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Preface

This volume contains a substantial number of the papers presented at the MODA 10
workshop in Łagów Lubuski, Poland, in June 2013; MODA here stands for Model
Oriented Data Analysis and Optimal Design. Design of experiments (DOE) con-
stitutes a powerful statistics-based methodology playing a major role in the knowl-
edge discovery process in science and engineering. Data collection issues, including
DOE, are at least as important as data analysis since they determine how much in-
formation data contain. No statistical modelling or analysis methods can extract
information which the data do not contain, whereas a poor analysis can always be
corrected later. Thus, haphazard experimentation may be very wasteful of resources,
lead to needless repetition, poor inference and, where human subjects are concerned,
may be ethically unsound.

The subject began in an agricultural context, but the theory and practice of DOE
have become important in many scientific and technological fields, ranging from
optimal designs for dynamical models in pharmacological research, to designs for
industrial experimentation, to designs of simulation experiments in environmental
risk management, to name but a few. DOE has become even more important in
recent years, because of the increased speed of scientific developments, the com-
plexity of the systems currently under investigation and the continuously increasing
pressure on businesses, industries and scientific researchers to reduce product and
process development times. This increased competition requires ever increasing ef-
ficiency in experimentation, thus necessitating new statistical designs.

A model-oriented view on DOE, which is the pivot of the MODA meetings, as-
sumes some knowledge of the form of the data-generating process. It naturally leads
to the so-called optimum design of experiments. This approach has the potential
to revolutionize experimental programs of drug development and testing. Standard
methods of DOE are no longer adequate and research into new ways of planning
clinical and non-clinical trials for dose-finding is receiving close attention. In turn,
applications of DOE in engineering often deal with large scale and highly complex
systems where time and/or space are inevitable components. These applications may
involve models in the form of ordinary differential, differential algebraic or partial
differential equations. The underlying design space can be a class of input sequences
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(time-domain analysis), a range of frequencies (frequency domain), a range of sam-
pling intervals (sampling strategies), or a set of spatial sensor locations. As a result,
factors continuously changing in time and/or space (e.g., temperature, pressure) can
be taken into account. Relevant application areas are as diverse as control engi-
neering, analytical chemistry, air sampling, atmospheric science and geophysical
surveys.

Surprisingly, for a long time, the resources devoted to research on DOE have
been rather limited. Partly, this was because the developments in different applica-
tion areas and in different branches of mathematics had led to a fragmentation of
the theory and practice of DOE. Leading European experts on DOE therefore de-
cided to form the MODA group to bring together the different approaches, primarily
through organizing special workshops. The initiative was a success and the scope of
MODA rapidly expanded to countries far beyond Europe, including the USA, South
Africa and India. MODA meetings are known for their friendly atmosphere, leading
to fruitful discussions and collaboration. Since the beginning, they have also been
aimed at giving junior researchers the opportunity of establishing personal contacts
and work together with leading researchers. In order to guarantee a high-scientific
level, participation is only by invitation of the board and meetings take place every
third year. The proceedings are always published before the date of the meeting, to
allow detailed and intelligent discussion.

Here is the list of previous MODA conferences:

1. Eisenach, former GDR, 1987
2. St. Kyrik monastery, Bulgaria, 1990
3. Petrodvorets, Russia, 1992
4. Spetses, Greece, 1995
5. Marseilles, France, 1998

6. Puchberg/Schneeberg, Austria, 2001
7. Heeze, The Netherlands, 2004
8. Almagro, Spain, 2007
9. Bertinoro, Italy, 2010

Organization of the 10-th anniversary edition of the workshop has been conferred to
the University of Zielona Góra in Poland, which hosts an active group of researchers
at the Institute of Control and Computation Engineering, who are concerned with
optimum experimental design for spatiotemporal processes. The workshop itself
takes place in Łagów Lubuski, a small, picturesque town with much charm and
atmosphere attracting artists and intellectuals. It is a long tradition of MODA work-
shops that they are organized in such relatively isolated places, far from the hus-
tle and bustle of big cities. As this book clearly demonstrates, the present meeting
once more brings together researchers from all over the world. These papers have
undergone a complete review to ensure that contributions were significant and the
manuscripts remain of high quality and clarity.

