration gradient).

• The Gaussian limit of probability distributions is of central importance in statis-
tical physics and is therefore discussed in many textbooks, e.g. in Reichl [176].

• The log–normal distribution is of importance in finance [18, 217], as will be seen
in Chap. 5. A detailed account of its properties as well as further applications may
be found in [99].