The papers presented in this volume cover a large spectrum of topics that are
all well aligned with the scope of the workshop. They have been arranged in al-
phabetical order of author, but some patterns of topics emerge. A breakdown is as
follows:

1. The most common theme is that of clinical trials. This arises both in the papers
by Biswas, Banerjee and Mandal and, in the form of dose finding studies, in
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the papers by Flournoy, Galbete, Moler and Plo, by Magnusdottir, by Gao and
Rosenberger and by Dragalin, as well as that by Ghiglietti and Paganoni.

2. Designs for linear and non-linear mixed-effects models are developed in the pa-
pers by Prus and Schwabe, and by Mielke and Schwabe, while an approximation
of the information matrix in a similar setting is advanced by Leonov.

3. Lifetime experiments with exponential distribution and censoring feature in
the contribution by Müller. Calibration designs for an extended Rasch-Poisson
counts model are outlined by Graßhoff, Holling and Schwabe. Optimal de-
signs for log-linear regression test models are refined by Wang, Pepelyshev and
Flournoy.

4. The papers by Ginsbourger, Durrande, and Roustant, as well as by Chevalier,
Ginsbourger, Bect and Molchanov describe improved designs for computer ex-
periments.

5. The topic of the paper by Atkinson and Bogacka is discrimination between mod-
els. Designs for model selection are also considered by Skubalska-Rafajłowicz
and Rafajłowicz.

6. The paper by Pázman and Pronzato deals with regularized optimality criteria for
experimental design. In turn, some new information criteria are proposed in the
paper by Ferrari and Borrotti.

7. Algorithmic issues are thoroughly treated in the context of the KL-optimality
criterion by Aletti, May and Tommasi, or in the more general case of minimax
criteria by Nyquist. A related problem of numerically constructing optimal de-
signs using the functional approach is studied by Melas, Krylova and Uciński.
A new technique of generating optimal designs by means of simulation tapping
into approximate Bayesian computation is proposed by Hainy, Müller and Wynn.

8. Finally, a number of papers are strongly application-driven. Thus, Bischoff fo-
cuses on checking linear regression models taking time into account. Fackle-
Fornius and Wänström construct minimax designs for contingent valuation ex-
periments. Choice experiments for measuring how the attributes of goods or
services influence preference judgments are studied by Großmann. Coetzer and
Haines put forward designs for response surface models involving multiple mix-
ture and process variables. Rafajłowicz and Rafajłowicz determine optimum in-
put signals for processes modelled by partial differential equations. Designs for
correlated observations in spatial models are exposed by Pepelyshev.

In our personal opinion, the papers in this volume make notable contributions
to the state of the art in the field of model-based optimum experimental design.
We hope the reader will share our point of view and find this volume very useful.
We would like to acknowledge all the authors for their efforts in submitting high-
quality papers. Last, but not least, we are also very grateful to the reviewers for their
thorough and critical reviews of the papers within the short stipulated time.

Dariusz Uciński
Anthony C. Atkinson

Maciej Patan

Zielona Góra, Poland
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A Convergent Algorithm for Finding
KL-Optimum Designs and Related Properties

Giacomo Aletti, Caterina May, and Chiara Tommasi

Abstract Among optimality criteria adopted to select best experimental designs
to discriminate between different models, the KL-optimality criterion is very gen-
eral. A KL-optimum design is obtained from a minimax optimization problem
on an infinite-dimensional space. In this paper some important properties of the
KL-optimality criterion function are highlighted and an algorithm to construct a
KL-optimum design is proposed. It is analytically proved that a sequence of designs
obtained by iteratively applying this algorithm converges to the set of KL-optimum
designs, provided that the designs are regular. Furthermore a regularization proce-
dure is discussed.

1 Introduction

One of the goals of optimum experimental design theory is the selection of the
best experimental conditions to discriminate between competitive models. Among
the optimality criteria proposed in the literature for discrimination purposes, the
KL-optimality criterion (introduced in López-Fidalgo et al. 2007) is very general.
Actually, it can be applied to any distribution and includes as a particular case the
optimality criterion introduced by Uciński and Bogacka (2004) when models are
Gaussian, which is in turn a generalization of the T-optimality criterion for ho-
moscedastic errors given in Atkinson and Fedorov (1975a, 1975b). A KL-optimum
design maximizes the power function for a discrimination test in the worst case (see
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López-Fidalgo et al. 2007, for details). Furthermore, the KL-criterion has been ex-
tended to discriminate between several models (Tommasi 2007) and has been used
in compound criteria for the double goal of discrimination and estimation of models
(Tommasi 2009; May and Tommasi 2012).

The analytical construction of KL-optimum designs is possible only in a few
cases. In practice, KL-optimum designs are obtained through iterative procedures
(Fedorov and Hackl 1997). In this paper the first-order algorithm to find a KL-
optimum design is presented in more detail than in López-Fidalgo et al. (2007) and
its convergence is proved in the setting of probability measures, that is, in an infinite-
dimensional space. To this end, some classical results of the minimax literature (see,
e.g., Polak 1997) are adapted to the infinite-dimensional case.

The paper is organized as follows. In Sect. 2 some important properties of KL-
optimum designs are given, together with the notational setting and the main defi-
nitions. Section 3 is devoted to presenting the algorithm and a proof of its conver-
gence for regular designs is given. In Sect. 4 a regularization problem is discussed
to include the cases when the minimum (in the maximin problem related to the
KL-criterion) is not unique. Final comments in Sect. 5 conclude the work.

2 Notation and Some Properties of the KL-Optimum Designs

Let an experimental design ξ be a probability distribution having support on a com-
pact experimental domain X in R

q , q ≥ 1. Consider two statistical models, that
is, two parametric families of conditional distributions f1(y|x;β1) and f2(y|x;β2),
where β1 ∈Θ1, β2 ∈Θ2, and Θi are open subsets of Rdi , i = 1,2. Denote by

I (x,β1, β2)=
∫
Y

log
f1(y|x;β1)

f2(y|x;β2)
f1(y|x;β1)dy (1)

the Kullback-Leibler divergence between f1(y|x;β1) and f2(y|x;β2), assuming
that f1(y|x;β1) is the “true” model. In order to discriminate between f1(y|x;β1)

and f2(y|x;β2), the design ξ may be selected by maximizing the KL-optimality
criterion function (López-Fidalgo et al. 2007),

I2,1(ξ ;β1)= inf
β2∈Θ2

∫
X

I (x,β1, β2)dξ(x). (2)

For a given value β1 ∈Θ1, the criterion (2) is the minimum Kullback-Leibler dis-
tance between the two models averaged on the experimental design ξ . Equivalently,
the criterion function (2) is the minimum Kullback-Leibler distance between the
two joint distributions associated with a response variable Y and an experimental
condition X, that is f1(y|x;β1)ξ(x) and f2(y|x;β2)ξ(x).

From now on, the value of the parameter of the first model β1 ∈Θ1 is assumed
to be known and therefore it is omitted in the notation.
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A design ξ is regular if the set

Ω2(ξ)=
{
β̃2 : β̃2(ξ)= arg min

β2∈Θ2

∫
X

I (x,β2) ξ(dx)

}
(3)

is a singleton. Otherwise ξ is called singular.
The KL-criterion function I2,1(ξ) defined in (2) has the following properties:

Concavity The KL-criterion function I2,1(ξ) is concave, as proved in Tommasi
(2007).

Upper Semi-continuity Assume that the Kullback-Leibler divergence I (x,β2)

defined in (1) is continuous with respect to x. Endow the set Ξ of probability dis-
tributions ξ with support X ⊂ R

q with a metric dw which metrizes the weak con-
vergence on X . Since X is compact, the metric space (Ξ,dw), which is an infinite-
dimensional space, is complete and compact, as a consequence of Prokhorov’s The-
orem. In May and Tommasi (2012) it is proved that the KL-criterion function

I2,1 : (Ξ,dw)→[0,+∞)
is upper semi-continuous. This property guarantees the existence of a KL-optimum
design

ξ∗ ∈ arg max
ξ
I2,1(ξ). (4)

Continuity (Under Suitable Conditions) The KL-criterion function is not con-
tinuous in general (a counter-example is provided in Aletti et al. 2012). Despite this
fact, Aletti et al. prove that, under mild conditions, I2,1 : (Ξ,dw)→[0,+∞) is also
continuous.

3 Convergent Algorithm

In this section an iterative procedure generated by an ascendant algorithm is pro-
posed to construct a KL-optimum design ξ∗. Following Luenberger and Ye (2008),
an algorithm Alg is a map defined on a space S that assigns to every point s ∈ S a
subset of S. It is clear that, unlike the case where Alg is a point-to-point mapping,
a sequence generated by the algorithm Alg cannot, in general, be predicted solely
from knowledge of the initial point s0.

Let Γ be the set that we wish to reach with an algorithm Alg. A continuous
real-valued function Z on S is said to be an ascendant function for Γ and Alg if it
satisfies

(i) if s /∈ Γ and t ∈Alg(s), then Z(t) > Z(s);
(ii) if s ∈ Γ and t ∈Alg(s), then Z(t)≥ Z(s).
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When there is such a function, the algorithm is said to be ascendant.
The algorithm AlgKL here proposed to construct the KL-optimum design is ob-

tained by composing the following point-to-set maps:

Map1: Ξ ↪→Ξ ×Θ2, defined by Map1(ξ)= (ξ,Ω2(ξ)), where Ω2(ξ) is defined
in (3);1

MapX : Θ ↪→X , defined by MapX (β)= {x ∈X : x = arg maxs∈X I (s, β)};
Mapξ : (Ξ × X ) ↪→ Ξ , defined by Mapξ (ξ, x) = {ξ ′ ∈ Ξ : ξ ′ = (1 − α)ξ +
αδx for some 0 ≤ α ≤ 1 such that I2,1(ξ ′) = maxα∈[0,1] I2,1[(1 − α)ξ + αδx]},
where δx denotes the distribution which concentrates the whole mass at x.

Referring to the natural definition of point-to-set mapping obtained by compos-
ing two point-to-set mappings (Luenberger and Ye 2008), let Map2 :Ξ ×Θ2 ↪→Ξ

be defined by

Map2(ξ,β)=Mapξ

[
ξ,MapX (β)

]
.

The algorithm AlgKL :Ξ ↪→Ξ is finally given by

AlgKL(ξ)=Map2
[
Map1(ξ)

]
.

Assume that I (x,β2) defined in (1) is continuous with respect to (x,β2) and
I2,1(ξ) is continuous (see Sect. 2). Provided that the algorithm explores regular
designs, a sequence of designs obtained by iteratively applying AlgKL converges
to the set of KL-optimum designs, as stated in the following theorem.

Theorem 1 Let ξ0 ∈ Ξ such that its sub-level {ξ ∈ Ξ : I2,1(ξ) ≥ I2,1(ξ0)} is com-
pact. For any n, let ξn+1 ∈ AlgKL(ξn). If ξn is a sequence of regular designs, then
the limit of any converging subsequence of ξn is a KL-optimum design. In particular,
if the optimum ξ∗ is unique, ξn→ ξ∗.

To prove the result, the fundamental idea is that, as a consequence of Theorem 1
of López-Fidalgo et al. (2007), I2,1(ξ) is an ascendant function for the set of KL-
optimal designs and AlgKL. Hence it is possible to apply the Global Convergent
Theorem for ascendant algorithms. A detailed proof is provided in the Appendix.

Note that the algorithm proposed here coincides with the first-order algorithm
described in López-Fidalgo et al. (2007) except for the choice of the sequence
{αn}, which is not fixed in advance, but is instead obtained by maximizing the
KL-criterion function in Mapξ .

4 Regularization

The numerical procedure described in Sect. 3 converges provided that the designs
ξn where the algorithm moves are regular. If this is not the case, Fedorov and Hackl

1WhenΩ2(ξ) is empty, replace it with {β̃2 :
∫
X I (x, β̃2) ξ(dx)≤ infβ2∈Θ2

∫
X I (x,β2) ξ(dx)+

ε}, for an arbitrary ε > 0.
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(1997) suggest to regularize the problem, i.e., using the function

Iγ (ξ)= I2,1
[
(1− γ )ξ + γ ξ̃]

instead of I2,1(ξ), where 0< γ < 1 and ξ̃ is a regular design. Let ξ1 = (1− γ )ξ +
γ ξ̃ . Then Iγ (ξ)= I21(ξ1). It is straightforward to prove that the new criterion func-
tion Iγ (ξ) is also concave and continuous.

The algorithm described in Sect. 3 may be then readapted to Iγ (ξ) instead of
I2,1(ξ) in the following way:

1. Map1 :Ξ ↪→Ξ ×Θ2 is now replaced by Map1(ξ)= (ξ,Ω2(ξ1));
2. Mapξ : (Ξ × X ) ↪→ Ξ is now replaced by Mapξ (ξ, x) = {ξ ′ ∈ Ξ : ξ ′ =
(1−α)ξ +αδx for some 0≤ α ≤ 1 such that Iγ (ξ ′)=maxα∈[0,1] Iγ [(1−α)ξ +
αδx]}.
Note that, at least in the class of generalized linear models, any design with a

non-singular Fisher information matrix is regular according to the definition given
in Sect. 2. Therefore, if ξ̃ is regular, then so is ξ1 (the proof is available from the
authors). For these models, it is then guaranteed that the readapted algorithm moves
on regular designs. In addition, Theorem 1 may be specialized for this algorithm,
obtaining a sequence ξn converging to the set of optimum designs for Iγ (ξ)

ξ∗γ ∈ arg max
ξ
Iγ (ξ),

instead of the set of KL-optimum designs ξ∗. The following derivations show that
I2,1(ξ

∗
γ ) approximates I2,1(ξ∗), justifying the regularization procedure.

For any given ξ̃ and γ , let

Ξγ =
{
η : η= (1− γ )ξ + γ ξ̃ , ξ ∈Ξ}⊆Ξ

and Iγ :Ξ→R is equivalent to I2,1 :Ξγ →R. Thus

max
ξ∈Ξ Iγ (ξ)= max

η∈Ξγ
I2,1(η)≤max

ξ∈Ξ I2,1(ξ)

and so I2,1(ξ∗)≥ Iγ (ξ∗γ ).

From the concavity of I2,1(ξ), we get

Iγ
(
ξ∗

)= I2,1[(1− γ )ξ∗ + γ ξ̃]≥ (1− γ )I2,1(ξ∗)+ γ I2,1(ξ̃ ).
Thus

I2,1
(
ξ∗

)− Iγ (ξ∗)≤ γ [I2,1(ξ∗)− I2,1(ξ̃ )].
Since ξ∗γ is the maximum of Iγ (ξ), I2,1(ξ∗)− Iγ (ξ∗γ )≤ I2,1(ξ∗)− Iγ (ξ∗) and so

I2,1
(
ξ∗

)− Iγ (ξ∗γ )≤ γ [I2,1(ξ∗)− I2,1(ξ̃ )].
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From the definition of Iγ (ξ) the last inequality can be rewritten as

0≤ I2,1
(
ξ∗

)− I2,1[(1− γ )ξ∗γ + γ ξ̃]≤ γ [I2,1(ξ∗)− I2,1(ξ̃ )].
Thus, if γ is a small value, the design (1− γ )ξ∗γ + γ ξ̃ is almost KL-optimum and
therefore ξ∗γ is almost KL-optimum since I2,1(ξ) is continuous. This result moti-
vates the use of a regularization procedure.

5 Final Comments

In the present work an iterative procedure to find KL-optimum designs is proposed.
A detailed proof is provided of the convergence of a sequence generated by the
algorithm to the set of KL-optimum designs. This analytical result holds when the
algorithm moves on regular designs. Introduction of the regularization procedure
ensures that the algorithm can be always successfully applied.

When an algorithm is used in practice, a finite number of iterations are generated
to approximate an optimum design. A stopping rule may be developed for the algo-
rithm described here, following the method proposed in López-Fidalgo et al. (2007).
The stopping rule may also be extended from the regular case to the general case by
means of the discussed regularization.

Appendix

The convergence of the algorithm is studied by means of the property of closeness
of point-to-set maps (Luenberger and Ye 2008), which is a generalization of the
classical concept of continuity.

Lemma 1
∫
X I (x,β2)dξ(x) is continuous in (ξ,β2).

Proof Take (ξn,βn)→ (ξ,β). We have
∣∣∣∣
∫
X

I (x,β)dξ(x)−
∫
X

I (x,βn)dξn(x)

∣∣∣∣
≤

∣∣∣∣
∫
X

I (x,β)dξ(x)−
∫
X

I (x,β)dξn(x)

∣∣∣∣
+

∣∣∣∣
∫
X

I (x,β)dξn(x)−
∫
X

I (x,βn)dξn(x)

∣∣∣∣
≤

∣∣∣∣
∫
X

I (x,β)
[
dξ(x)− dξn(x)

]∣∣∣∣+
∫
X

∣∣I (x,β)−I (x,βn)
∣∣dξn(x)

≤A+ max
x∈X

∣∣I (x,β)−I (x,βn)
∣∣.
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From the definition of weak convergence, it follows that A→ 0 as ξn→ ξ , since
I is continuous in x and X is compact. To prove that maxx∈X |I (x,β) −
I (x,βn)| → 0 as ξn → ξ , take a converging sequence βn → β and define the
function hn(x) = maxx∈X |I (x,βn) − I (x,β)|. Let x̂n be a maximum point:
x̂n ∈ argx∈X maxhn(x). Since X is compact, from any subsequence of (x̂n)n, we
can extract a converging subsequence x̂nk → x̂. Hence

hnk (x̂nk )=
∣∣I (x̂nk , βnk )−I (x̂nk , β)

∣∣
≤ ∣∣I (x̂nk , βnk )−I (x̂, β)

∣∣+ ∣∣I (x̂, β)−I (x̂nk , β)
∣∣.

The continuity of I with respect to both the variables concludes the proof. �

Corollary 1 The map Map1 is closed.

Proof Let ξn→ ξ , βn ∈Ω2(ξn) and βn→ β . We must prove that β ∈Ω2(ξ). By
Lemma 1, we have that, for n sufficiently large,

∫
X

I (x,βn)dξn(x)≤ ε+
∫
X

I (x,β)dξ(x).

Moreover, since I2,1 is a continuous function, then I2,1(ξ)≤ ε+ I2,1(ξn) (again for
n sufficiently large). Therefore, since I2,1(ξn)=

∫
X I (x,βn)dξn(x), we get

I2,1(ξ)≤ ε+ I2,1(ξn)= ε+
∫
X

I (x,βn)dξn(x)≤ 2ε+
∫
X

I (x,β)dξ(x).

The arbitrary choice of ε ensures that I2,1(ξ)=
∫
X I (x,β)dξ(x). �

Lemma 2 The map MapX is closed.

Proof First note that MapX (β) �= ∅ for any β , since X is compact and I
is continuous. Now, let βn → β , xn ∈ MapX (βn) and xn → x. By definition,
I (xn,βn) ≥I (s, βn) for any n and s. The desired result is a consequence of the
continuity of I . �

The following lemma extends the closedness of line search algorithms in an
infinite-dimensional space.

Lemma 3 The map Mapξ is closed.

Proof Let (ξn, xn)→ (ξ, x), ξ ′n ∈Mapξ (ξn, xn) and ξ ′n→ ξ ′. We need to prove that
ξ ′ ∈Mapξ (ξ, x). For any n, define

Kn =
{
(1− α)ξn + αδxn for some 0≤ α ≤ 1

}
.
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Since

d
[
(1− α)ξn + αδxn, (1− α)ξ + αδx

]≤ (1− α)d(ξn, ξ)+ α|xn − x|,
we have that d(Kn,K)→ 0, where K = {(1− α)ξ + αδx for some 0≤ α ≤ 1}.

Since ξ ′n ∈Kn, it follows that

d
(
ξ ′,K

)≤ d(ξ ′, ξ ′n)+ d(ξ ′n,Kn)+ d(Kn,K)→ 0,

which implies ξ ′ ∈K , that is, ξ ′ = (1− α′)ξ + α′δx for some α′ ∈ [0,1].
By the definition of ξ ′n, we have that I2,1(ξ ′n) ≥ I2,1[(1− α)ξn + αδxn ] for any

α ∈ [0,1]. Letting n→∞, we get

I2,1
(
ξ ′
)≥ I2,1[(1− α)ξ + αδx].

Thus I2,1(ξ ′)≥maxα∈[0,1] I2,1[(1− α)ξ + αδx], and hence ξ ′ ∈Mapξ (ξ, x). �

Corollary 2 The map Map2 is closed.

Proof By Lemmas 2 and 3, the maps (ξ,β)
(Id,MapX )−−−−−−−→ (ξ,MapX (β)) and

(ξ,MapX (β))
Mapξ−−−→Map2(ξ,β) are closed. Since Ξ ×X is compact, the com-

position of the closed point-to-set mappings

(ξ,β)
(Id,MapX )−−−−−−−→ (

ξ,MapX (β)
) Mapξ−−−→Map2(ξ,β)

is closed (see Luenberger and Ye 2008, p. 205, Cor. 1). �

Proof of Theorem 1 From Lemma 1, Lemma 2 and Luenberger and Ye (2008, Cor. 2,
p. 205), it follows that AlgKL is closed. Moreover, as a consequence of Theorem 1
of López-Fidalgo et al. (2007), it is simple to prove that I2,1(ξ) is an ascent function
for the set of KL-optimal designs and AlgKL. Finally, it is sufficient to apply the
Global Convergence Theorem for ascendant algorithms in Luenberger and Ye (2008,
p. 206). �
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Robust Experimental Design for Choosing
Between Models of Enzyme Inhibition

Anthony C. Atkinson and Barbara Bogacka

Abstract Models for enzyme inhibition form a family of extensions of the
Michaelis-Menten model to two explanatory variables. We present four-point
locally Ds-optimum designs for discriminating between competitive and non-
competitive models of inhibition and explore the sensitivity of the designs to the
values of the two nonlinear parameters in the model. We evaluate combinations of
pairs of locally optimum designs. A robust design is found with six support points
that has high minimum and average efficiencies over all considered parameter val-
ues.

1 Introduction

Enzymes are organic catalysts. In a typical enzyme kinetics reaction enzymes bind
substrates and turn them into products. In the absence of inhibition the reaction
rate is represented by the standard Michaelis-Menten model v = V [S]/(Km + [S]),
where V denotes the maximum velocity of the reaction, [S] is the concentration of
the substrate and Km is the Michaelis-Menten constant—the value of [S] at which
half of the maximum velocity V is reached (Michaelis and Menten 1913).

Enzyme inhibitors are molecules that decrease the activity of enzymes. In order
to model such behaviour, the Michaelis-Menten model is extended to include the
effect of inhibitor concentration [I ]. Two important mechanisms are competitive
and non-competitive inhibition; see, for example, Segel (1993). Our paper presents
a method of constructing robust experimental designs for discriminating between
the mechanisms.

The two models, which have a similar structure, are introduced in Sect. 2. They
may be combined in a single four-parameter model with parameter of combination λ
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